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The solution to a second order linear ordinary differential

equation with a non-homogeneous term that is a measure†

Timothy C. Johnson‡ and Mihail Zervos§

(???)

We consider the solvability of the ordinary differential equation (ODE)

1

2
σ2w′′ + bw′ − rw + h = 0, (1)

inside an interval J ≡ ]α, β[, where σ, b, r are given functions and h is a locally finite measure. This
ODE is associated with the Hamilton-Jacobi-Bellman equations arising in the study of a wide range
of stochastic optimisation problems. These problems are motivated by numerous applications and
include optimal stopping, singular stochastic control and impulse stochastic control models in which
the state process is given by a one-dimensional Itô diffusion. Under general conditions, we derive
both analytic and probabilistic expressions for the solution to (1) that is required by the analysis of
the relevant stochastic control models. We also establish a number of properties that are important
for applications.
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1 Introduction

Let J be an open interval with left endpoint α ≥ −∞ and right endpoint
β ≤ ∞, and let B(J ) denote the Borel σ-algebra on J . It is well known that a
function g : J → R is the difference of two convex functions if and only if its
second distributional derivative is a locally integrable measure on (J ,B(J )).
Given such a function g, we denote by g′− its left-hand first derivative, which
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is a function of finite variation, and we let

g′′(dx) = g′′ac(x) dx+ g′′s (dx) (2)

be the Lebesgue decomposition of the second distributional derivative g′′(dx)
into the measure g′′ac(x) dx that is absolutely continuous with respect to the
Lebesgue measure and the measure g′′s (dx) that is mutually singular with
the Lebesgue measure. Similarly, given a locally integrable measure h on
(J ,B(J )), we denote by

h(dx) = hac(x) dx+ hs(dx) (3)

its Lebesgue decomposition.
Now, let σ, b, r : J → R be given Borel-measurable functions with σ > 0, and

let h be a measure on (J ,B(J )). We aim at establishing general conditions on
this data, under which there exists a solution w to the ODE (1) in the sense of
distributions. In particular, we consider the solvability of (1) in the following
sense.

Definition 1.1 A function w : J → R is a solution to the ODE (1) if it is the
difference of two convex functions and Lw = −h, where Lw is the measure on
(J ,B(J )) defined by

Lw(dx) =
1

2
σ2(x)w′′(dx) + b(x)w′

−(x) dx− r(x)w(x) dx. (4)

Equivalently, a function w : J → R is a solution to the ODE (1) if it is the
difference of two convex functions,

1

2
σ2(x)w′′

ac(x) + b(x)w′
−(x) − r(x)w(x) + hac(x) = 0, (5)

Lebesgue-a.e. in J , and

w′′
s (dx) = − 2

σ2(x)
hs(dx). (6)

The ODE (1) arises in the study of several stochastic optimisation mod-
els with an expected discounted performance criterion over an infinite time
horizon and with state process dynamics related to the one-dimensional Itô
diffusion

dXt = b(Xt) dt + σ(Xt) dWt, X0 = x ∈ J , (7)
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where W is a standard one-dimensional Brownian motion. Such models have
been motivated by numerous applications and arise in optimal stopping, singu-
lar stochastic control and impulse stochastic control; Alvarez [1–4], Beibel and
Lerche [5], Beneš, Shepp and Witsenhausen [6], Davis and Zervos [9], Dayanik
and Karatzas [10], Duckworth and Zervos [11], Guo and Shepp [13], Harri-
son and Taksar [14], Harrison and Taylor [15], Jacka [17, 18], Karatzas [19],
Karatzas and Ocone [20], Karatzas, Ocone, Wang and Zervos [21], Karatzas
and Sudderth [23], Ma [25], Øksendal [27,28], Salminen [31], Shreve, Lehoczky
and Gavers [34], Shiryayev [32], Shiryaev and Peskir [33], and the references
therein provide a highly incomplete list of such stochastic control problems. In
the models studied in these references by means of dynamic programming and
variational inequalities, special cases of the ODE (1) are considered. In these
cases, the measure h, which is closely related to the associated payoff func-
tionals, is assumed to be absolutely continuous with respect to the Lebesgue
measure.

Apart from their independent theoretical interest, the results that we estab-
lish here are important for addressing stochastic control problems in which h
is not absolutely continuous. Such a situation arises in the optimal stopping
problem that aims at maximising the performance criterion

Ex

[

exp

(

−
∫ τ

0
r(Xs) ds

)

g(Xτ )1{τ<∞}

]

(8)

over all stopping times τ . If g is C1 with absolutely continuous first deriva-
tive and satisfies appropriate technical conditions, then an application of Itô’s
formula implies that this performance criterion is equal to

g(x) + Ex

[
∫ τ

0
exp

(

−
∫ t

0
r(Xs) ds

)

L̃g(Xt) dt

]

, (9)

where

L̃g =
1

2
σ2g′′ + bg′ − rg.

It follows that the problem of maximising (8) over τ is equivalent to maximis-
ing (9) over all stopping times τ . With regard to standard theory of optimal
stopping, the Hamilton-Jacobi-Bellman (HJB) equation of this problem takes
the form of the variational inequality

max

{

1

2
σ2w′′ + bw′ − rw + L̃g, −w

}

= 0.



November 1, 2006 15:39 Stochastics and Stochastics Reports johnson-zervos

4 T.C. Johnson and M. Zervos

Thus, one is faced with the solvability of (1).
This reformulation is not intended solely for providing a justification for this

paper. Indeed, it turns out that deriving explicit solutions to special cases of
this optimal stopping problem depends crucially on the properties of L̃g (see
Alvarez [4, Corollary 4.2]). This situation is not confined to optimal stopping:
Øksendal [27,28] used similar ideas to reformulate a number of singular control
models to equivalent ones involving the function L̃g that he then solved. At
this point, we are faced with the issue of extending these analyses to the cases
that arise when g does not possess the regularity assumed above and L̃g is a
measure as in (4) rather than a function. An example where such a generalisa-
tion becomes relevant is provided by the perpetual American butterfly spread
option, the payoff function g of which is given by

g(x) = (x−K1)
+ − 2(x−K2)

+ + (x−K3)
+,

for some constants K1 < K2 < K3.
The solvability of the ODE (1) when h is a function satisfying appropriate

integrability conditions has been extensively studied under general assump-
tions, and has been documented in several references, including Feller [12],
Breiman [8], Mandl [26], Itô and McKean [16], Karlin and Taylor [24], Rogers
and Williams [30], and Borodin and Salminen [7]. Our analysis here relies on
the use of Itô calculus. For this reason, we restrict our attention to Itô diffu-
sions such as the one given by (7) rather than more general diffusions, which
may not be semimartingales. Also, we assume that the underlying diffusion X
is non-explosive. Our results can be generalised with little effort to account for
the cases that arise if the boundary points α, β are attainable (whether absorb-
ing or reflecting), provided that we stay within a semimartingale framework.
We have decided against addressing such a generalisation, partly because this
would significantly complicate the exposition of our results and partly because
most applications assume that the underlying state process is non-explosive.

At this point, it is of interest to make a comment on the relation of our
results with the theory of additive functionals of Markov processes. To fix
ideas, suppose that X is a Brownian motion and that r(x) ≡ λ, for some
constant λ > 0. In this case, if D is a continuous additive functional of X,
then D = Ah for some measure h, where Ah is the process defined by (54)
in Section 4 (see Revuz and Yor [29, Theorem X.2.9]). Furthermore, the λ-
potential UλD of D admits the expression

UλD(x) := Ex

[
∫ ∞

0
e−λt dDt

]

=

∫

J
uλ(x, s)νD(ds), (10)

where uλ is the Green function defined by uλ(x, s) = (
√

2λ)−1 exp(−
√

2λ|x−s|)
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and νD is the Revuz measure of D (see Revuz and Yor [29, Theorem X.2.8]).
Such representations can be extended to more general linear Markov processes
including the ones that we consider here. One contribution of this paper is to
provide an explicit expression for the right-hand side of (10) and to show that
this satisfies the ODE (1) when X is an Itô diffusion such as the one given by
(7).

The paper is organised as follows. In Section 2, we consider the Itô diffusion
(7), we develop our assumptions and we review a number of well-known results
on which our analysis depends. In Section 3, we establish an analytic expression
for a special solution to (1), and we prove several analytic properties that
this solution has. In Section 4, we establish a probabilistic expression for this
special solution, and we show that it satisfies Dynkin’s formula as well as the
transversality condition, which are properties that are most important for the
analysis of specific applications.

2 The associated Itô diffusion, assumptions and spaces of measures

We consider the Itô diffusion given by (7) and we make the following assump-
tion.

Assumption 2.1 The functions b, σ : J → R are Borel-measurable and satisfy
the following conditions:

σ2(x) > 0, for all x ∈ J ≡ ]α, β[, (11)

and

∫ β̄

ᾱ

1 + |b(s)|
σ2(s)

ds <∞, for all α < ᾱ < β̄ < β. (12)

Also, σ2 is locally bounded, i.e.,

sup
s∈[ᾱ,β̄]

σ2(s) <∞, for all α < ᾱ < β̄ < β. (13)

Assumptions (11) and (12) are the non-degeneracy condition (ND)′ and the
local integrability condition (LI)′ in Karatzas and Shreve [22, Section 5.5.C],
respectively. These conditions are sufficient for the SDE (7) to have a weak
solution that is unique in the sense of probability law up to a possible explosion
time. In particular, given c ∈ J , the scale function p and the speed measure
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m, given by

p(x) =

∫ x

c

exp

(

−2

∫ s

c

b(u)

σ2(u)
du

)

ds, for x ∈ J , (14)

m(dx) =
2

σ2(x)p′(x)
dx, (15)

are well-defined. For future reference, we note that p satisfies the ODE

1

2
σ2(x)p′′(x) + b(x)p′(x) = 0. (16)

We also assume that the solution to (7) is non-explosive, i.e., the hitting time
of the boundary {α, β} of the interval J is infinite with probability 1. With
reference to the so-called Feller’s test for explosions (see Theorem 5.5.29 in
Karatzas and Shreve [22]), we therefore make the following assumption.

Assumption 2.2 If we define

l(x) =

∫ x

c

[p(x) − p(y)]m(dy), for x ∈ J ,

then limx↓α l(x) = limx↑β l(x) = ∞.

To proceed further, we consider a weak solution Sx = (Ω,F ,Ft,Px,W,X)
to the SDE (7). Given a point a ∈ J , we denote by Ta the first hitting time
of the set {a}, i.e.,

Ta = inf {t ≥ 0 | Xt = a} . (17)

Our assumptions imply that

Px(Ta <∞) > 0, for all x, a ∈ J ,

i.e., the diffusion X is regular . Also, we define

Λt =

∫ t

0
r(Xs) ds, for t ≥ 0.

The process Λ is well-defined thanks to the following assumption that we make.

Assumption 2.3 The function r : J → ]0,∞[ is Borel-measurable and locally
bounded. Also, there exists r0 > 0 such that r(x) ≥ r0, for all x ∈ J .
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In the presence of Assumptions 2.1, 2.2 and 2.3, the general solution to the
homogeneous ODE

1

2
σ2(x)w′′(x) + b(x)w′(x) − r(x)w(x) = 0, for x ∈ J . (18)

exists in the classical sense and is given by

w(x) = Aφ(x) +Bψ(x), (19)

for some constants A,B ∈ R. The functions φ and ψ are C1, their first deriva-
tives are absolutely continuous functions,

0 < φ(x) and φ′(x) < 0, for all x ∈ J , (20)

0 < ψ(x) and ψ′(x) > 0, for all x ∈ J , (21)

and

lim
x↓α

φ(x) = lim
x↑β

ψ(x) = ∞. (22)

These functions are unique, modulo multiplicative constants. Also, they satisfy

φ(x) = φ(y)Ex
[

e−ΛTy

]

, for all y < x, (23)

and

ψ(x) = ψ(y)Ex
[

e−ΛTy

]

, for all x < y, (24)

where Ty is the first hitting time of {y} defined by (17) above.

Remark 2.4 Note that Assumption 2.3 implies

lim
t→∞

e−Λt |g(Xt)|1{Tᾱ∧Tβ̄=∞} = 0.

for all points ᾱ, β̄ ∈ J such that ᾱ < x < β̄ and all locally bounded

functions g : J → R. We can therefore define e
−ΛTᾱ∧T

β̄ |g(XTᾱ∧Tβ̄
)| =

limt→∞ e
−ΛTᾱ∧T

β̄
∧t |g(XTᾱ∧Tβ̄∧t)|.

The following result, which we will need, is a straightforward consequence
of the probabilistic expressions (23)–(23).
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Lemma 2 Suppose that Assumptions 2.1–2.3 hold true, and fix any initial
condition x ∈ J and any weak solution Sx to the SDE (7). Also, consider any
strictly decreasing sequence (αm) and any strictly increasing sequence (βn)
such that

α1 < x < β1, lim
m→∞

αm = α and lim
n→∞

βn = β. (25)

If g : J → R is a locally bounded function satisfying

lim
x↓α

|g(x)|
φ(x)

= lim
x↑β

|g(x)|
ψ(x)

= 0,

then

lim
m,n→∞

E

[

e−ΛTαm∧Tβn

∣

∣g(XTαm∧Tβn
)
∣

∣

]

= 0.

Proof. Using (20)–(24), we calculate

lim
m,n→∞

E

[

e−ΛTαm∧Tβn

∣

∣g(XTαm∧Tβn
)
∣

∣

]

≤ lim
m,n→∞

{

|g(αm)|Ex
[

e−ΛTαm

]

+ |g(βn)|Ex
[

e−ΛTβn

]}

= lim
m→∞

φ(x)
|g(αm)|
φ(αm)

+ lim
n→∞

ψ(x)
|g(βn)|
ψ(βn)

= 0,

and the result follows. �

If α is an entrance boundary point, i.e., if limx↓α Px (Ta <∞) > 0, for some
a ∈ J , then ψ(α) := limx↓α ψ(x) > 0, otherwise, if α is a natural boundary
point, ψ(α) := limx↓α ψ(x) = 0. Similarly, if β is an entrance boundary point,
then φ(β) := limx↑β φ(x) > 0, while, if β is a natural boundary point, φ(β) :=
limx↑β φ(x) = 0. Furthermore, the scale function p admits the expression

p′(x) =
φ(x)ψ′(x) − φ′(x)ψ(x)

C
, for all x ∈ J , (26)

where

C = φ(c)ψ′(c) − φ′(c)ψ(c) > 0. (27)
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Apart from Lemma 2, all of these results concerning the functions φ and ψ
can be found in several references, including Borodin and Salminen [7], Itô
and McKean [16], and Rogers and Williams [30].

Now, we consider measures h on (J ,B(J )) such that

∫

[ᾱ,β̄]

1

σ2(x)p′(x)
|h|(dx) <∞, for all α < ᾱ < β̄ < β, (28)

where |h| is the total variation measure of h, and we fix any point γ ∈ J .

Definition 2.5 The space Iφ,ψ of (φ,ψ)-integrable measures is defined to be
the set of all measures h on (J ,B(J )) such that

∫

]α,γ[

ψ(s)

σ2(s)p′(s)
|h|(ds) +

∫

[γ,β[

φ(s)

σ2(s)p′(s)
|h|(ds) <∞.

Definition 2.6 The space Σφ,ψ of (φ,ψ)-sumable measures is defined to be the
set of all measures h on (J ,B(J )) satisfying (28) and such that the limits

lim
x↓α

∫

]x,γ[

ψ(s)

σ2(s)p′(s)
h(ds) and lim

x↑β

∫

[γ,x[

φ(s)

σ2(s)p′(s)
h(ds)

exist in R.

Remark 2.7 It is worth noting that the definitions of Iφ,ψ and Σφ,ψ do not

depend on the choice of the point γ ∈ J . Also, we plainly have Iφ,ψ ⊆ Σφ,ψ.
In fact, this inclusion is strict (see Example 2.8 below). However, we should
note that, if h is a positive measure, then h ∈ Σφ,ψ if and only if h ∈ Iφ,ψ.

Example 2.8 Suppose that J = ]0,∞[, b ≡ 0 and σ(x) =
√

2x, so that the
Itô diffusion X is a geometric Brownian motion, and that r(x) = 2. In this
context, we can see that

φ(x) = x−1, ψ(x) = x2 and p′(x) = 1, (29)

where we have taken c = 1 for the definition (14) of the scale function p. Also,
consider the measure h defined by

h(Γ) =

∞
∑

k=0

1

2k + 1
1Γ

(

1

2k + 1

)

−
∞
∑

k=1

1

2k
1Γ

(

1

2k

)

, (30)
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for Γ ∈ B(]0,∞[). In view of (29), we calculate

∫

]0,1]

2ψ(s)

σ2(s)p′(s)
|h|(ds) = |h|(]0, 1]) =

∞
∑

k=0

1

k
= ∞,

and

lim
x↓0

∫

]x,1]

2ψ(s)

σ2(s)p′(s)
h(ds) = 1 − 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2.

However, combining these calculations with the fact that the support of the
measure h is included in the interval ]0, 1], we can see that h ∈ Σφ,ψ and that
h /∈ Iφ,ψ.

3 Analytic characterisation of a special solution to the ODE (1)

The purpose of this section is to study analytic properties of an appropriate
special solution to the ODE (1). To this end, we consider a measure h ∈ Σφ,ψ,
and we define the function Qh : J → R by

Qh(x) = φ(x)

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds) + ψ(x)

∫

[x,β[

2φ(s)

Cσ2(s)p′(s)
h(ds). (31)

The next result is concerned with showing that this function is a special solu-
tion to the ODE (1).

Proposition 3 Suppose that Assumptions 2.1–2.3 are satisfied. Given a mea-
sure h ∈ Σφ,ψ ⊃ Iφ,ψ, the function Qh defined by (31) is the difference of two
convex functions,

(Qh)
′
−(x) = φ′(x)

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds) + ψ′(x)

∫

[x,β[

2φ(s)

Cσ2(s)p′(s)
h(ds),

(32)
and Qh is a special solution to the ODE (1) in the sense of Definition 1.1.
Furthermore, the operator h 7→ Qh mapping Σφ,ψ into the set of all real-
valued functions on J that are differences of two convex functions is positive,
i.e.,

Qh ≥ 0, for all positive h ∈ Σφ,ψ, (33)
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and linear, i.e.,

Qa1h1+a2h2
= a1Qh1

+ a2Qh2
, for all a1, a2 ∈ R and h1, h2 ∈ Σφ,ψ. (34)

Proof. Recalling that h satisfies (28), we define the left-continuous function
H : J → R by H(γ) = 0,

H(x) = −
∫

]x,γ[

2

Cσ2(s)p′(s)
h(ds), if x ∈ ]α, γ[, (35)

and

H(x) =

∫

[γ,x[

2

Cσ2(s)p′(s)
h(ds), if x ∈ ]γ, β[, (36)

where the constant C > 0 is as in (27). Now consider any points ᾱ, β̄ ∈ J
such that ᾱ < β̄. Using the integration by parts formula, we calculate

−H(ᾱ)ψ(ᾱ) −
∫ x

ᾱ

ψ′(s)H(s) ds = −H(x)ψ(x) +

∫

[ᾱ,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds),

(37)

H(β̄)φ(β̄) −
∫ β̄

x

φ′(s)H(s) ds = H(x)φ(x) +

∫

[x,β̄[

2φ(s)

Cσ2(s)p′(s)
h(ds). (38)

If we define the function Θᾱ,β̄
h : [ᾱ, β̄] → R by

Θᾱ,β̄
h (x) =

[

∫

]α,ᾱ[

2ψ(s)

Cσ2(s)p′(s)
h(ds) −H(ᾱ)ψ(ᾱ)

]

φ(x)

+

[

∫

[β̄,β[

2φ(s)

Cσ2(s)p′(s)
h(ds) +H(β̄)φ(β̄)

]

ψ(x)

− φ(x)

∫ x

ᾱ

ψ′(s)H(s) ds − ψ(x)

∫ β̄

x

φ′(s)H(s) ds, (39)

then these expressions imply

Qh(x) = Θᾱ,β̄
h (x), for all x ∈ [ᾱ, β̄] (40)
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In view of (26) and the fact that H is left-continuous, we can see that the

left-hand side first derivative of Θᾱ,β̄
h is given by

(Θᾱ,β̄
h )′−(x) =

[

∫

]α,ᾱ[

2ψ(s)

Cσ2(s)p′(s)
h(ds) −H(ᾱ)ψ(ᾱ)

]

φ′(x)

+

[

∫

[β̄,β[

2φ(s)

Cσ2(s)p′(s)
h(ds) +H(β̄)φ(β̄)

]

ψ′(x) − Cp′(x)H(x)

− φ′(x)

∫ x

ᾱ

ψ′(s)H(s) ds − ψ′(x)

∫ β̄

x

φ′(s)H(s) ds. (41)

This calculation, (26), the integration by parts formulae (37)–(38) and the

identity (40) imply (32). From this expression, we can also see that (Θᾱ,β̄
h )′−

is locally bounded and that the second distributional derivative of Θᾱ,β̄
h is a

measure. Furthermore, if

(Θᾱ,β̄
h )′′(dx) = (Θᾱ,β̄

h )′′ac(x) dx + (Θᾱ,β̄
h )′′s (dx) (42)

is the Lebesgue decomposition of the second distributional derivative

(Θᾱ,β̄
h )′′(dx) (see (2)), then we can calculate

(Θᾱ,β̄
h )′′ac(x) =

[

∫

]α,ᾱ[

2ψ(s)

Cσ2(s)p′(s)
h(ds) −H(ᾱ)ψ(ᾱ)

]

φ′′(x)

+

[

∫

[β̄,β[

2φ(s)

Cσ2(s)p′(s)
h(ds) +H(β̄)φ(β̄)

]

ψ′′(x)

− Cp′′(x)H(x) − 2hac(x)

σ2(x)

− φ′′(x)

∫ x

ᾱ

ψ′(s)H(s) ds − ψ′′(x)

∫ β̄

x

φ′(s)H(s) ds.

and

(Θᾱ,β̄
h )′′s (dx) = − 2

σ2(x)
hs(dx).
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Now, it is straightforward to combine these expressions, (39) and (41) with
the fact that the scale function p satisfies the ODE (16) and the fact that the
functions φ, ψ are classical solutions to the homogeneous ODE (18) to see that

Θᾱ,β̄
h satisfies the ODE (1) inside the interval ]ᾱ, β̄[. However, this observation

(40) and the fact that ᾱ, β̄ are arbitrary points in J imply that Qh satisfies
the ODE (1) inside J in the sense of Definition 1.1. Finally, (33) and (34)
follow immediately from the definition of Qh. �

Establishing conditions under which the solution to the ODE (1) that we
have derived above is a monotone or a bounded function is an issue that is
most important for applications. To this end, we define the positive measure
rm on (J ,B(J )) by

rm(dx) = r(x) dx, (43)

and we consider the following definitions.

Definition 3.1 A measure h on (J ,B(J )) is r-increasing if, given any x ∈ J ,
there exists a constant Kx such that the restriction of the measure −h +
Kxrm in (]α, x],B(]α, x])) and the restriction of the measure h − Kxrm in
([x, β[,B([x, β[)) both are positive measures.

The measure h is r-decreasing if −h is r-increasing.

Definition 3.2 The r-supremum and the r-infimum of a measure h on
(J ,B(J )) over a set Γ ∈ B(J ) are defined by

r -supΓ h = inf
{

K ∈ R | the restriction of − h+Krm

in (Γ,B(Γ)) is a positive measure
}

,

r -infΓ h = sup
{

K ∈ R | the restriction of h−Krm

in (Γ,B(Γ)) is a positive measure
}

,

with the usual conventions inf ∅ = ∞ and sup ∅ = −∞.

Definition 3.3 A measure h on (J ,B(J )) is r-convergent in R at α if there
exists a constant r -limα h ∈ R such that, for all ε > 0, there exists αε ∈ J
such that the restrictions of the measures h − (r -limα h− ε) rm and −h +
(r -limα h+ ε) rm in (]α,αε[,B(]α,αε[) both are positive measures.

A measure h on (J ,B(J )) is r-convergent to ∞ at α, in which case we write
r -limα h = ∞, if, for all K > 0, there exists αK ∈ J such that the restriction
of the measure h−Krm in (]α,αK [,B(]α,αK [) is a positive measure.

A measure h on (J ,B(J )) is r-convergent to −∞ at α, in which case we
write r -limα h = −∞, if r -limα(−h) = ∞.
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The r-limits of a measure h on (J ,B(J )) at β are defined in a similar way.

Remark 3.4 below provides the intuition behind these definitions.
The following result is concerned with the issues considered above and with

several other properties of the solution Qh to the ODE (1) that are of interest
in applications.

Proposition 4 Suppose that Assumptions 2.1–2.3 hold true, and consider any
measure h ∈ Σφ,ψ ⊃ Iφ,ψ. The function Qh given by (31) satisfies

lim
x↓α

|Qh(x)|
φ(x)

= lim
x↑β

|Qh(x)|
ψ(x)

= 0, (44)

and

r -infJ h ≤ Qh(x) ≤ r -supJ h, (45)

φ(x)(Qh)
′
−(x) − φ′(x)Qh(x) = p′(x)

∫

[x,β[

2φ(s)

Cσ2(s)p′(s)
h(ds), (46)

ψ(x)(Qh)
′
−(x) − ψ′(x)Qh(x) = −p′(x)

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds), (47)

for all x ∈ J . If rm is the measure on (J ,B(J )) defined by (43), then

Qrm(x) = 1, for all x ∈ J . (48)

If h is r-increasing (resp., r-decreasing) in the sense of Definition 3.1 and
|h|(J ) > 0, then Qh is strictly increasing (resp., strictly decreasing). Further-
more, if α (resp., β) is a natural boundary point and h is r-convergent at α
(resp., at β) in the sense of Definition 3.3, then

lim
x↓α

Qh(x) = r -limα h

(

resp., lim
x↑β

Qh(x) = r -limβ h

)

. (49)

Proof. We can verify (46) and (47) by a straightforward calculation involv-
ing the definition (31) of Qh and (26). To prove (48), we first note that (20),
(21) and (26) imply

0 <
φ(x)ψ′(x)

Cp′(x)
< 1 and 0 < −φ

′(x)ψ(x)

Cp′(x)
< 1.
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Combining these inequalities with (22), we can see that

lim
x↓α

ψ′(x)

p′(x)
= lim

x↑β

φ′(x)

p′(x)
= 0. (50)

Now, the fact that p′ satisfies the ODE (16) and the fact that φ satisfies the
ODE (18) imply

d

dx

(

φ′(x)

p′(x)

)

=
2

σ2(x)p′(x)

[

1

2
σ2(x)φ′′(x) + b(x)φ′(x)

]

=
2r(x)φ(x)

σ2(x)p′(x)
.

Similarly, we can show that

d

dx

(

ψ′(x)

p′(x)

)

=
2r(x)ψ(x)

σ2(x)p′(x)
.

In view of these calculations and the continuity of the functions φ′, ψ′ and p′,
we can see that

Qrm(x) = φ(x)

∫ x

α

1

C
d

(

ψ′(s)

p′(s)

)

+ ψ(x)

∫ β

x

1

C
d

(

φ′(s)

p′(s)

)

.

However, this expression, (50) and (26) imply (48).
To establish (45), suppose, without loss of generality, that r -infJ h > −∞,

and let any K ≤ r -infJ h. In view of Definition 3.2, h(dz) − Kr(z) dz is a
positive measure on (J ,B(J )). Combining this observation and (48) with the
linearity and positivity of h 7→ Qh (see (33) and (34) in Proposition 3), we can
see that

Qh(x) −K = Qh−Krm
(x) ≥ 0, for all x ∈ J .

It follows that infx∈J Qh(x) ≥ r -infJ h. Similarly, we can show that
supx∈J Qh(x) ≤ r -supJ h, and (45) follows.

Now, let us assume that the measure h is r-increasing and |h|(J ) > 0. Given
x ∈ J , let Kx be a constant as in Definition 3.1. Using (48), which implies
that (Qrm)′−(x) ≡ 0, the linearity of the operator h 7→ Qh and (32), we can
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see that

(Qh)
′
−(x) = (Qh −QKxrm)′− (x)

= (Qh−Kxrm)′− (x)

= φ′(x)

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
(h−Kxrm)(ds)

+ ψ′(x)

∫

[x,β[

2φ(s)

Cσ2(s)p′(s)
(h−Kxrm)(ds)

> 0,

the inequality following because the restriction of −h + Kxrm in
(]α, x],B(]α, x])) and the restriction of h−Kxrm in ([x, β[,B([x, β[)) both are
positive measures (see Definition 3.1), and because φ′ < 0 < ψ′. However, this
calculation implies that Qh is increasing.

To prove (44), we define

Hψ(x) = −
∫

]x,γ]

ψ(s)

σ2(s)p′(s)
h(ds), for x ∈ ]α, γ[,

and we note that Definition 2.6 implies that

Hψ(α) := lim
x↓α

Hψ(x) exists in R. (51)

Using this definition and the integration by parts formula we calculate

ψ(x)

φ(x)

∫

]x,γ]

φ(s)

σ2(s)p′(s)
h(ds)

=
ψ(x)

φ(x)

∫

]x,γ]

φ(s)

ψ(s)
dHψ(s)

=
ψ(x)

φ(x)

φ(γ)

ψ(γ)
Hψ(γ) −Hψ(x) − ψ(x)

φ(x)

∫ γ

x

Hψ(s) d
φ(s)

ψ(s)
. (52)

Now, consider any y ∈ ]α, γ[, and note that (20) and (21) imply

d

dx

ψ(x)

φ(x)
= −φ

′(x)ψ(x) − φ(x)ψ′(x)

φ2(x)
< 0,
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In light of this observation, we calculate

lim sup
x↓α

[

−ψ(x)

φ(x)

∫ γ

x

Hψ(s) d
φ(s)

ψ(s)

]

≤ lim sup
x↓α

[

−
(

ψ(x)φ(y)

φ(x)ψ(y)
− 1

)

sup
s∈]α,y]

Hψ(s) − ψ(x)

φ(x)

∫ γ

y

Hψ(s) d
φ(s)

ψ(s)

]

= sup
s∈]α,y]

Hψ(s),

the equality following because limx↓α ψ(x)/φ(x) = 0 (see (20)–(22)). By pass-
ing to the limit y ↓ α in this inequality, we can see that

lim sup
x↓α

[

−ψ(x)

φ(x)

∫ γ

x

Hψ(s) d
φ(s)

ψ(s)

]

≤ lim sup
x↓α

Hψ(x) = Hψ(α),

thanks to (51). Using symmetric arguments, we can also see that

lim inf
x↓α

[

−ψ(x)

φ(x)

∫ γ

x

Hψ(s) d
φ(s)

ψ(s)

]

≥ Hψ(α).

It follows that

lim
x↓α

[

−ψ(x)

φ(x)

∫ γ

x

Hψ(s) d
φ(s)

ψ(s)

]

= Hψ(α) ≡ lim
x↓α

Hψ(x).

However, this conclusion, (52) and the fact that limx↓α φ(x)/ψ(x) imply

lim
x↓α

ψ(x)

φ(x)

∫

]x,γ]

φ(s)

σ2(s)p′(s)
h(ds) = 0.

Combining this limit with the fact that

lim
x↓α

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds) = 0

and the definition (31) of Qh, we can see that limx↓αQh(x)/φ(x) = 0, and (44)
follows because φ > 0. Showing that limx↑β |Qh(x)|/ψ(x) = 0 involves similar
arguments.

Finally, suppose that α is a natural boundary point, so that limx↓α ψ(x) =
0, and that h is r-convergent in R at α. Also, fix any ε > 0, and let any
αε ∈ J such that the restriction of the measures h − (r -limα h− ε) rm and
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−h + (r -limα h+ ε) rm in (]α,αε[,B(]α,αε[)) both are positive measures (see
Definition 3.3). In this context, we calculate

lim sup
x↓α

Qh(x) − r -limα h− ε

= lim sup
x↓α

Qh−(r -limα h+ε)rm(x)

= lim sup
x↓α

[

φ(x)

∫

]α,x[

2ψ(s)

Cσ2(s)p′(s)
[h− (r -limα h+ ε) rm] (ds)

+ ψ(x)

∫

[x,αε[

2φ(s)

Cσ2(s)p′(s)
[h− (r -limα h+ ε) rm] (ds)

+ ψ(x)

∫

[αε,β[

2φ(s)

Cσ2(s)p′(s)
[h− (r -limα h+ ε) rm] (ds)

]

≤ lim sup
x↓α

ψ(x)

∫

[αε,β[

2φ(s)

Cσ2(s)p′(s)
[h− (r -limα h+ ε) rm] (ds)

= 0.

Since ε > 0 is arbitrary, it follows that lim supx↓αQh(x) ≤ r -limα h. Simi-
larly, we can show that lim infx↓αQh(x) ≥ r -limα h, and thus establish that
limx↓αQh(x) = r -limα h. Also, we can prove that limx↓αQh(x) = r -limα h
when r -limα h = ∞ or r -limα h = −∞ using similar arguments. �

Remark 3.4 Definitions 3.1, 3.2 and 3.3 take very simple forms if the measure
h is absolutely continuous, i.e., if hs ≡ 0 in the Lebesgue decomposition (3)
of h. Indeed, in this case, h is r-increasing (resp., r-decreasing) if and only if
hac/r is an increasing (resp., decreasing) function, and

r -supΓ h = sup
x∈Γ

hac(x)

r(x)
and r -infΓ h = inf

x∈Γ

hac(x)

r(x)
.

Also, h is r-convergent at α (resp., at β) if hac/r converges as x tends to α
(resp., β), in which case,

r -limα h = lim
x↓α

hac(x)

r(x)
,

(

resp., r -limβ h = lim
x↑β

hac(x)

r(x)

)

.

At this point, it is worth noting that, if α (resp., β) is not a natural boundary
point but an entrance one, then (49) is not necessarily true. We substantiate
this claim by means of Example 4.2 that we develop in the next section because
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it requires the probabilistic representation of the function Qh that we develop
there.

Remark 3.5 Given a measure h satisfying (28), the function Qᾱ,β̄h : J → R

given by

Qᾱ,β̄h (x) = φ(x)

∫

]ᾱ,x[

2ψ(s)

Cσ2(s)p′(s)
h(ds) + ψ(x)

∫

[x,β̄[

2φ(s)

Cσ2(s)p′(s)
h(ds), (53)

for some α < ᾱ < β̄ < β, is well-defined even when h /∈ Σφ,ψ. Furthermore, we
can use the same arguments as the ones in the proof of Proposition 3 to show

that Qᾱ,β̄h is the difference of two convex functions and is a special solution
to the ODE (1). However, such a solution does not, in general, satisfy (44)
in Proposition 4 anymore. To see this claim, it suffices to consider a measure
h ∈ Σφ,ψ and observe that

Qᾱ,β̄h (x) = Qh(x)−φ(x)

∫

]α,ᾱ]

2ψ(s)

Cσ2(s)p′(s)
h(ds)−ψ(x)

∫

[β̄,β[

2φ(s)

Cσ2(s)p′(s)
h(ds).

4 Probabilistic characterisation of a special solution to the ODE (1)

Throughout this section, we assume that an initial condition x ∈ J and a weak
solution Sx = (Ω,F ,Ft,Px,W,X) to the SDE (7) are fixed, and we make no
further reference to this setting. We also assume that the filtered probability
space (Ω,F ,Ft,Px) satisfies the usual conditions. In this probabilistic setting,
we denote by Lz the local time process of X at level z ∈ J . In particular,
we consider a modification of the local time family (Lzt ; z ∈ ]α, β[, t ≥ 0)
such that the mapping (z, t) 7→ Lzt is bicontinuous Px-a.s. (see Revuz and
Yor [29, Theorem VI.1.7]).

Given a measure h on (J ,B(J )) satisfying (28), we define the finite variation
process Ah by

Aht =

∫ β

α

Lzt
σ2(z)

h(dz). (54)

The assumption that X is non-explosive implies that α < infu≤tXu <
supu≤tXu < β, for all t ≥ 0. Combining this observation with the fact that the
measure dLzt is supported on the set {Xt = z} and the continuity of z 7→ Lzt ,
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we can see that

A
|h|
t ≤ sup

z∈J
Lzt

∫ supu≤t Xu

infu≤t Xu

1

σ2(z)
|h|(dz) <∞,

the second inequality following thanks to (28), and the continuity and strict
positivity of p′. It follows that Aht is well-defined for all t ≥ 0. Also, we note
that Ah is continuous, Ah0 = 0, and, if h is a positive measure, then Ah is an
increasing process. These properties follow because Lz0 = 0 and the local time
process Lz is increasing and continuous, for all z ∈ J . For future reference,
we also observe that the mapping h 7→ Ah is linear, i.e.,

Aa1h1+a2h2 = a1A
h1 + a2A

h2 , (55)

for all a1, a2 ∈ R and all measures h1, h2 on (J ,B(J )) satisfying (28).

Remark 4.1 It is worth noting that, if the measure h is absolutely continuous,
i.e., hs ≡ 0 in the Lebesgue decomposition of h in (3), then the occupation
times formula (see Revuz and Yor [29, Corollary VI.1.6]) implies that the
process Ah admits the expression

Aht =

∫ t

0
hac(Xu) du.

Before addressing the main results in the section, we prove the following
preliminary result.

Lemma 5 Suppose that Assumptions 2.1–2.3 hold true. Consider a measure h
on (J ,B(J )) satisfying (28) and let w : J → R be a function satisfying the
ODE (1) in the sense of Definition 1.1. Given any points ᾱ, β̄ ∈ J such that
ᾱ < x < β̄, and any (Ft)-stopping time υ,

Ex

[

e
−ΛTᾱ∧T

β̄
∧υw(XTᾱ∧Tβ̄∧υ)

]

= w(x) − Ex

[
∫ Tᾱ∧Tβ̄∧υ

0
e−Λt dAht

]

, (56)

where Tᾱ and Tβ̄ are the first hitting times of the sets {ᾱ} and {β̄}, respectively,
defined by (17).

Proof. Since the function w is the difference of two convex functions, the
Itô-Tanaka formula (e.g., see Revuz and Yor [29, Theorem VI.1.5]) implies

w(Xt) = w(x)+

∫ t

0
b(Xu)w

′
−(Xu) du+

1

2

∫ β

α

Lzt w
′′(dz)+

∫ t

0
σ(Xu)w

′
−(Xu) dWu.
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In view of the Lebesgue decomposition (42) of the measure w′′ as in (3) and
the occupation times formula, we can see that

∫ β

α

Lztw
′′
ac(z) dz =

∫ t

0
σ2(Xu)w

′′
ac(Xu) du.

It follows that

w(Xt) = w(x) +

∫ t

0

[

1

2
σ2(Xu)w

′′
ac(Xu) + b(Xu)w

′
−(Xu)

]

du

+
1

2

∫ β

α

Lzt w
′′
s (dz) +

∫ t

0
σ(Xu)w

′
−(Xu) dWu.

Now, using the integration by parts formula for semimartingales and the fact
that w satisfies the ODE (1) in the sense of Definition 1.1, we obtain

e−Λtw(Xt) = w(x) +
1

2

∫ t

0
e−Λud

∫ β

α

Lzuw
′′
s (dz) +Mt

+

∫ t

0
e−Λu

[

1

2
σ2(Xu)w

′′
ac(Xu) + b(Xu)w

′
−(Xu) − r(Xu)w(Xu)

]

du

= w(x) −
∫ t

0
e−Λuhac(Xu) du−

∫ t

0
e−Λu d

∫ β

α

Lzu
σ2(z)

hs(dz) +Mt,

where M is the stochastic integral defined by

Mt =

∫ t

0
e−Λuσ(Xu)w

′
−(Xu) dWu. (57)

With regard to the Lebesgue decomposition of the measure h in (3), the oc-
cupation times formula and the definition (54) of the process Ah, we can see
that

e−Λtw(Xt) = w(x) −
∫ t

0
e−Λu dAhu +Mt. (58)

In view of Assumption 2.3 and the local boundedness of the functions w′
−

and σ2 (see also (13) in Assumption 2.1), we can see that the stopped process
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MTᾱ∧Tβ̄∧υ has quadratic variation that satisfies

Ex

[

〈MTᾱ∧Tβ̄∧υ〉∞
]

= Ex

[
∫ ∞

0
1{t≤Tᾱ∧Tβ̄∧υ}

[

e−Λtσ(Xt)w
′
−(Xt)

]2
dt

]

≤ 1

2r0
sup

x∈[Tᾱ,Tβ̄ ]

[

σ(x)w′
−(x)

]2

<∞.

It follows that MTᾱ∧Tβ̄∧υ is a uniformly square integrable martingale, so

M
Tᾱ∧Tβ̄∧υ
∞ := lim

t→∞
M

Tᾱ∧Tβ̄∧υ
t exists, Px-a.s.,

and

Ex

[

M
Tᾱ∧Tβ̄∧υ
∞

]

≡ Ex

[

MTᾱ∧Tβ̄∧υ

]

= 0.

In light of this observation and Remark 2.4, we can see that (58) implies that

lim
t→∞

∫ Tᾱ∧Tβ̄∧t

0
e−Λu dAhu exists, Px-a.s.,

and that (56) holds true. �

The following result provides a probabilistic characterisation of the space
Iφ,ψ.

Proposition 6 Suppose that Assumptions 2.1–2.3 hold true. A measure h ∈
Σφ,ψ belongs to Iφ,ψ if and only if

Ex

[
∫ ∞

0
e−Λt dA

|h|
t

]

<∞, (59)

where the increasing process A|h| is defined as in (54). Given any h ∈ Iφ,ψ,

Rh(x) := Ex

[
∫ ∞

0
e−Λt dAht

]

= Qh(x). (60)

Furthermore, given a measure h ∈ Iφ,ψ, the solution Qh ≡ Rh to the ODE (1)
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satisfies Dynkin’s formula, i.e., given any (Ft)-stopping time υ,

Ex

[

e−ΛυQh(Xτ )1{υ<∞}

]

= Qh(x) − Ex

[
∫ υ

0
e−Λt dAht

]

, (61)

Ex

[

e−ΛυQh(Xυ)1{υ<∞}

]

= Ex

[
∫ ∞

υ

e−Λt dAht

]

, (62)

as well as the strong transversality condition, i.e., given any sequence (υn) of
(Ft)-stopping times such that limn→∞ υn = ∞,

lim
n→∞

Ex

[

e−Λυn |Qh(Xυn
)|1{υn<∞}

]

= 0. (63)

Proof. Combining the definition of Iφ,ψ with the linear dependence of the
function Qh on the measure h (see (34)), which implies that |Qh| ≤ Q|h|, and

the linear dependence of the stochastic process Ah on the measure h (see (55)),
we can see that the result will follow if we prove it for positive h. Therefore,
it suffices to develop the proof under the assumptions that Qh ≥ 0 and that
Ah is an increasing process.

Consider any sequences (αm) and (βn) in J being as in Lemma 2. Given a
measure h ∈ Σφ,ψ ⊃ Iφ,ψ, not necessarily positive, we can see that the fact
that Qh satisfies the ODE (1) in the sense of Definition 1.1 and Lemma 5 with
υ = ∞ imply

Ex

[

e−ΛTαm∧TβnQh(XTαm∧Tβn
)
]

= Qh(x) − Ex

[
∫ Tαm∧Tβn

0
e−Λt dAht

]

.

In view of (44) and Lemma 2, we can pass to the limits m,n→ ∞ to obtain

Qh(x) = lim
m,n→∞

Ex

[
∫ Tαm∧Tβn

0
e−Λt dAht

]

. (64)

Now, if h is a positive measure satisfying (28), then Ah is an increasing
process and the monotone convergence theorem implies

lim
m,n→∞

Ex

[
∫ Tαm∧Tβn

0
e−Λt dAht

]

= Ex

[
∫ ∞

0
e−Λt dAht

]

. (65)

Recalling that every positive measure h ∈ Σφ,ψ belongs to Iφ,ψ (see Re-
mark 2.7), we can see that, if the right hand side of (65) is equal to ∞,
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then h /∈ Iφ,ψ because, otherwise, (64) and (65) imply Qh(x) = ∞, which
contradicts the fact that Qh is real-valued for all h ∈ Σφ,ψ ⊃ Iφ,ψ. It follows
that a positive measure in Σφ,ψ belongs to Iφ,ψ if and only if (59) is true.
Furthermore, if h ∈ Iφ,ψ is a positive measure, then (64) and (65) imply (60).

To prove (61) and (62), we note that Lemma 5 yields

Ex

[

e−ΛTαm∧Tβn
∧υQh(XTαm∧Tβn∧υ)

]

= Qh(x) − Ex

[
∫ Tαm∧Tβn∧υ

0
e−Λt dAht

]

,

(66)
where (αm) and (βn) are any sequences as in Lemma 2. An application of the
monotone convergence theorem implies

lim
m,n→∞

Ex

[

e−ΛυQh(Xυ)1{υ≤Tαm∧Tβn}

]

= Ex

[

e−ΛυQh(Xυ)1{υ<∞}

]

and

lim
m,n→∞

Ex

[
∫ Tαm∧Tβn∧υ

0
e−Λt dAht

]

= Ex

[
∫ υ

0
e−Λt dAht

]

,

while Lemma 2 implies

lim
m,n→∞

Ex

[

e−ΛTαm∧TβnQh(XTαm∧Tβn
)1{Tαm∧Tβn<υ}

]

≤ lim
m,n→∞

Ex

[

e−ΛTαm∧TβnQh(XTαm∧Tβn
)
]

= 0. (67)

In view of these observations, we can pass to the limits m,n → ∞ in (66) to
obtain (61). Finally, (62) follows from (60) and (61), while (63) follows from
(60), (61) and the monotone convergence theorem. �

When the measure h belongs to Σφ,ψ but not to Iφ,ψ, we do not have a
nice probabilistic characterisation of the solution Qh to the ODE (1) such as
the one in the previous proposition. However, we should observe the following
result that is a restatement of (64).

Lemma 7 Suppose that Assumptions 2.1–2.3 are satisfied, and consider any
measure h ∈ Σφ,ψ. Given a strictly decreasing sequence (αm) and a strictly
increasing sequence (βn) satisfying (25),

Qh(x) = lim
m,n→∞

Ex

[
∫ Tαm∧Tβn

0
e−Λt dAht

]

, (68)
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where Tαm
and Tβn

are the first hitting times defined as in (17).

Finally, we can consider the following example that highlights the impor-
tance of the boundary points α and β classification to the validity of (49) in
Proposition 4.

Example 4.2 Suppose that J = ]0,∞[, and that b(x) = κ(θ − x) and σ(x) =
σ
√
x, for some constants κ, θ, σ > 0 such that κθ− 1

2σ
2 > 0. The associated Itô

diffusion X is the square-root mean-reverting process appearing in the Cox-
Ingersoll-Ross interest rate model. Also, 0 is an entrance boundary point, and,
if we choose r(x) = r0, for some constant r0 > 0, then Assumptions 2.1–2.3
are all satisfied. It is a standard exercise to calculate Ex[Xt] = θ+(x− θ)e−κt.
In view of this calculation, we can see that if h is the measure defined by
h(dx) = x dx, then

lim
x↓0

Qh(x) ≡ lim
x↓0

Rh(x) =
θκ

r0(r0 + κ)
> 0 = lim

x↓0

hac(x)

r(x)
≡ r -lim0 h.
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(Birkhäuser).
[8] Breiman, L., 1968, Probability (Addison-Wesley).



November 1, 2006 15:39 Stochastics and Stochastics Reports johnson-zervos

26 T.C. Johnson and M. Zervos

[9] Davis, M. H. A. and Zervos, M., 1998, A pair of explicitly solvable singular stochastic control
problems. Applied Mathematics and Optimization, 38, 327–352.

[10] Dayanik, S. and Karatzas, I., 2003, On the optimal stopping problem for one-dimensional diffu-
sions. Stochastic Processes and their Applications, 107, 173-212.

[11] Duckworth, K. and Zervos, M., 2001, A model for investment decisions with switching costs.
The Annals of Applied Probability, 11, 239–260.

[12] Feller, W., 1954, The general diffusion operator and positivity preserving semi-groups in one
dimension. Annals of Mathematics, 60, 417–436.

[13] Guo, X. and Shepp, L. A., 2001, Some optimal stopping problems with nontrivial boundaries
for pricing exotic options. Journal of Applied Probability, 38, 647–658.

[14] Harrison, J. M. and Taksar, M. I., 1983, Instantaneous control of Brownian motion. Mathematics
of Operations research, 8, 439–453.

[15] Harrison, J. M. and Taylor, A. J., 1978, Optimal control of a Brownian storage system. Stochastic
Processes and Their Applications, 6, 179-194.
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