Introductory fluid mechanics

Simon J.A. Malham

Heriot-Watt University, Edinburgh, UK

LMS-EPSRC Short Course on Theoretical Fluid Dynamics August 29th to September 2nd, 2011

Introduction

- Ideal fluid: Euler (1755);
- Viscous fluid: Navier (1822) and Stokes (1845).

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = v \nabla^2 \mathbf{u} - \nabla p + \mathbf{f},$$
$$\nabla \cdot \mathbf{u} = 0.$$

- $\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x},t)$ fluid velocity;
- $p = p(\mathbf{x}, t)$ pressure;
- $\mathbf{f} = \mathbf{f}(\mathbf{x}, t)$ external force;
- ν viscosity;

Flow

Material exhibits flow if shear forces, however small, lead to a deformation which is unbounded; i.e. a fluid.

- Liquids: incompressible, eg. brakes!;
- Gases: compressible, eg. aerosols and air canisters.

Subcatergorization:

- Ideal/inviscid: only internal force is pressure;
- Viscous: internal frictional forces also present;
- Non-Newtonian/complex: reaction to deformation depend on:
 - past history, eg. paints;
 - temperature, eg. some polymers or glass;
 - deformation size, eg. plastics or silly putty.

Continuum hypothesis

Natural length scales:

$$L_{\text{molecular}} \ll L_{\text{fluid}} \ll L_{\text{macro}}$$
.

Continuum assumption:

properties of the fluid at scale $L_{\rm fluid}$ propagate all the way down and through the molecular scale $L_{\rm molecular}$.

Everyday fluid mechanics: this is extremely accurate (Chorin and Marsden).

Conservation principles

- Conservation of mass;
- Newton's 2nd law/balance of momentum;
- Conservation of energy.

These principles generate:

- Continuity equation;
- Navier–Stokes equations;
- Equation of state.

Trajectories

Small fluid particle or a speck of dust:

- Velocity flow field u(x, t) = (u, v, w);
- Position recorded by (x(t), y(t), z(t)).

$$\dot{x}(t) = u(x(t), y(t), z(t), t),$$

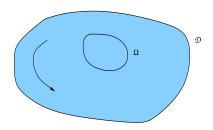
$$\dot{y}(t) = v(x(t), y(t), z(t), t),$$

$$\dot{z}(t) = w(x(t), y(t), z(t), t).$$

i.e.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}(t)=\mathbf{u}(\mathbf{x}(t),t).$$

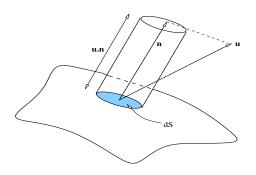
Continuity equation



Mass density $\rho(\mathbf{x}, t)$:

$$\mathsf{Mass}(\Omega,t)\coloneqq \int_{\Omega} \rho(\boldsymbol{x},t)\,\mathrm{d}V.$$

Continuity equation II



mass density \times vol leaving per unit time $= \rho(\mathbf{x},t) \, \mathbf{u}(\mathbf{x},t) \cdot \mathbf{n}(\mathbf{x}) \, \mathrm{d}S$

Continuity equation III

Conservation of mass:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \rho(\mathbf{x}, t) \, \mathrm{d}V = -\int_{\partial\Omega} \rho \mathbf{u} \cdot \mathbf{n} \, \mathrm{d}S.$$

$$\Leftrightarrow \int_{\Omega} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \, \mathrm{d}V = 0.$$

$$\Omega$$
 arbitrary \Longrightarrow

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0.$$

Incompressible flow

Definition (Incompressibility)

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho + \rho \, \nabla \cdot \mathbf{u} = 0$$

$$\Leftrightarrow \frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = 0$$

Homogeneous when ρ constant in space:

Incompressible $\Leftrightarrow \rho$ is constant in time.

Differentiation following the fluid

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{u}(\mathbf{x}(t), t)$$

$$\Rightarrow \frac{d^2}{dt^2}\mathbf{x}(t) = \frac{d}{dt}\mathbf{u}(\mathbf{x}(t), t)$$

$$= \frac{\partial \mathbf{u}}{\partial x}\frac{dx}{dt} + \frac{\partial \mathbf{u}}{\partial y}\frac{dy}{dt} + \frac{\partial \mathbf{u}}{\partial z}\frac{dz}{dt} + \frac{\partial \mathbf{u}}{\partial t}$$

$$= \left(\frac{dx}{dt}\frac{\partial}{\partial x} + \frac{dy}{dt}\frac{\partial}{\partial y} + \frac{dz}{dt}\frac{\partial}{\partial z}\right)\mathbf{u} + \frac{\partial \mathbf{u}}{\partial t}$$

$$= \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\partial \mathbf{u}}{\partial t}$$

Material derivative:

$$\frac{\mathrm{d}}{\mathrm{d}t}F(x(t),y(t),z(t),t) = \frac{\partial F}{\partial t} + \mathbf{u} \cdot \nabla F = \frac{\mathrm{D}F}{\mathrm{D}t}$$

Rate of strain tensor

$$\mathbf{u}(\mathbf{x} + \mathbf{h}) = \mathbf{u}(\mathbf{x}) + (\nabla \mathbf{u}(\mathbf{x})) \cdot \mathbf{h} + O(h^2)$$

Rate of strain tensor:

$$\nabla \mathbf{u} = \begin{pmatrix} \partial u/\partial x & \partial u/\partial y & \partial u/\partial z \\ \partial v/\partial x & \partial v/\partial y & \partial v/\partial z \\ \partial w/\partial x & \partial w/\partial y & \partial w/\partial z \end{pmatrix}$$

$$\nabla \boldsymbol{u} = \underbrace{\frac{1}{2} \Big((\nabla \boldsymbol{u}) + (\nabla \boldsymbol{u})^{\mathrm{T}} \Big)}_{D} + \underbrace{\frac{1}{2} \Big((\nabla \boldsymbol{u}) - (\nabla \boldsymbol{u})^{\mathrm{T}} \Big)}_{R}$$

Rate of strain tensor II

$$R = \begin{pmatrix} 0 & \partial u/\partial y - \partial v/\partial x & \partial u/\partial z - \partial w/\partial x \\ \partial v/\partial x - \partial u/\partial y & 0 & \partial v/\partial z - \partial w/\partial y \\ \partial w/\partial x - \partial u/\partial z & \partial w/\partial y - \partial v/\partial z & 0 \end{pmatrix}$$

$$\omega_1 = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \qquad \omega_2 = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \qquad \omega_3 = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

$$R = \frac{1}{2} \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \qquad \Leftrightarrow \qquad R \, \mathbf{h} = \frac{1}{2} \boldsymbol{\omega} \times \mathbf{h}$$

Rate of strain tensor III

Theorem

$$\mathbf{u}(\mathbf{x} + \mathbf{h}) = \mathbf{u}(\mathbf{x}) + D(\mathbf{x}) \cdot \mathbf{h} + \frac{1}{2}\omega(\mathbf{x}) \times \mathbf{h} + O(h^2).$$

D is the symmetric deformation tensor.

$$X^{-1}DX = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}.$$

 ω is the *vorticity field*, indeed: $\omega = \nabla \times \mathbf{u}$.

Rate of strain tensor IV

x is fixed and h is small:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x} + \mathbf{h}) = \mathbf{u}(\mathbf{x} + \mathbf{h})$$

$$\Leftrightarrow \qquad \frac{\mathrm{d}\mathbf{h}}{\mathrm{d}t} = \mathbf{u}(\mathbf{x} + \mathbf{h})$$

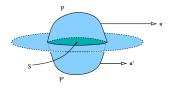
$$\Leftrightarrow \qquad \frac{\mathrm{d}\mathbf{h}}{\mathrm{d}t} \approx \mathbf{u}(\mathbf{x}) + D(\mathbf{x}) \cdot \mathbf{h} + \frac{1}{2}\omega(\mathbf{x}) \times \mathbf{h}.$$

$$h = X\hat{h} \implies$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \hat{h}_{1} \\ \hat{h}_{2} \\ \hat{h}_{3} \end{pmatrix} = \begin{pmatrix} d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3} \end{pmatrix} \begin{pmatrix} \hat{h}_{1} \\ \hat{h}_{2} \\ \hat{h}_{3} \end{pmatrix}.$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (\hat{h}_{1} \hat{h}_{2} \hat{h}_{3}) = \underbrace{(d_{1} + d_{2} + d_{3})(\hat{h}_{1} \hat{h}_{2} \hat{h}_{3})}_{\mathrm{Tr}(D) = \nabla \cdot \mathbf{u}}$$

Internal fluid forces



- external or body forces per unit volume;
- surface or stress forces, molecular in origin.

Internal fluid forces II

Force $d\mathbf{F}$ on side (2) by side (1) of $d\mathbf{S}$:

$$\mathrm{d} {\pmb F} = {\pmb \Sigma}({\pmb n})\,\mathrm{d} {\pmb S}$$

$$\mathbf{\Sigma}(\mathbf{n}) = \sigma(\mathbf{x})\,\mathbf{n}$$

where $\sigma = [\sigma_{ij}] = \text{stress tensor } (3 \times 3 \text{ matrix})$

Internal fluid forces III

Write:

$$\sigma = -pI + \hat{\sigma}$$

where

- $p := -\frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}) > 0$ represents *pressure*;
- $\hat{\sigma}$ is the deviatoric stress tensor.

Note -pI generates the normal stresses:

$$\sigma = -\rho I \implies \Sigma(\mathbf{n}) = -\rho \mathbf{n}$$

while $\hat{\sigma}$ generates the shear stresses.

Internal fluid forces IV

Assumptions on $\hat{\sigma}$:

- ① Linear homogeneous function of ∇u (Newtonian fluid);
- Invariant under rigid body rotations:

$$\hat{\sigma}(U \cdot \nabla \boldsymbol{u} \cdot U^{-1}) \equiv U \cdot \hat{\sigma}(\nabla \boldsymbol{u}) \cdot U^{-1};$$

Symmetric.

$$\Rightarrow \qquad \hat{\sigma}_{ij} = \sum_{k,l} A_{ijkl} D_{kl}$$

isotropy
$$\Rightarrow$$
 $A_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}$

Internal fluid forces V

Properties imply $\hat{\sigma}D = D\hat{\sigma}$

$$D\hat{\mathbf{e}}_i = d_i\hat{\mathbf{e}}_i \implies \hat{\sigma}D\,\hat{\mathbf{e}}_i = D(\hat{\sigma}\,\hat{\mathbf{e}}_i) = d_i\,(\hat{\sigma}\,\hat{\mathbf{e}}_i)$$

$$\implies \hat{\sigma} \hat{\boldsymbol{e}}_i \propto \hat{\boldsymbol{e}}_i \implies \hat{\boldsymbol{e}}_i \text{ evec of } \hat{\sigma} \text{ also}$$

 \implies evals of $\hat{\sigma}$ are homogeneous linear functions of d_i

Prop 2
$$\implies$$
 symmetric functions $\implies \hat{\sigma}_i = \lambda(d_1 + d_2 + d_3) + 2\mu d_i$

$$\hat{\sigma} = \lambda (\nabla \cdot \mathbf{u}) \mathbf{I} + 2\mu \mathbf{D}$$

$$\zeta = \lambda + \frac{2}{3}\mu \quad \Rightarrow \quad \hat{\sigma} = 2\mu \Big(D - \frac{1}{3}(\nabla \cdot \boldsymbol{u})I\Big) + \zeta(\nabla \cdot \boldsymbol{u})I$$

Navier-Stokes equations

$$\begin{split} \int_{\partial\Omega} (-\rho I + \hat{\sigma}) \, \mathbf{n} \, \mathrm{d}S &\equiv \int_{\Omega} (-\nabla p + \nabla \cdot \hat{\sigma}) \, \mathrm{d}V \\ [\nabla \cdot \hat{\sigma}]_i &= \sum_{j=1}^3 \frac{\partial \hat{\sigma}_{ij}}{\partial x_j} \\ &= \lambda [\nabla (\nabla \cdot \mathbf{u})]_i + 2\mu \sum_{j=1}^3 \frac{\partial D_{ij}}{\partial x_j} \\ &= \lambda [\nabla (\nabla \cdot \mathbf{u})]_i + \mu \sum_{j=1}^3 \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \\ &= (\lambda + \mu) [\nabla (\nabla \cdot \mathbf{u})]_i + \mu \nabla^2 u_i. \end{split}$$

Navier-Stokes equations II

Balance of momentum ⇒

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot \hat{\sigma} + \rho \, \mathbf{f}.$$

$$\implies \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = v \, \Delta \mathbf{u} - \nabla p + \mathbf{f},$$
$$\nabla \cdot \mathbf{u} = 0,$$

where $\nu = \mu/\rho =$ kinematic viscosity. Rigid boundary conditions:

- Ideal fluid flow: $\mathbf{u} \cdot \mathbf{n} = 0$;
- Viscous flow: $\mathbf{u} = \mathbf{0}$.

Evolution of vorticity

$$\mathbf{u} \cdot \nabla \mathbf{u} \equiv \frac{1}{2} \nabla (|\mathbf{u}|^2) - \mathbf{u} \times (\nabla \times \mathbf{u})$$
$$\nabla \times (\mathbf{u} \times \boldsymbol{\omega}) \equiv \mathbf{u} (\nabla \cdot \boldsymbol{\omega}) - \boldsymbol{\omega} (\nabla \cdot \mathbf{u}) + (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \boldsymbol{\omega}$$

Two identities imply:

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2}\nabla(|\mathbf{u}|^2) - \mathbf{u} \times \boldsymbol{\omega} = \boldsymbol{v} \,\Delta \mathbf{u} - \nabla \boldsymbol{\rho}$$

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{\omega} = \boldsymbol{v} \, \Delta \boldsymbol{\omega} + \boldsymbol{\omega} \cdot \nabla \boldsymbol{u}$$
$$\Delta \boldsymbol{u} = -\nabla \times \boldsymbol{\omega},$$

Note: $\omega \cdot \nabla \mathbf{u} = (\nabla \mathbf{u})\omega = D\omega + R\omega = D\omega$.

Transport theorem

Theorem (**Transport theorem**)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_t} \rho \, F \, \mathrm{d}V = \int_{\Omega_t} \rho \, \frac{\mathrm{D}F}{\mathrm{D}t} \, \mathrm{d}V.$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_t} \rho \, \mathbf{u} \, \mathrm{d}V = \int_{\Omega_t} -\nabla p + \nabla \cdot \hat{\sigma} + \rho \, \mathbf{f} \, \mathrm{d}V.$$

Corollary (Equivalent statements)

- Fluid is incompressible;
- Jacobian of flowmap equals 1;
- ③ Volume of $Ω_t$ is constant in time.

Simple exact flows

Lemma (Majda and Bertozzi, p. 8)

Given D = D(t), real symmetric matrix with Tr(D) = 0. Suppose $\omega = \omega(t)$ solves ODEs

$$\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t}=D(t)\,\boldsymbol{\omega}.$$

Then

$$\mathbf{u}(\mathbf{x},t) = \frac{1}{2}\omega(t) \times \mathbf{x} + D(t)\mathbf{x},$$

$$p(\mathbf{x},t) = -\frac{1}{2}\left(\frac{\mathrm{d}D}{\mathrm{d}t} + D^2(t) + R^2(t)\right)\mathbf{x} \cdot \mathbf{x},$$

are exact solutions to Euler and Navier-Stokes equations.

Simple exact flows II

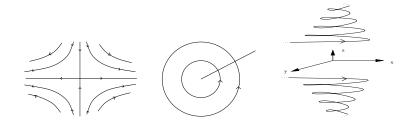
Proof.

$$\frac{\partial}{\partial t}(\nabla \mathbf{u}) + \mathbf{u} \cdot \nabla(\nabla \mathbf{u}) + (\nabla \mathbf{u})^2 = \nu \Delta(\nabla \mathbf{u}) - \nabla \nabla \rho.$$
$$(\nabla \mathbf{u})^2 = (D + R)^2 = (D^2 + R^2) + (DR + RD),$$

$$\implies \frac{\partial D}{\partial t} + \mathbf{u} \cdot \nabla D + D^2 + R^2 = v \, \Delta D - \nabla \nabla p,$$
$$\frac{\partial R}{\partial t} + \mathbf{u} \cdot \nabla R + DR + RD = v \, \Delta R.$$

$$\mathbf{u}(\mathbf{x},t) = \frac{1}{2}\omega(t) \times \mathbf{x} + D(t)\mathbf{x} \quad \Rightarrow \quad \frac{\mathrm{d}D}{\mathrm{d}t} + D^2 + R^2 = -\nabla\nabla p.$$

Example (jet flow with swirl)



$$\mathbf{u}(\mathbf{x},t) == \begin{pmatrix} d_1 x - \frac{1}{2}\omega(t)y \\ d_2 y + \frac{1}{2}\omega(t)x \\ d_3 z \end{pmatrix}$$

Shear-layer flows

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = v \, \Delta \omega + D \omega$$
$$\Delta \mathbf{u} = -\nabla \times \omega$$

$$\mathbf{u}(\mathbf{x},t) = \begin{pmatrix} -\gamma \mathbf{x} \\ \gamma \mathbf{y} \\ \mathbf{w}(\mathbf{x},t) \end{pmatrix}$$
 and $p(\mathbf{x},t) = \frac{1}{2}\gamma(\mathbf{x}^2 + \mathbf{y}^2)$

$$\frac{\partial w}{\partial t} - \gamma x \frac{\partial w}{\partial x} = v \frac{\partial^2 w}{\partial x^2}$$

$$\omega(\mathbf{x},t) = \begin{pmatrix} 0 & -(\partial w/\partial x)(x,t) & 0 \end{pmatrix}^{\mathrm{T}}$$

Shear-layer flows II

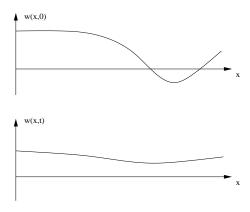
$$\frac{\partial \omega}{\partial t} - \gamma x \frac{\partial \omega}{\partial x} = \gamma \omega + \nu \frac{\partial^2 \omega}{\partial x^2}$$

$$w(x,t) = -\int_{-\infty}^{x} \omega(\xi,t) \,\mathrm{d}\xi.$$

Viscous shear-layer solution where $\gamma = 0$:

$$\omega(x,t) = \int_{\mathbb{R}} G(x-\xi,\nu t) \,\omega_0(\xi) \,\mathrm{d}\xi,$$
$$G(\xi,t) \coloneqq \frac{1}{\sqrt{4\pi t}} \mathrm{e}^{-\xi^2/4t}.$$

Shear-layer flows II



Shear-layer flows II

Characteristic scales L, U and T = L/U:

$$\mathbf{x}' = \frac{\mathbf{x}}{L'}, \quad \mathbf{u}' = \frac{\mathbf{u}}{U} \quad \text{and} \quad t' = \frac{t}{T}$$

$$\implies \quad \frac{U}{T} \frac{\partial \mathbf{u}'}{\partial t'} + \frac{U^2}{L} \mathbf{u}' \cdot \nabla_{\mathbf{x}'} \mathbf{u}' = \frac{vU}{L^2} \Delta_{\mathbf{x}'} \mathbf{u}' - \frac{1}{\rho L} \nabla_{\mathbf{x}'} \rho$$

$$\implies \quad \frac{\partial \mathbf{u}'}{\partial t'} + \mathbf{u}' \cdot \nabla_{\mathbf{x}'} \mathbf{u}' = \frac{v}{UL} \Delta_{\mathbf{x}'} \mathbf{u}' - \frac{1}{\rho U^2} \nabla_{\mathbf{x}'} \rho.$$

Set $p' = p/\rho U^2$, and then Re := UL/v.

Continuous differentiability

Throughout: $\Omega \subset \mathbb{R}^d$ is a bounded domain.

Generalized partial derivative operator:

$$\partial^{\alpha} := \frac{\partial^{\alpha_1 + \dots + \alpha_d}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}},$$

where $\alpha = (\alpha_1, \dots, \alpha_d)$ a multi-index with $\alpha_1 + \dots + \alpha_d = m$.

Definition (Continuously differentiable functions)

 $C^m(\Omega)$ denotes the space of all functions whose partial derivatives, up to and including order m, are all continuous on Ω .

Continuous differentiability II

 $C^0(\Omega) = C(\Omega) = \text{space of continuous functions}$ $C^1(\Omega) = \text{derivatives also continuous}$

$$C^{\infty}(\Omega) := \bigcap_{m=0}^{\infty} C^m(\Omega) = \text{smooth functions}$$

 $C_0^m(\Omega)$ have compact support in Ω

$$||f||_{C^m(\overline{\Omega})} := \max_{0 \le |\alpha| \le m} \sup_{\mathbf{x} \in \Omega} |\partial^{\alpha} f(\mathbf{x})|.$$

 $C(\Omega; V) =$ continuous functions whose image lies in V

Lebesgue integrability

Definition (Lebesgue integrable functions)

 $L^p(\Omega)$: space of equivalence classes of *p*-integrable functions on Ω :

$$||f||_{L^p(\Omega)} := \left(\int_{\Omega} |f|^p d\mathbf{x}\right)^{1/p}.$$

Example

Suppose $\Omega = [0, 1]$ and f = f(x) takes the values 1 if x is irrational in [0, 1] and 0 if x is rational.

Lemma

For $1 \leq p < \infty$, the spaces $C_0(\Omega)$ and $C_0^{\infty}(\Omega)$ are both dense in $L^p(\Omega)$.

Bounded functions

Definition (Bounded functions)

f essentially bounded if ∃ K: $|f(\mathbf{x})| ≤ K$ a.e. on Ω. The greatest lower bound of such constants K is ess $\sup_{\mathbf{x} ∈ Ω} |f(\mathbf{x})|$. Then $L^∞(Ω)$ given by

$$||f||_{L^{\infty}(\Omega)} := \operatorname{ess\,sup}_{\boldsymbol{x} \in \Omega} |f(\boldsymbol{x})| < \infty.$$

The spaces $C(\Omega)$, $C_0(\Omega)$ and $C_0^{\infty}(\Omega)$ are proper subspaces of L^{∞} .

Definition (Inner product)

 $L^2(\Omega; \mathbb{R}^n)$ is a separable Hilbert space with inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle := \int_{\Omega} \mathbf{f} \cdot \mathbf{g} \, \mathrm{d} \mathbf{x}.$$

Sobolev spaces

Definition (Local integrability)

A function f is locally L^p -integrable on Ω provided $f \in L^p(\mathcal{D})$ for every measurable \mathcal{D} such that $\overline{\mathcal{D}} \subseteq \Omega$ and $\overline{\mathcal{D}}$ is compact in \mathbb{R}^d : $f \in L^p_{loc}(\Omega)$.

Definition (Weak derivatives)

 $f,h\in L^1_{\mathrm{loc}}(\Omega)$: $h=\partial^{\alpha}f$ weak derivative of f if $\forall\ \varphi\in C^\infty_0(\Omega)$:

$$\int_{\Omega} f(\boldsymbol{x}) \, \partial^{\alpha} \varphi(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = (-1)^{|\alpha|} \int_{\Omega} h(\boldsymbol{x}) \varphi(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Definition (Sobolev space)

$$W^{m,p}(\Omega) := \left\{ f \in L^p(\Omega) \colon \partial^\alpha f \in L^p(\Omega), \ \forall \alpha \colon 0 \leq |\alpha| \leq m \right\}$$

Sobolev spaces II

 $W^{m,p}(\Omega)$ is a Banach space with norm

$$||f||_{W^{m,p}(\Omega)} := \left(\sum_{0 \le |\alpha| \le m} ||\partial^{\alpha} f||_{L^{p}(\Omega)}^{p}\right)^{1/p}$$

and the completion of $\{f \in C^m(\Omega) : ||f||_{W^{m,p}(\Omega)} < \infty\}$ wrt $||\cdot||_{W^{m,p}(\Omega)}$.

Lemma (Sobolev Hilbert spaces)

 $H^m(\Omega) := W^{m,2}(\Omega)$ is a separable Hilbert space with inner product

$$\langle f,g\rangle_{H^m(\Omega)}\coloneqq \sum_{0\leq |\alpha|\leq m}\langle \partial^\alpha f,\partial^\alpha g\rangle_{L^2(\Omega)}.$$

Sobolev spaces: Space and time regularity

$$f \in C([0,T]; L^2(\Omega; \mathbb{R}^n))$$
 \Leftrightarrow $||f(\cdot,t)||_{L^2(\Omega; \mathbb{R}^n)}$ continuous in t

$$f\in L^2\left([0,T];H^1(\Omega;\mathbb{R}^n)\right)\qquad\Leftrightarrow\qquad \int_0^T\|f(\cdot,t)\|_{H^1(\Omega;\mathbb{R}^n)}^2\,\mathrm{d}t<\infty$$

Embeddings

Definition (Embedding)

Suppose *V* and *H* are two function spaces. We say that *V* is embedded in *H* and write

$$V \hookrightarrow H$$

if the following holds:

- V is a vector subspace of H;
- ② The identity map id: $V \to H$ given by id: $f \mapsto f$ is *continuous*, i.e. for all $f \in V$ and some positive constant c, we have:

$$||f||_{\mathcal{H}} \leqslant c \, ||f||_{\mathcal{V}}.$$

Examples: $L^{\infty}(\Omega) \hookrightarrow L^{p}(\Omega)$; $W^{1,2}(\Omega) \hookrightarrow L^{p}(\Omega)$ and for any p > p':

$$L^p(\Omega) \hookrightarrow L^{p'}(\Omega)$$
.

Fundamental inequalities

Pair (p, q) are conjugate pair if

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Lemma (Young's inequality)

For any $a \ge 0$, $b \ge 0$, $\epsilon > 0$ and conjugate pair (p, q) with 1 :

$$ab \leqslant \frac{1}{p}(a\epsilon)^p + \frac{1}{q}\left(\frac{b}{\epsilon}\right)^q.$$

Theorem (Hölder's inequality)

For any conjugate pair (p, q):

$$\int_{\Omega} \left| f(\boldsymbol{x}) g(\boldsymbol{x}) \right| d\boldsymbol{x} \leq ||f||_{L^{p}(\Omega)} ||g||_{L^{q}(\Omega)}.$$

Poincaré and Sobolev-Gagliardo-Nirenberg

Theorem (Poincaré's inequality)

Suppose Ω is connected and has a C^1 boundary $\partial\Omega$. For any $f \in W^{1,p}(\Omega)$ \exists constant $c = c(d,p,\Omega)$:

$$||f - \langle f \rangle||_{L^p(\Omega)} \le c ||\nabla f||_{L^p(\Omega)}.$$

Functions with mean zero: $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$.

Theorem (Sobolev–Gagliardo–Nirenberg inequality)

For all $f \in H^1(\Omega)$ and some constant $c = c(\Omega)$:

$$||f||_{L^p(\Omega)} \leq c ||\nabla f||_{L^2(\Omega)}^a ||f||_{L^2(\Omega)}^{1-a}$$

where
$$a = d(p-2)/2p$$
 and $2 \le p \le 2d/(d-2)$.

$$\implies W^{1,2}(\Omega) \hookrightarrow L^p(\Omega)$$

Compact embeddings

Definition (Compact operator)

 $A: V \to H$ compact if A(U) is precompact in H whenever U is bounded in V.

Definition (Compact embedding)

If $V \hookrightarrow H$ and id: $V \to H$ is compact then: $V \hookrightarrow \hookrightarrow H$.

Theorem (Rellich-Kondrachov theorem)

Assume $\partial\Omega$ is C^1 , d>2 and $1 \le p < 2d/(d-2)$: $W^{1,2}(\Omega) \hookrightarrow \hookrightarrow L^p(\Omega)$.

$$L^{\infty}([0,T];L^{2}(\Omega)) \cap L^{2}([0,T];H^{1}(\Omega)) \cap W^{1,\frac{4}{d}}([0,T];H^{-1}(\Omega))$$

$$\hookrightarrow \hookrightarrow L^{2}([0,T];L^{2}(\Omega))$$

