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Introduction

@ Ideal fluid: Euler (1755);
@ Viscous fluid: Navier (1822) and Stokes (1845).

d
a—LtlJru-Vu:vVZu—Verf,

V-u=0.

® u = u(x,t) fluid velocity;
@ p = p(x,t) pressure;

@ f = f(x,t) external force;
@ v viscosity;
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Material exhibits flow if shear forces, however small, lead to a
deformation which is unbounded; i.e. a fluid.

@ Liquids: incompressible, eg. brakes!;
@ Gases: compressible, eg. aerosols and air canisters.

Subcatergorization:
@ Ideal/inviscid: only internal force is pressure;
@ Viscous: internal frictional forces also present;
@ Non-Newtonian/complex: reaction to deformation depend on:
@ past history, eg. paints;

e temperature, eg. some polymers or glass;
o deformation size, eg. plastics or silly putty.
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Continuum hypothesis

Natural length scales:

Lmolecular < Lﬂuid < Lmacro-

Continuum assumption

properties of the fluid at scale Lg,;q propagate all the way
down and through the molecular scale Ly olecular-

Everyday fluid mechanics: this is extremely accurate
(Chorin and Marsden).
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Conservation principles

© Conservation of mass:
© Newton’s 2nd law/balance of momentum:

© Conservation of energy.

These principles generate:

© Continuity equation,
@ Navier-Stokes equations;

© Equation of state.
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Small fluid particle or a speck of dust:

@ Velocity flow field u(x, t) = (
@ Position recorded by (x(t),y t),z t)).
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Continuity equation

Mass density p(x, t):

Mass(, t) ::fp(x,t)dv.
Q
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Continuity equation Il

mass density x vol leaving per unit time = p(x, t) u(x,t)-n(x)dS
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Continuity equation Il

Conservation of mass:
d
— p(X,t)dV:—f pu-ndsS.
dt Jg o9
d
= f—p+V-(pu)dV:O.
q Ot
Q arbitrary —

W—FV'(pU):O.
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Incompressible flow

Definition (Incompressibility )
V-u=0

% Vo+pV-u=0
S U Vp+pVou=

= i Vop=0
ot U=

Homogeneous when p constant in space:
Incompressible & p is constant in time.
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Differentiation following the fluid

Lx(t) = u(x(0), 1
2
— % (t) = %u(x(t), t)

_gudx gudy Judz du
~odxdt  dydt  dzdt ot

_(dx9  dyd dza)  du

~\dtox  dtdy dtoz ot
Ju

:U'VU-FE

Material derivative:

d
dt

F(x(0), y(1), 2(1), 1) = aa_;: tu-VF= %
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Rate of strain tensor

u(x +h) = u(x) + (Vu(x)) - h + O(h?)

Rate of strain tensor:

ov/dx dv/dy dv/dz

du/dx du/dy du/dz
Vu =
ow/dx Jdw/dy Iw/dz

Vu = 3((Vu) + (Vu)") + 3((Vu) - (Vu)")

D R

LMS-EPSRC Short Course on Theoretical Fluid Dynamics



Rate of strain tensor Il

0 du/dy —dv/dx  dul/dz — Iw/dx
R =| dv/dx —du/dy 0 ov/dz —dw/dy
ow/dx —du/dz Iw/dy —dv/dz 0
ow  Jdv Ju ow Jv  du

“Toy oz Tz ox PTx oy

0 -—-w3 w2
R:% w3 0 -w; 1= Rh:%wxh
—W?2 w1 0
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Rate of strain tensor Il

u(x + h) = u(x) + D(x) - h + w(x) x h + O(h?).

D is the symmetric deformation tensor.

d 0 0
X1px=(0 d, 0].

0 0 ds

w is the vorticity field, indeed: w =V X u.

LMS-EPSRC Short Course on Theoretical Fluid Dynamics



Rate of strain tensor IV

X is fixed and h is small:

d
dt(X + h) =u(x + h)
dh

=3 I = u(x + h)
dh
& T ° u(x) + D(x) - h + w(x) x h.
h=Xh =

4 h) (0 0)(M
T h2 0 d» Of|ho|.
d P
dt(hlhzhg) (dl + dz + d3)(h1h2h3)
————
Tr(D)=V-u
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Internal fluid forces

© external or body forces per unit volume;

@ surface or stress forces, molecular in origin.
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Internal fluid forces i

@

Force dF on side (2) by side (1) of dS:

dF =X(n)dS
X(n)=o(x)n

where o = [0j] = stress tensor (3 x 3 matrix)
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Internal fluid forces Il

Write:
o=-pl+¢&
where
@ p:= —%(011 + 022 + 033) > O represents pressure;

@ 0 is the deviatoric stress tensor.

Note —p | generates the normal stresses:

o=-pl = X(n)=-pn

while & generates the shear stresses.
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Internal fluid forces IV

Assumptions on &:

© Linear homogeneous function of Vu (Newtonian fluid);
© Invariant under rigid body rotations:

6(u-Vu-Ut)=U-5(Vu)- U

© Symmetric.
= (Aj,'j = Z AijkIDkI
k.l

isotropy = Aijjki = adiibw + BOikOji + ydidjk
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Internal fluid forces V

Properties imply 6D = D&

Dé; = dié; - oD éj= D(6 é,) =d;(6 é,)

— §€jx & = ¢€;evecof§also
= evals of 6 are homogeneous linear functions of d;

Prop 2 = symmetric functions = &; = A(dy + d2 + d3) + 2ud;

&= A(V-u)l+2uD

C=A+3%u = G=2p(D-3(V-u)l)+ (V- u)l
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Navier—Stokes equations

f(—pl+6)nd85f(—Vp+V~6)dV
o0 Q

voal 3, 96
[ G]I_ ' (9)(]
j=1

ID;
= A[V(V - u],+2yz !

du; du;
— A[V(V- “]’+”Zax,(8x,’+a_x:)

— (A+ V(Y - )]+ uV2u;
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Navier—Stokes equations Il

Balance of momentum =—

p(g—;’+u-Vu):—Vp+V-6+pf.

== g—‘;’Jru-Vu:vAu—Verf,

V-u=0,

where v = u/p = kinematic viscosity. Rigid boundary conditions:

@ |deal fluid flow: u-n =0;
@ Viscous flow: u = 0.
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Evolution of vorticity

u-Vus= %V(|u|2)—ux(qu)
Vx(uxw)z=u(V-w)-w(V-u)+ (w-V)u-(u-Vw

Two identities imply:

u 1 2
WJFEV(M )—uxw:vAu—Vp
%—T—l—u-Vw:vAw—i—w-Vu

Au=-VXw,

Note: w - Vu = (Vu)w = Dw + Rw = Dw.
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Transport theorem

Theorem (Transport theorem )

dt Jo, th P Dr

j pudV f—VerV-?H—pde.
t Q

Corollary (Equivalent statements )

© Fluid is incompressible;
@ Jacobian of flowmap equals 1;
© \Wolume of Q; is constant in time.
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Simple exact flows

Lemma (Majda and Bertozzi, p. 8 )

Given D = D(t), real symmetric matrix with Tr(D) = 0. Suppose
w = w(t) solves ODEs

Then

u(x, t) = sw(t) x x + D(t) X,

p(x,t) = -3 ciift) + D?(t) + R?(t) | x - x,

are exact solutions to Euler and Navier-Stokes equations.
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Simple exact flows Il

9 (Vi) +u-V(Vu) + (Vu)? = v A(Vu) - VVp.

(Vu)?> = (D + R)?> = (D? + R?) + (DR + RD),

D
— a—+u-VD+D2—|—R2:vAD—VVp,

ot
JR
8—t+U-VR—|—DR—|—RD:vAR.
1 o,
u(x,t):Ew(t)xx-i-D(t)x = E—FD + R°=-VVp.
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Example (jet flow with swirl)

=
=N~ @ =

di x — Zw(t)y
u(x,t) ==|dyy + s(t)x
d3Z
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Shear-layer flows

8(9—(;)+U-Vw:vAw+Dw
AU=-VXw
R 15, -
u(x,ty=| yy and  p(x,1) = 5)(x* +y?)
w(x,t)
ow ow 82_W

ot " ox T Voxz

w(x,t) = (0 —(aw/ax)(x,t) 0)'
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Shear-layer flows Il

ot Vox TV T Vox2

w(x, t) = —Ix w(¢, ) dé.

o0

Viscous shear-layer solution where y = 0:
wlx,) = [ Glx-&ruoe)de,
R

1
G(é, t) = Tnte 52/4t.
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Shear-layer flows Il

w(x,0)

w(x,t)
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Shear-layer flows I

Characteristic scales L, Uand T = L/U:

X u t
x ==, == n t = —
L =y and T
Uou  U? vU 1
ﬁ N _UIV ’ l:—A ’ ,——V ’
Tov ~ L4 WU T AT Yxp
au’ 1
at’ + ul . Vx’ul == L AX/U, -

UL WV”’ '

Set p’ = p/pU?, and then Re := UL /v.
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Continuous differentiability

Throughout: Q c RY is a bounded domain.

Generalized partial derivative operator:

- 4ag
o . a

= ay o . g’
axl X "

where a = (a1, ...,aq) a multi-index with a3 + - -- + ag = m.

Definition (Continuously differentiable functions )

C™(Q2) denotes the space of all functions whose partial derivatives, up
to and including order m, are all continuous on €.
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Continuous differentiability Il

C%(Q) = C(Q) = space of continuous functions
CY(Q) = derivatives also continuous

Ce(Q) = ﬂ C™(£2) = smooth functions

m=0

C'(©2) have compact support in Q

= max sup|0“f(x)].
o<lalsm xeQ

”f”C’”(ﬁ) :

C(©Q; V) = continuous functions whose image lies in V
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Lebesgue integrability

Definition (Lebesgue integrable functions )
LP(Q): space of equivalence classes of p-integrable functions on Q:

1p
liny = ( f P dx) .
Q
Example

Suppose Q = [0, 1] and f = f(x) takes the values 1 if x is irrational in
[0,1] and O if x is rational.

For1 < p < oo, the spaces Co(£2) and C;°(Q2) are both dense in LP(Q).
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Bounded functions

Definition (Bounded functions )

f essentially bounded if 3 K: |f(x)| < K a.e. on Q. The greatest lower
bound of such constants K is ess Supycq If(x)|. Then L*(2) given by

lIfll () = esssup|f(X)| < co.
XeN

The spaces C(Q2), Co(£2) and C;°(Q2) are proper subspaces of L.

Definition (Inner product )
L2(Q; R") is a separable Hilbert space with inner product

(f,9) ::ff~gdx.
Q
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Sobolev spaces

Definition (Local integrability )

A function f is locally LP-integrable on Q provided f € LP(D) for every
measurable D such that D € Q and D is compact in R%: f € L] (Q).

Definition (Weak derivatives )
f,he L (Q): h=9"f weak derivative of fif V ¢ € C;°(Q):
0ocC

ff(x)o'?“(p(x)dx:(—1)'“|fh(x)(p(x)dx.
Q Q

Definition (Sobolev space )

W™P(Q) = {f € LP(Q): 9*f € LP(Q), Va: 0 < |a| < m}
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Sobolev spaces |l

W™MP(Q) is a Banach space with norm

1/p
fllwmea) = ( Y 1, )

0<|al<m

and the completion of {f € C™(Q): [fllwmnr(q) < oo} Wrt || - [lwmp(q)-

Lemma (Sobolev Hilbert spaces )
H™(Q) .= W™2(Q) is a separable Hilbert space with inner product

(F, DHm() = Z (2f,09)12(q)-

O<lalsm
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Sobolev spaces: Space and time regularity

feC(o, TELARY) o (-, D)ll2(q.re) CONtinuous in ¢

.
feLz([O, T];Hl(Q;JR”)) & fo ||f(-,t)||2H1(Q;Rn)dt<oo
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Embeddings

Definition (Embedding )

Suppose V and H are two function spaces. We say that V is
embedded in H and write

V—oH

if the following holds:
© Vis a vector subspace of H;

@ The identity map id: V — H given by id: f — fis continuous, i.e.
for all f € V and some positive constant ¢, we have:

Iflly < clifllv.

Examples: L®(Q) < LP(Q); W2(Q) — LP(Q) and forany p > p’ :

LP(Q) — LP(Q).
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Fundamental inequalities

Pair (p, q) are conjugate pair if

Forany a >0, b >0, e > 0 and conjugate pair (p,q) with1 < p < co:

%(ae)" + %(g)q.

Theorem (Holder’s inequality )
For any conjugate pair (p, q):

f|f(X)g(X)|dx < Ifllee(e)llgliLacn)-
Q
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Poincaré and Sobolev—Gagliardo—Nirenberg

Theorem (Poincar €’s inequality )

Suppose Q is connected and has a C* boundary 9. For any
f € WYP(Q) 3 constant ¢ = ¢(d, p,Q):

= ®ll gy < <1

Functions with mean zero: W1P(Q) — LP(Q).

Theorem (Sobolev—Gagliardo—Nirenberg inequality )

For all f € H*(Q) and some constant ¢ = ¢(Q):
Iflepay < CUVAIZ: g Il 2de

wherea=d(p-2)/2pand2 < p<2d/(d-2).

— WL2(Q) = LP(Q)
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Compact embeddings

Definition (Compact operator )

A:V — H compactif A(U) is precompact in H whenever U is
bounded in V.

Definition (Compact embedding )
If V— Handid: V — H is compact then: V —< H.

Theorem (Rellich—Kondrachov theorem )
Assume dQ is Ct,d>2and 1 < p < 2d/(d - 2): W1?(Q) > LP(Q).

L=([o, T L3()) n L2([0, T]; HX(Q)) n W ([0, T H71(Q))
e LZ([O, T LZ(Q))
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