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1 Introduction

The derivation of the equations of motion for an ideal fluid by Euler in 1755, and

then for a viscous fluid by Navier (1822) and Stokes (1845) were a tour-de-force of

18th and 19th century mathematics. These equations have been used to describe and

explain so many physical phenomena around us in nature, that currently billions of

dollars of research grants in mathematics, science and engineering now revolve around

them. They can be used to model the coupled atmospheric and ocean flow used by

the meteorological office for weather prediction down to any application in chemical

engineering you can think of, say to development of the thrusters on NASA’s Apollo

programme rockets. The incompressible Navier–Stokes equations are given by

∂u

∂t
+ u · ∇u = ν∇2

u −∇p+ f ,

∇ · u = 0,

where u = u(x, t) is a three dimensional incompressible fluid velocity (indicated by

the last equation), p = p(x, t) is the pressure and f is an external force field. The

frictional force due to stickiness of a fluid is represented by the term ν∇2u. An ideal

fluid corresponds to the case ν = 0, when the equations above are known as the Euler

equations for a homogeneous incompressible ideal fluid. We will derive the Navier–

Stokes equations and in the process learn about the subtleties of fluid mechanics and

along the way see lots of interesting applications.

2 Fluid flow

2.1 Flow

A material exhibits flow if shear forces, however small, lead to a deformation which is

unbounded—we could use this as definition of a fluid. A solid has a fixed shape, or at

least a strong limitation on its deformation when force is applied to it. With the cate-

gory of “fluids”, we include liquids and gases. The main distinguishing feature between

these two fluids is the notion of compressibility. Gases are usually compressible—as we

know from everyday aerosols and air canisters. Liquids are generally incompressible—a

feature essential to all modern car braking mechanisms.

Fluids can be further subcatergorized. There are ideal or inviscid fluids. In such

fluids, the only internal force present is pressure which acts so that fluid flows from

a region of high pressure to one of low pressure. The equations for an ideal fluid

have been applied to wing and aircraft design (as a limit of high Reynolds number

flow). However fluids can exhibit internal frictional forces which model a “stickiness”

property of the fluid which involves energy loss—such fluids are known as viscous

fluids. Some fluids/material known as “non-Newtonian or complex fluids” exhibit even

stranger behaviour, their reaction to deformation may depend on: (i) past history

(earlier deformations), for example some paints; (ii) temperature, for example some

polymers or glass; (iii) the size of the deformation, for example some plastics or silly

putty.
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2.2 Continuum hypothesis

For any real fluid there are three natural length scales:

1. Lmolecular, the molecular scale characterized by the mean free path distance of

molecules between collisions;

2. Lfluid, the medium scale of a fluid parcel, the fluid droplet in the pipe or ocean

flow;

3. Lmacro, the macro-scale which is the scale of the fluid geometry, the scale of the

container the fluid is in, whether a beaker or an ocean.

And, of course we have the asymptotic inequalities:

Lmolecular ≪ Lfluid ≪ Lmacro.

We will assume that the properties of an elementary volume/parcel of fluid, however

small, are the same as for the fluid as a whole—i.e. we suppose that the properties of

the fluid at scale Lfluid propagate all the way down and through the molecular scale

Lmolecular. This is the continuum assumption. For everyday fluid mechanics engineer-

ing, this assumption is extremely accurate (Chorin and Marsden [3, p. 2]).

2.3 Conservation principles

Our derivation of the basic equations underlying the dynamics of fluids is based on

three basic principles:

1. Conservation of mass, mass is neither created or destroyed;

2. Newton’s 2nd law/balance of momentum, for a parcel of fluid the rate of change of

momentum equals the force applied to it;

3. Conservation of energy, energy is neither created nor destroyed.

In turn these principles generate the:

1. Continuity equation which governs how the density of the fluid evolves locally and

thus indicates compressibility properties of the fluid;

2. Navier–Stokes equations of motion for a fluid which indicates how the fluid moves

around from regions of high pressure to those of low pressure and under the effects

of viscosity;

3. Equation of state which indicates the mechanism of energy exchange within the

fluid.

3 Trajectories and streamlines

Suppose that our fluid is contained with a region/domain D ⊆ R
d where d = 2 or

3, and x = (x, y, z) ∈ D is a position/point in D. Imagine a small fluid particle or

a speck of dust moving in a fluid flow field prescribed by the velocity field u(x, t) =

(u, v, w). Suppose the position of the particle at time t is recorded by the variables
`

x(t), y(t), z(t)
´

. The velocity of the particle at time t at position
`

x(t), y(t), z(t)
´

is

ẋ(t) = u
`

x(t), y(t), z(t), t
´

,

ẏ(t) = v
`

x(t), y(t), z(t), t
´

,

ż(t) = w
`

x(t), y(t), z(t), t
´

.
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In shorter vector notation this is

d

dt
x(t) = u(x(t), t).

The trajectory or particle path of a fluid particle is the curve traced out by the particle

as time progresses. It is the solution to the differential equation above (with suitable

initial conditions).

Suppose now for a given fluid flow u(x, t) we fix time t. A streamline is an integral

curve of u(x, t) for t fixed, i.e. it is a curve x = x(s) parameterized by the variable s,

that satisfies the system of equations

d

ds
x(s) = u(x(s), t),

with t held constant. If the velocity field u is time-independent, i.e. u = u(x) only,

or equivalently ∂tu = 0, then trajectories and streamlines coincide. Flows for which

∂tu = 0 are said to be stationary.

Example. Suppose a velocity field u(x, t) = (u, v, w) is given for t > −1 by

u =
x

1 + t
, v =

y

1 + 1
2
t

and w = z.

To find the particle paths or trajectories, we must solve the system of equations

dx

dt
= u,

dy

dt
= v and

dz

dt
= w,

and then eliminate the time variable t between them. Hence for the particle paths we

have
dx

dt
=

x

1 + t
,

dy

dt
=

y

1 + 1
2
t

and
dz

dt
= z.

Using the method of separation of variables and integrating in time from t0 to t, in

each of the three equations, we get

ln

„

x

x0

«

= ln

„

1 + t

1 + t0

«

, ln

„

y

y0

«

= 2 ln

„

1 + 1
2
t

1 + 1
2
t0

«

and ln

„

z

z0

«

=
t

t0
,

where we have assumed that at time t0 the particle is at position (x0, y0, z0). Expo-

nentiating the first two equations and solving the last one for t, we get

x

x0

=
1 + t

1 + t0
,

y

y0
=

(1 + 1
2
t)2

(1 + 1
2
t0)2

and t = t0 ln(z/z0).

We can use the last equation to eliminate t so the particle path/trajectory through

(x0, y0, z0) is the curve in three dimensional space given by

x = x0 ·
`

1 + t0 ln(z/z0)
´

(1 + t0)
, and y = y0 ·

`

1 + 1
2
t0 ln(z/z0)

´2

(1 + 1
2
t0)2

.

To find the streamlines, we fix time t. We must then solve the system of equations

dx

ds
= u,

dy

ds
= v and

dz

ds
= w,
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with t fixed, and then eliminate s between them. Hence for streamlines we have

dx

ds
=

x

1 + t
,

dy

ds
=

y

1 + 1
2
t

and
dz

ds
= z.

Assuming that we are interested in the streamline that passes through the point

(x0, y0, z0), we again use the method of separation of variables and integrate with

respect to s from s0 to s, for each of the three equations. This gives

ln

„

x

x0

«

=
s− s0
1 + t

, ln

„

y

y0

«

=
s− s0

1 + 1
2
t

and ln

„

z

z0

«

= s− s0.

Using the last equation, we can substitute for s− s0 into the first equations. If we then

multiply the first equation by 1 + t and the second by 1 + 1
2
t, and use the usual log

law ln ab = b ln a, then exponentiation reveals that

„

x

x0

«1+t

=

„

y

y0

«1+ 1

2
t

=
z

z0
,

which are the equations for the streamline through (x0, y0, z0).

4 Conservation of mass

4.1 Continuity equation

Recall, we suppose our fluid is contained with a region/domain D ⊆ R
d (here we will

assume d = 3, but everything we say is true for the collapsed two dimensional case

d = 2). Hence x = (x, y, z) ∈ D is a position/point in D. At each time t we will suppose

that the fluid has a well defined mass density ρ(x, t) at the point x. Further, each fluid

particle traces out a well defined path in the fluid, and its motion along that path is

governed by the velocity field u(x, t) at position x at time t. Consider an arbitrary

subregion Ω ⊆ D. The total mass of fluid contained inside the region Ω at time t is

Z

Ω
ρ(x, t) dV.

where dV is the volume element in R
d. Let us now consider the rate of change of mass

inside Ω. By the principle of conservation of mass, the rate of increase of the mass in

Ω is given by the mass of fluid entering/leaving the boundary ∂Ω of Ω.

To compute the total mass of fluid entering/leaving the boundary ∂Ω, we consider

a small area patch dS on the boundary of ∂Ω, which has unit outward normal n. The

total mass of fluid flowing out of Ω through the area patch dS per unit time is

mass density × fluid volume leaving per unit time = ρ(x, t) u(x, t) · n(x) dS,

where x is at the center of the area patch dS on ∂Ω. Note that to estimate the fluid

volume leaving per unit time we have decomposed the fluid velocity at x ∈ ∂Ω, time t,

into velocity components normal (u · n) and tangent to the surface ∂Ω at that point.

The velocity component tangent to the surface pushes fluid across the surface—no fluid

enters or leaves Ω via this component. Hence we only retain the normal component—

see Fig. 2.
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Ω
D

Fig. 1 The fluid of mass density ρ(x, t) swirls around inside the container D, while Ω is an
imaginary subregion.

dS

n u
u.n

Fig. 2 The total mass of fluid moving through the patch dS on the surface ∂Ω per unit time,
is given by the mass density ρ(x, t) times the volume of the cylinder shown which is u · ndS.

Returning to the principle of conservation of mass, this is now equivalent to the

integral form of the law of conservation of mass:

d

dt

Z

Ω
ρ(x, t) dV = −

Z

∂Ω
ρu · n dS.

The divergence theorem and that the rate of change of the total mass inside Ω equals

the total rate of change of mass density inside Ω imply, respectively,

Z

Ω
∇ · (ρu) dV =

Z

∂Ω
(ρu) · n dS and

d

dt

Z

Ω
ρ dV =

Z

Ω

∂ρ

∂t
dV.

Using these two relations, the law of conservation of mass is equivalent to

Z

Ω

∂ρ

∂t
+ ∇ · (ρu) dV = 0.

Now we use that Ω is arbitrary to deduce the differential form of the law of conservation

of mass or continuity equation that applies pointwise:

∂ρ

∂t
+ ∇ · (ρu) = 0.

This is the first of our three conservation laws.
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4.2 Incompressible flow

Having established the continuity equation we can now define a subclass of flows which

are incompressible. The classic examples are water, and the brake fluid in your car whose

incompressibility properties are vital to the effective transmission of pedal pressure to

brakepad pressure.

Definition 1 (Incompressibility) A fluid with the property ∇ ·u = 0 is incompressible.

The continuity equation and the identity, ∇ · (ρu) = ∇ρ · u + ρ∇ · u, imply

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0.

Hence since ρ > 0, a flow is incompressible if and only if

∂ρ

∂t
+ u · ∇ρ = 0.

If the fluid is homogeneous so that ρ is constant in space, then the flow is incompressible

if and only if ρ is constant in time.

4.3 Stream functions

A stream function exists for a given flow u = (u, v, w) if the velocity field u is solenoidal,

i.e. ∇ · u = 0, and we have an additional symmetry that allows us to eliminate one

coordinate. For example, a two dimensional incompressible fluid flow u = u(x, y, t) is

solenoidal since ∇ · u = 0, and has the symmetry that it is uniform with respect to z.

For such a flow we see that

∇ · u = 0 ⇔ ∂u

∂x
+
∂v

∂y
= 0.

This equation is satisfied if and only if there exists a function ψ(x, y, t) such that

∂ψ

∂y
= u(x, y, t) and − ∂ψ

∂x
= v(x, y, t).

The function ψ is called Lagrange’s stream function. A stream function is always only

defined up to any arbitrary additive constant. Further note that for t fixed, streamlines

are given by constant contour lines of ψ (note also that ∇ψ · u = 0 everywhere).

Note that if we use plane polar coordinates so u = u(r, θ, t) and the velocity

components are u = (ur, uθ) then

∇ · u = 0 ⇔ 1

r

∂

∂r
(r ur) +

1

r

∂uθ

∂θ
= 0.

This is satisfied if and only if there exists a function ψ(r, θ, t) such that

1

r

∂ψ

∂θ
= ur(r, θ, t) and − ∂ψ

∂r
= uθ(r, θ, t).

Example Suppose that in Cartesian coordinates we have the two dimensional flow

u = (u, v) given by

(u, v) = (k x,−k y),
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for some constant k. Note that ∇ · u = 0 so there exists a stream function satisfying

∂ψ

∂y
= k x and − ∂ψ

∂x
= −k y.

Consider the first partial differential equation. Integrating with respect to y we get

ψ = k xy + C(x)

where C(x) is an arbitrary function of x. However we know that ψ must simultaneously

satisfy the second partial differential equation above. Hence we substitute this last

relation into the second partial differential equation above to get

−∂ψ
∂x

= −k y ⇔ −k y + C′(x) = −k y.

We deduce C′(x) = 0 and therefore C is an arbitrary constant. Since a stream function

is only defined up to an arbitrary constant we take C = 0 for simplicity and the stream

function is given by

ψ = k xy.

Now suppose we used plane polar coordinates instead. The corresponding flow

u = (ur, uθ) is given by

(ur, uθ) = (k r cos 2θ,−k r sin 2θ).

First note that ∇ · u = 0 using the polar coordinate form for ∇ · u indicated above.

Hence there exists a stream function ψ = ψ(r, θ) satisfying

1

r

∂ψ

∂θ
= k r cos 2θ and − ∂ψ

∂r
= −k r sin 2θ.

As above, consider the first partial differential equation shown, and integrate with

respect to θ to get

ψ = 1
2
k r2 sin 2θ + C(r).

Substituting this into the second equation above reveals that C′(r) = 0 so that C is a

constant. We can for convenience set C = 0 so that

ψ = 1
2
k r2 sin 2θ.

Comparing this form with its Cartesian equivalent above, reveals they are the same.

5 Balance of momentum

5.1 Differentiation following the fluid

Recall our image of a small fluid particle moving in a fluid flow field prescribed by the

velocity field u(x, t). The velocity of the particle at time t at position x(t) is

d

dt
x(t) = u(x(t), t).

As the particle moves in the velocity field u(x, t), say from position x(t) to a nearby

position an instant in time later, two dynamical contributions change: (i) a small instant
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in time has elapsed and the velocity field u(x, t), which depends on time, will have

changed a little; (ii) the position of the particle has changed in that short time as it

moved slightly, and the velocity field u(x, t), which depends on position, will be slightly

different at the new position.

Let us compute the acceleration of the particle to explicitly observe these two

contributions. By using the chain rule we see that

d2

dt2
x(t) =

d

dt
u
`

x(t), t
´

=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
+
∂u

∂z

dz

dt
+
∂u

∂t

=

„

dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dz

dt

∂

∂z

«

u +
∂u

∂t

= u · ∇u +
∂u

∂t
.

Indeed for any function F (x, y, z, t), scalar or vector valued, the chain rule implies

d

dt
F
`

x(t), y(t), z(t), t
´

=
∂F

∂t
+ u · ∇F.

Definition 2 (Material derivative) If the velocity field components are

u = (u, v, w) and u · ∇ ≡ u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
,

then we define the material derivative following the fluid to be

D

Dt
:=

∂

∂t
+ u · ∇.

5.2 Rate of strain tensor

Consider a fluid flow in a region D ⊆ R
3. Suppose x and x + h are two nearby points

in the interior of D. How is the flow, or more precisely the velocity field, at x related

to that at x + h? From a mathematical perspective, by Taylor expansion we have

u(x + h) = u(x) +
`

∇u(x)
´

· h + O(h2),

where (∇u) · h is simply matrix multiplication of the 3 × 3 matrix ∇u by the column

vector h. Recall that ∇u is given by

∇u =

0

@

∂u/∂x ∂u/∂y ∂u/∂z

∂v/∂x ∂v/∂y ∂v/∂z

∂w/∂x ∂w/∂y ∂w/∂z

1

A .

In the context of fluid flow it is known as the rate of strain tensor. This is because,

locally, it measures that rate at which neighbouring fluid particles are being pulled

apart (it helps to recall that the velocity field u records the rate of change of particle

position with respect to time).

Again from a mathematical perspective, we can decompose ∇u as follows. We can

always write

∇u = 1
2

`

(∇u) + (∇u)T
´

+ 1
2

`

(∇u) − (∇u)T
´

.
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We set

D := 1
2

`

(∇u) + (∇u)T
´

,

R := 1
2

`

(∇u) − (∇u)T
´

.

Note that D = D(x) is a 3 × 3 symmetric matrix, while R = R(x) is the 3 × 3

skew-symmetric matrix given by

R =

0

@

0 ∂u/∂y − ∂v/∂x ∂u/∂z − ∂w/∂x

∂v/∂x− ∂u/∂y 0 ∂v/∂z − ∂w/∂y

∂w/∂x− ∂u/∂z ∂w/∂y − ∂v/∂z 0

1

A .

Note that if we set

ω1 =
∂w

∂y
− ∂v

∂z
, ω2 =

∂u

∂z
− ∂w

∂x
and ω3 =

∂v

∂x
− ∂u

∂y
,

then R is more simply expressed as

R = 1
2

0

@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1

A .

Further by direct computation we see that

Rh = 1
2
ω × h,

where ω = ω(x) is the vector with three components ω1, ω2 and ω3. At this point, we

have thus established the following.

Theorem 1 If x and x + h are two nearby points in the interior of D, then

u(x + h) = u(x) +D(x) · h + 1
2
ω(x) × h + O(h2).

The symmetric matrix D is the deformation tensor. Since it is symmetric, there is

an orthonormal basis ê1, ê2, ê3 in which D is diagonal, i.e. if X = [ê1, ê2, ê3] then

X−1DX =

0

@

d1 0 0

0 d2 0

0 0 d3

1

A .

The vector ω is the vorticity field of the flow. An equivalent definition for it is

ω = ∇× u.

It encodes the magnitude of, and direction of the axis about which, the fluid rotates,

locally.

Now consider the motion of a fluid particle labelled by x + h where x is fixed and

h is small (for example suppose that only a short time has elapsed). Then the position

of the particle is given by

d

dt
(x + h) = u(x + h)

⇔ dh

dt
= u(x + h)

⇔ dh

dt
≈ u(x) +D(x) · h + 1

2
ω(x) × h.

Let us consider in turn each of the effects on the right shown:
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1. The term u(x) is simply uniform translational velocity (the particle being pushed

by the ambient flow surrounding it).

2. Now consider the second term D(x) ·h. If we ignore the other terms then, approx-

imately, we have
dh

dt
= D(x) · h.

Making a local change of coordinates so that h = Xĥ we get

d

dt

0

B

@

ĥ1

ĥ2

ĥ3

1

C

A
=

0

@

d1 0 0

0 d2 0

0 0 d3

1

A

0

B

@

ĥ1

ĥ2

ĥ3

1

C

A
.

We see that we have pure expansion or contraction (depending on whether di

is positive or negative, respectively) in each of the characteristic directions ĥi,

i = 1, 2, 3. Indeed the small linearized volume element ĥ1ĥ2ĥ3 satisfies

d

dt
(ĥ1ĥ2ĥ3) = (d1 + d2 + d3)(ĥ1ĥ2ĥ3).

Note that d1 + d2 + d3 = Tr(D) = ∇ · u.

3. Let us now examine the effect of the third term 1
2
ω × h. Ignoring the other two

terms we have
dh

dt
= 1

2
ω(x) × h.

Direct computation shows that

h(t) = Φ(t,ω(x))h(0),

where Φ(t,ω(x)) is the matrix that represents the rotation through an angle t about

the axis ω(x). Note also that ∇ ·
`

ω(x) × h
´

= 0.

5.3 Internal fluid forces

Let us consider the forces that act on a small parcel of fluid in a fluid flow. There are

two types:

1. external or body forces, these may be due to gravity or external electromagnetic

fields. They exert a force per unit volume on the continuum.

2. surface or stress forces, these are forces, molecular in origin, that are applied by

the neighbouring fluid across the surface of the fluid parcel.

The surface or stress forces are the result of molecular diffusion, we can explain them as

follows. Imagine two neighbouring parcels of fluid P and P ′ as shown in Fig. 3, with a

mutual contact surface is S as shown. Suppose both parcels of fluid are moving parallel

to S and to each other, but the speed of P , say u, is much faster than that of P ′, say

u′. In the kinetic theory of matter molecules jiggle about and take random walks; they

diffuse into their surrounding locale and impart their kinetc energy to molecules they

pass by. Hence the faster molecules in P will diffuse across S and impart momentum

to the molecules in P ′. Similarly, slower molecules from P ′ will diffuse across s to slow

the fluid in P down. In regions of the flow where the velocity field changes rapidly over

small length scales, this effect is important—see Chorin and Marsden [3, p. 31].
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P

P’

u

u’S

Fig. 3 Two neighbouring parcels of fluid P and P ′. Suppose S is the surface of mutual contact
between them. Their respective velocities are u and u′ and in the same direction and parallel
to S, but with |u| ≫ |u′|. The faster molecules in P will diffuse across the surface S and
impart momentum to P ′.

dS

n

dF

x

(1)

(2)

Fig. 4 The force dF on side (2) by side (1) of dS is given by Σ(n) dS.

We now proceed more formally. The force per unit area exerted across a surface

(imaginary in the fluid) is called the stress. Let dS be a small imaginary surface in the

fluid centered on the point x—see Fig. 4. The force dF on side (2) by side (1) of dS

in the fluid/material is given by

dF = Σ(n) dS.

Here Σ is the stress at the point x. It is a function of the normal direction n to the

surface dS, in fact it is given by:

Σ(n) = σ(x) n.

Note σ = [σij ] is a 3 × 3 matrix known as the stress tensor. The diagonal components

of σij , with i = j, generate normal stresses, while the off-diagonal components, with

i 6= j, generate tangential or shear stresses. Indeed let us decompose the stress tensor

σ = σ(x) as follows (here I is the 3 × 3 identity matrix):

σ = −p I + σ̂.

Here the scalar quantity p = p(x) > 0 is defined to be

p := − 1
3
(σ11 + σ22 + σ33)

and represents the fluid pressure. The remaining part of the stress tensor σ̂ = σ̂(x) is

known as the deviatoric stress tensor. In this decomposition, the term −p I generates

the normal stresses, since if this were the only term present,

σ = −p I ⇒ Σ(n) = −pn.

The deviatoric stress tensor σ̂ on the other hand, generates the shear stresses.

We shall make three assumptions about the deviatoric stress tensor σ̂, it is:
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1. A linear homogeneous function of the velocity gradients ∇u; i.e. at each point σ̂ is

linearly related to the rate of strain tensor ∇u. This is the key property of what is

known as a Newtonian fluid : the stress is proportional to the rate of strain.

2. Invariant under rigid body rotations; i.e. if U is an orthogonal matrix, then

σ̂
`

U · ∇u · U−1
´

≡ U · σ̂(∇u) · U−1.

When the fluid performs rigid body rotation, there should be no diffusion of mo-

mentum (the whole mass of fluid is behaving like a solid body).

3. Symmetric; i.e. it is a symmetric matrix: σ̂ij = σ̂ji. This can be deduced as a result

of balance of angular momentum.

These three assumptions imply that σ̂ only depends on the symmetric part of ∇u, i.e. it

is a homogeneous linear function of the deformation tensor D. Further, we can deduce

that σ̂ and D commute, i.e. σ̂D = Dσ̂. Therefore σ̂ and D can be simultaneously

diagonalized by X = [ê1, ê2, ê3]. To see this, suppose di is an eigenvalue of D with

eigenvector êi, then

σ̂D êi = Dσ̂ êi = di σ̂ êi.

Hence σ̂êi is an eigenvector of D with eigenvalue di. This implies σ̂êi ∝ êi, so êi is an

eigenvector of σ̂ also. We thus conclude that we can simultaneously diagonalize σ̂ and

D, and the eigenvalues of σ̂ are homogeneous linear functions of the eigenvalues of D.

Furthermore, property 2 above implies that the eigenvalues of σ̂ must be symmetric

functions of the eigenvalues of D (we can choose U to permute two eigenvalues of D

if it permutes two coordinate axes, and this must permute the eigenvalues of σ̂). Since

each eigenvalue σ̂i of σ̂ is a linear homogeneous symmetric function of the di, it must

have the form

σ̂i = λ(d1 + d2 + d3) + 2µdi

for i = 1, 2, 3. Recall that d1 + d2 + d3 = ∇ · u. If we thus use X−1 to transform back

to our original basis then we have

σ̂ = λ(∇ · u)I + 2µD.

If we set ζ = λ+ 2
3
µ this last relation becomes

σ̂ = 2µ
`

D − 1
3
(∇ · u)I

´

+ ζ(∇ · u)I,

where µ and ζ are the first and second coefficients of viscosity, respectively.

5.4 Navier–Stokes equations

Consider again an arbitrary imaginary subregion Ω of D as in Fig. 1. At any instant in

time t, the total force exerted on the fluid inside Ω through the stresses exerted across

its boundary ∂Ω is given by

Z

∂Ω
(−pI + σ̂) n dS ≡

Z

Ω
(−∇p+ ∇ · σ̂) dV,
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where (for convenience here we set (x1, x2, x3) ≡ (x, y, z) and (u1, u2, u3) ≡ (u, v, w))

[∇ · σ̂]i =
3
X

j=1

∂σ̂ij

∂xj

= λ[∇(∇ · u)]i + 2µ
3
X

j=1

∂Dij

∂xj

= λ[∇(∇ · u)]i + µ

3
X

j=1

∂

∂xj

„

∂ui

∂xj
− ∂uj

∂xi

«

= λ[∇(∇ · u)]i + µ

3
X

j=1

∂2ui

∂x2
j

− ∂2uj

∂xi∂xj

= (λ+ µ)[∇(∇ · u)]i + µ∇2ui.

If f (x, t) is a body force (external force) per unit mass then the total body force on

the fluid inside Ω is
Z

Ω
ρ f dV.

Thus on any parcel of fluid, the force per unit volume acting on it is

−∇p+ ∇ · σ̂ + ρ f .

Hence using Newton’s 2nd law (force = mass × acceleration) we can deduce the fol-

lowing relation—Cauchy’s equation of motion—the differential form of the balance of

momentum:

ρ
Du

Dt
= −∇p+ ∇ · σ̂ + ρ f .

Combining this with the form for ∇ · σ̂ we deduced above, we arrive at

ρ
Du

Dt
= −∇p+ (λ+ µ)∇(∇ · u) + µ∆u + ρ f ,

where ∆ = ∇2 is the Laplacian operator. These are the Navier–Stokes equations. If

we assume we are in three dimensional space so d = 3, then together with the conti-

nuity equation we have four equations, but five unknowns—namely u, p and ρ. Thus

for a compressible fluid flow, we cannot specify the fluid motion completely without

specifying one more condition/relation.

For an incompressible homogeneous flow for which the density ρ = ρ0 is constant,

we get a complete set of equations known as the Navier–Stokes equations for an in-

compressible flow :

∂u

∂t
+ u · ∇u = ν ∆u −∇p+ f ,

∇ · u = 0,

where ν = µ/ρ0 is the coefficient of kinematic viscosity. Note that the pressure field

here is the rescaled pressure by a factor 1/ρ0: since ρ0 is constant (∇p)/ρ0 ≡ ∇(p/ρ0),

and we re-label the term p/ρ0 to be p. Note that we have a closed system of equations:

we have four equations in four unknowns, u and p.
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For any motion of an ideal fluid we only include normal stresses and completely

ignore any shear stresses. Hence instead of the the Navier–Stokes equation above we

get the Euler equations of motion for an ideal fluid (derived by Euler in 1755) given

by (take λ = µ = 0):
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ f ,

The fact that there are no tangential forces in an ideal fluid has some important

consequences, quoting from Chorin and Marsden [3, p. 5]:

...there is no way for rotation to start in a fluid, nor, if there is any at the

beginning, to stop... ... even here we can detect trouble for ideal fluids because

of the abundance of rotation in real fluids (near the oars of a rowboat, in

tornadoes, etc. ).

We discuss the Euler equations in more detail in Section 13.2.

5.5 Boundary conditions

Now that we have the partially differential equations that determine how fluid flows

evolve, we complement them with the boundary and initial conditions. The initial

condition is the velocity profile u = u(x, 0) at time t = 0. It is the state in which

the flow starts. To have a well-posed evolutionary partial differential system for the

evolution of the fluid flow, we also need to specify how the flow behaves near boundaries.

Here a boundary could be a rigid boundary, for example the walls of the container the

fluid is confined to or the surface of an obstacle in the fluid flow. Another example of a

boundary is the free surface between two immiscible fluids—such as between seawater

and air on the ocean surface. Here we will focus on rigid boundaries.

For an ideal fluid flow, i.e. one evolving according to the Euler equations, we simply

need to specify that there is no net flow normal to the boundary—the fluid does not

cross the boundary but can move tangentially to it. Mathematically this is means that

we specify that u · n = 0 everywhere on the rigid boundary.

For viscous flow, i.e. evolving according to the Navier–Stokes equations, we need

to specify additional boundary conditions. This is due to the inclusion of the extra

term ν∆u which increases the number of spatial derivatives in the governing evolution

equations from one to two. Mathematically, we specify that

u = 0

everywhere on the rigid boundary, i.e. in addition to the condition that there must be no

net normal flow at the boundary, we also specify there is no tangential flow there. The

fluid velocity is simply zero at a rigid boundary; it is sometimes called no-slip boundary

conditions. Experimentally this is observed as well, to a very high degree of precision;

see Chorin and Marsden [3, p. 34]. (Dye can be introduced into a flow near a boundary

and how the flow behaves near it observed and measured very accurately.) Further,

recall that in a viscous fluid flow we are incorporating the effect of molecular diffusion

between neighbouring fluid parcels—see Fig. 3. The rigid non-moving boundary should

impart a zero tangential flow condition to the fluid particles right up against it. The no-

slip boundary condition is crucially repsresents the mechanism for vorticity production

in nature that can be observed everywhere. Just look at the flow of a river close to the

river bank.
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Remark 1 At a material boundary (or free surface) between two immiscible fluids, we

would specify that there is no jump in the velocity across the surface boundary. This

is true if there is no surface tension or at least if it is negligible—for example at the

seawater-air boundary of the ocean. However at the surface of melting wax at the top of

a candle, there is surface tension, and there is a jump in the stress σn at the boundary

surface. Surface tension is also responsible for the phenomenon of being able to float a

needle on the surface of a bowl of water as well as many other interesting effects such

as the shape of water drops.

5.6 Evolution of vorticity

Recall from our discussion in Section 5.2, that the vorticity field of a flow with velocity

field u is defined as

ω := ∇× u.

It encodes the magnitude of, and direction of the axis about which, the fluid rotates,

locally. Note that ∇× u can be computed as follows

∇× u = det

0

@

i j k

∂/∂x ∂/∂y ∂/∂z

u v w

1

A =

0

@

∂w/∂y − ∂v/∂z

∂u/∂z − ∂w/∂x

∂v/∂x− ∂u/∂y

1

A .

Using the Navier–Stokes equations for a homogeneous incompressible fluid, we can in

fact derive a closed system of equations governing the evolution of vorticity ω = ∇×u

as follows. Using the identity u · ∇u = 1
2
∇
`

|u|2
´

− u × (∇ × u) we see that we can

equivalently represent the Navier–Stokes equations in the form

∂u

∂t
+ 1

2
∇
`

|u|2
´

− u × ω = ν ∆u −∇p+ f .

If we take the curl of this equation and use the identity

∇× (u × ω) = u (∇ · ω) − ω (∇ · u) + (ω · ∇)u − (u · ∇)ω,

noting that ∇ · u = 0 and ∇ · ω = ∇ · (∇× u) ≡ 0, we find that we get

∂ω

∂t
+ u · ∇ω = ν ∆ω + ω · ∇u + ∇× f .

Note that we can recover the velocity field u from the vorticity ω by using the identity

∇× (∇× u) = ∇(∇ · u) −∆u. This implies

∆u = −∇× ω,

and closes the system of partial differential equations for ω and u. However, we can

also simply observe that

u =
`

−∆
´−1

(∇× ω).

If the body force is conservative so that f = ∇Φ for some potential Φ, then ∇×f ≡ 0.

Remark 2 We can replace the ‘vortex stretching’ term ω ·∇u in the evolution equation

for the vorticity by Dω, where D is the 3 × 3 deformation matrix, since

ω · ∇u = (∇u)ω = Dω +Rω = Dω,

as direct computation reveals that Rω ≡ 0.
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6 Transport theorem

Suppose that the region within which the fluid is moving is D. Suppose Ω is a subregion

of D identified at time t = 0. As the fluid flow evolves the fluid particles that originally

made up Ω will subsequently fill out a volume Ωt at time t. We think of Ωt as the

volume moving with the fluid.

Theorem 2 (Transport theorem) For any function F and density function ρ satisfying

the continuity equation, we have

d

dt

Z

Ωt

ρF dV =

Z

Ωt

ρ
DF

Dt
dV.

The transport theorem is useful because it allows us to deduce Cauchy’s equation of

motion from the primitive integral form of the balance of momentum. From Newton’s

second law this is

d

dt

Z

Ωt

ρu dV =

Z

Ωt

−∇p+ ∇ · σ̂ + ρ f dV.

Hence, using the transport theorem with F ≡ u and that Ω and thus Ωt are arbitrary,

we see that Cauchy’s equation of motion must hold pointwise at each x ∈ D.

Proof There are four steps; see Chorin and Marsden [3, pp. 6–11].

Step 1: Fluid flow map. For a fixed position x ∈ D we denote by ξ(x, t) = (ξ, η, ζ)

the position of the particle at time t, which at time t = 0 was at x. We use ϕt to denote

the map x 7→ ξ(x, t), i.e. ϕt is the map that advances each particle at position x at

time t = 0 to its position at time t later; it is the fluid flow-map. Hence, for example

ϕt(Ω) = Ωt. We assume ϕt is sufficiently smooth and invertible for all our subsequent

manipulations.

Step 2: Change of variables. For any two functions ρ and F we can perform the

change of variables from (ξ, t) to (x, t)—with J(x, t) the Jacobian for this transforma-

tion given by definition as J(x, t) := det
`

∇ξ(x, t)
´

. Here the gradient operator is with

respect to the x coordinates, i.e. ∇ = ∇x. Note for Ωt we integrate over volume ele-

ments dV = dV (ξ), i.e. with respect to the ξ coordinates, whereas for Ω we integrate

over volume elements dV = dV (x), i.e. with respect to the fixed coordinates x. Hence

by direct computation

d

dt

Z

Ωt

ρF dV =
d

dt

Z

Ωt

(ρF )(ξ, t) dV (ξ)

=
d

dt

Z

Ω
(ρF )(ξ(x, t), t) J(x, t) dV (x)

=

Z

Ω

d

dt

“

(ρF )(ξ(x, t), t) J(x, t)
”

dV

=

Z

Ω

d

dt
(ρF )(ξ(x, t), t) J(x, t) + (ρF )(ξ(x, t), t)

d

dt
J(x, t) rdV

=

Z

Ω

„

D

Dt
(ρF )

«

(ξ(x, t), t) J(x, t) + (ρF )(ξ(x, t), t)
d

dt
J(x, t) dV.

Step 3: Evolution of the Jacobian. We establish the following result for the Jacobian:

d

dt
J(x, t) =

`

∇ · u(ξ(x, t), t)
´

J(x, t).
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We know that a particle at position ξ(x, t) =
`

ξ(x, t), η(x, t), ζ(x, t)
´

, which started at

x at time t = 0, evolves according to

d

dt
ξ(x, t) = u

`

ξ(x, t), t
´

.

Taking the gradient with respect to x of this relation, and swapping over the gradient

and d/dt operations on the left, we see that

d

dt
∇ξ(x, t) = ∇u

`

ξ(x, t), t
´

.

Using the chain rule we have

∇x u
`

ξ(x, t), t
´

=
“

∇ξ u
`

ξ(x, t), t
´

”

·
`

∇x ξ(x, t)
´

.

Combining the last two relations we see that

d

dt
∇ξ = (∇ξ u)∇ξ.

Abel’s Theorem then tells us that J = det∇ξ evolves according to

d

dt
det∇ξ =

`

Tr(∇ξ u)
´

det∇ξ.

Since Tr(∇ξ u) ≡ ∇ · u we have established the required result.

Step 4: Conservation of mass. We see that we thus have

d

dt

Z

Ωt

ρF dV =

Z

Ω

„

D

Dt
(ρF ) + (ρF )

`

∇ · u
´

«

(ξ(x, t), t) J(x, t) dV

=

Z

Ωt

„

D

Dt
(ρF ) +

`

ρ∇ · u
´

F

«

dV

=

Z

Ωt

ρ
DF

Dt
dV,

where in the last step we have used the conservation of mass equation. ⊓⊔

Corollary 1 (Equivalent incompressibility statements) The following statements are

equivalent, for any subregion Ω of the fluid, the:

1. Fluid is incompressible;

2. Jacobian J ≡ 1;

3. Volume of Ωt is constant in time.

Proof Using the result in Step 3 of the proof of the transport theorem, we see that

d

dt
vol(Ωt) =

d

dt

Z

Ωt

dV (ξ)

=
d

dt

Z

Ω
J(x, t) dV (x)

=

Z

Ω

`

∇ · u(ξ(x, t), t)
´

J(x, t) dV (x)

=

Z

Ωt

`

∇ · u(ξ, t)
´

dV (ξ).

Further, noting that by definition J(x, 0) = 1, establishes the result. ⊓⊔
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7 Simple example flows

We roughly follow an illustrative sequence of examples given in Majda and Bertozzi [11,

pp. 8–15]. The first few are example flows of a class of exact solutions to both the Euler

and Navier–Stokes equations.

Lemma 1 (Majda and Bertozzi, p. 8) Let D = D(t) ∈ R
3 be a real symmetric matrix

such that Tr(D) = 0 (respresenting the deformation matrix). Suppose that the vorticity

ω = ω(t) solves the ordinary differential system

dω

dt
= D(t) ω

for some initial data ω(0) = ω0 ∈ R
3. If the three components of vorticity are thus

ω = (ω1, ω2, ω3), set

R := 1
2

0

@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1

A .

Then we have that

u(x, t) = 1
2
ω(t) × x +D(t) x,

p(x, t) = − 1
2

„

dD

dt
+D2(t) +R2(t)

«

x · x,

are exact solutions to the incompressible Euler and Navier–Stokes equations.

Remark 3 Since the pressure is a quadratic function of the spatial coordinates x, these

solutions only have meaningful interpretations locally. Further note that the velocity

solution field u only depends linearly on the spatial coordinates x; this explains why

once we established these are exact solutions of the Euler equations, they are also

solutions of the Navier–Stokes equations.

Proof Recall that ∇u is the rate of strain tensor. It can be decomposed into a direct

sum of its symmetric and skew-symmetric parts which are the 3 × 3 matrices

D := 1
2

`

(∇u) + (∇u)T
´

,

R := 1
2

`

(∇u) − (∇u)T
´

.

We can determine how ∇u evolves by taking the gradient of the homogeneous (no

body force) Navier–Stokes equations so that

∂

∂t
(∇u) + u · ∇(∇u) + (∇u)2 = ν ∆(∇u) −∇∇p.

Note here (∇u)2 = (∇u)(∇u) is simply matrix multiplication. By direct computation

(∇u)2 = (D +R)2 = (D2 +R2) + (DR+RD),

where the first term on the right is symmetric and the second is skew-symmetric. Hence

we can decompose the evolution of ∇u into the coupled evolution of its symmetric and

skew-symmetric parts

∂D

∂t
+ u · ∇D +D2 +R2 = ν ∆D −∇∇p,

∂R

∂t
+ u · ∇R+DR+RD = ν ∆R.
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Directly computing the evolution for the three components of ω = (ω1, ω2, ω3) from

the second system of equations we would arrive at the following equation for vorticity,

∂ω

∂t
+ u · ∇ω = ν ∆ω +Dω,

which we derived more directly in Section 5.6.

Thusfar we have not utilized the ansatz (form) for the velocity or pressure we

assume in the statement of the theorem. Assuming u(x, t) = 1
2
ω(t) × x + D(t) x,

for a given deformation matrix D = D(t), then ∇ × u = ω(t), independent of x,

and substituting this into the evolution equation for ω = ∇× u above we obtain the

following system of ordinary differential equations governing the evolution of ω = ω(t):

dω

dt
= D(t)ω.

Now the symmetric part governing the evolution of D = D(t), which is independent of

x, reduces to the system of differential equations

dD

dt
+D2 +R2 = −∇∇p.

Note that R = R(t) only as well, since ω = ω(t), and thus ∇∇p must be a function of

t only. Hence p = p(x, t) can only quadratically depend on x. Indeed after integrating

we must have p(x, t) = − 1
2
(dD/dt+D2 +R2) x · x. ⊓⊔

Example (jet flow) Suppose the initial vorticity ω0 = 0 and D = diag{d1, d2, d3}
is a constant diagonal matrix where d1 + d2 + d3 = 0 so that Tr(D) = 0. Then from

Lemma 1, we see that the flow is irrotational, i.e. ω(t) = 0 for all t > 0. Hence the

velocity field u is given by

u(x, t) = D(t)x =

0

@

d1 x

d2 y

d3 z

1

A .

The particle path for a particle at (x0, y0, z0) at time t = 0 is given by: x(t) = ed1tx0,

y(t) = ed2ty0 and z(t) = ed3tz0. If d1 < 0 and d2 < 0, then d3 > 0 and we see the flow

resembles two jets streaming in opposite directions away from the z = 0 plane.

Example (strain flow) Suppose the initial vorticity ω0 = 0 and D = diag{d1, d2, 0}
is a constant diagonal matrix such that d1 + d2 = 0. Then as in the last example, the

flow is irrotational with ω(t) = 0 for all t > 0 and

u(x, t) =

0

@

d1 x

d2 y

0

1

A .

The particle path for a particle at (x0, y0, z0) at time t = 0 is given by: x(t) = ed1tx0,

y(t) = ed2ty0 and z(t) = z0. Since d2 = −d1, the flow forms a strain flow as shown in

Fig. 5—neighbouring particles are pushed together in one direction while being pulled

apart in the other orthogonal direction.
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Fig. 5 Strain flow example.

Example (vortex) Suppose the initial vorticity ω0 = (0, 0, ω0) and D = O. Then

from Lemma 1 the velocity field u is given by

u(x, t) = 1
2
ω × x =

0

@

− 1
2
ω0y

1
2
ω0x

0

1

A .

The particle path for a particle at (x0, y0, z0) at time t = 0 is given by: x(t) =

cos( 1
2
ω0t)x0 − sin( 1

2
ω0t)y0, y(t) = sin( 1

2
ω0t)x0 +cos( 1

2
ω0t)y0 and z(t) = z0. These are

circular trajectories, and indeed the flow resembles a solid body rotation; see Fig. 6.

Fig. 6 When a fluid flow is a rigid body rotation, the fluid particles flow on circular streamlines.
The fluid particles on paths further from the origin or axis of rotation, circulate faster at just
the right speed that they remain alongside their neighbours on the paths just inside them.

Example (jet flow with swirl) Now suppose the initial vorticity ω0 = (0, 0, ω0) and

D = diag{d1, d2, d3} is a constant diagonal matrix where d1 + d2 + d3 = 0. Then from

Lemma 1, we see that the only non-zero component of vorticity is the third component,

say ω = ω(t), where

ω(t) = ω0e
d3t.

The velocity field u is given by

u(x, t) ==

0

@

d1 x− 1
2
ω(t)y

d2 y + 1
2
ω(t)x

d3 z

1

A .

The particle path for a particle at (x0, y0, z0) at t = 0 can be described as follows.

We see that z(t) = z0e
d3t while x = x(t) and y = y(t) satisfy the coupled system of

ordinary differential equations

d

dt

„

x

y

«

=

„

d1 − 1
2
ω(t)

1
2
ω(t) d2

«„

x

y

«

.
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If we assume d1 < 0 and d2 < 0 then the particles spiral around the z-axis with

decreasing radius and increasing angular velocity 1
2
ω(t). The flow thus resembles a

rotating jet flow; see Fig. 7.

x

y

z

Fig. 7 Jet flow with swirl example. Fluid particles rotate around and move closer to the z-axis
whilst moving further from the z = 0 plane.

Example (shear-layer flows) We derive a simple class of solutions that retain the

three underlying mechanisms of Navier–Stokes flows: convection, vortex stretching and

diffusion. Recall that the vorticity ω evolves according to the partial differential system

∂ω

∂t
+ u · ∇ω = ν ∆ω +Dω,

with ∆u = −∇× ω. The material derivative term ∂ω/∂t+ u · ∇ω convects vorticity

along particle paths, while the term ν ∆ω is responsible for the diffusion of vorticity

and Du represents vortex stretching—the vorticity ω increases/decreases when aligns

along eigenvectors of D corresponding to positive/negative eigenvalues of D.

We seek an exact solution to the incompressible Navier–Stokes equations of the

following form (the first two velocity components represent a strain flow)

u(x, t) =

0

@

−γx
γy

w(x, t)

1

A

where γ is a constant, with p(x, t) = 1
2
γ
`

x2 + y2
´

. This represents a solution to the

Navier–Stokes equations if we can determine the solution w = w(x, t) to the linear

diffusion equation
∂w

∂t
− γx

∂w

∂x
= ν

∂2w

∂x2
,

with w(x, 0) = w0(x). Computing the vorticity directly we get

ω(x, t) =

0

@

0

−
`

∂w/∂x
´

(x, t)

0

1

A .

If we differentiate the equation above for the velocity field component w with respect

to x, then if ω := −∂w/∂x, we get

∂ω

∂t
− γx

∂ω

∂x
= γω + ν

∂2ω

∂x2
,
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with ω(x, 0) = ω0(x) = −(∂w0/∂x)(x). For this simpler flow we can see simpler sig-

natures of the three effects we want to isolate: there is the convecting velocity −γx;
vortex stretching from the term γω and diffusion in the term ν∂2ω/∂x2. Note that is

in the general case, the velocity field w can be recovered from the vorticity field ω by

w(x, t) = −
Z x

−∞

ω(ξ, t) dξ.

Let us consider a special case: the viscous shear-layer solution where γ = 0. In this

case we see that the partial differential equation above for ω reduces to the simple heat

equation with solution

ω(x, t) =

Z

R

G(x− ξ, νt)ω0(ξ) dξ,

where G is the Gaussian heat kernel

G(ξ, t) :=
1√
4πt

e−ξ2/4t.

Indeed the velocity field w is given by

w(x, t) =

Z

R

G(x− ξ, νt)w0(ξ) dξ,

so that both the vorticity ω and velocity w fields diffuse as time evolves; see Fig. 8.

It is possible to write down the exact solution for the general case in terms of

the Gaussian heat kernel, indeed, a very nice exposition can be found in Majda and

Bertozzi [11, p. 18].

x

x

w(x,0)

w(x,t)

Fig. 8 Viscous shear flow example. The effect of diffusion on the velocity field w = w(x, t) is
to smooth out variations in the field as time progresses.

Example (channel shear flow) Consider the two-dimensional flow given by u =

1 − y2 and v = 0 for −1 6 y 6 1 and all x ∈ R (which is an exact solution of the

incompressible Navier–Stokes equations). For this flow the vorticity is given by

∇× u =

„

∂v

∂x
− ∂u

∂y

«

k = 2y k.
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See the shape of the flow in Fig. 9. The flow is stationary near the channel walls (no-slip

boundary conditions are satisfied there) and the flow rate a maximum in the middle

of the channel. The gradient of the horizontal velocity u with respect to y is non-zero

and thus the vorticity is non-zero (the vertical velocity component is zero).

x

y

y=−1

y=+1

Fig. 9 Shear flow in a two-dimensional horizontal channel.

Example (sink or bath drain) As the water (of uniform density ρ) flows out through

a hole at the bottom of a bath the residual rotation is confined to a core of radius a,

so that the water particles may be taken to move on horizontal circles with

uθ =

(

Ωr, r 6 a,
Ωa2

r , r > a.

As we have all observed when water runs out of a bath or sink, the free surface of the

water directly over the drain hole has a depression in it—see Fig. 10. The question is,

what is the form/shape of this free surface depression?

r

zp

a

0

Fig. 10 Water draining from a bath.

We know that the pressure at the free surface is uniform, it is atmospheric pres-

sure, say P0. We need the Euler equations for a homogeneous incompressible fluid in
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cylindrical coordinates (r, θ, z) with the velocity field u = (ur, uθ, uz). These are

∂ur

∂t
+ (u · ∇)ur − u2

θ

r
= −1

ρ

∂p

∂r
+ fr,

∂uθ

∂t
+ (u · ∇)uθ +

uruθ

r
= − 1

ρr

∂p

∂θ
+ fθ,

∂uz

∂t
+ (u · ∇)uz = −1

ρ

∂p

∂z
+ fz ,

where p = p(r, θ, z, t) is the pressure, ρ is the uniform constant density and f =

(fr, fθ, fz) is the body force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ

r

∂

∂θ
+ uz

∂

∂z
.

Further the incompressibility condition ∇ ·u = 0 is given in cylindrical coordinates by

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+
∂uz

∂z
= 0.

Now we look at the setting we are presented with for this problem. Note the flow

is steady and ur = uz = 0, fr = fθ = 0. The force due to gravity implies fz = −g.
The whole problem is also symmetric with respect to θ, so that all partial derivatives

with respect to θ should be zero. Combining all these facts reduces Euler’s equations

above to

−u
2
θ

r
= −1

ρ

∂p

∂r
, 0 = − 1

ρr

∂p

∂θ
and 0 = −1

ρ

∂p

∂z
− g.

The incompressibility condition is satisfied trivially. The second equation above tells

us the pressure p is independent of θ, as we might have already suspected. Hence we

assume p = p(r, z) and focus on the first and third equation above.

Assume r 6 a. Using that uθ = Ωr in the first equation we see that

∂p

∂r
= ρΩ2 r ⇔ p(r, z) = 1

2
ρΩ2 r2 + C(z),

where C(z) is an arbitrary function of z. If we then substitute this into the third

equation above we see that

1

ρ

∂p

∂z
= −g ⇔ C′(z) = −ρg,

and hence C(z) = −ρgz +C0 where C0 is an arbitrary constant. Thus we now deduce

that the pressure function is given by

p(r, z) = 1
2
ρΩ2 r2 − ρgz + C0.

At the free surface of the water, the pressure is constant atmospheric pressure P0 and

so if we substitute this into this expression for the pressure we see that

P0 = 1
2
ρΩ2 r2 − ρgz + C0 ⇔ z = (Ω2/2g) r2 − (C0 − P0)/ρg.

Hence the depression in the free surface for r 6 a is a parabolic surface of revolution.

Note that pressure is only ever globally defined up to an additive constant so we are

at liberty to take C0 = 0 or C0 = P0 if we like.
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For r > a a completely analogous argument using uθ = Ωa2/r shows that

p(r, z) = −ρΩ
2a4

2 r2
− ρgz +K0,

where K0 is an arbitrary constant. Since the pressure must be continuous at r = a, we

substitute r = a into the expression for the pressure here for r > a and the expression

for the pressure for r 6 a, and equate the two. This gives

− 1
2
ρΩ2a2 − ρgz +K0 = 1

2
ρΩ2 a2 − ρgz ⇔ K0 = ρΩ2 a2.

Hence the pressure for r > a is given by

p(r, z) = −ρΩ
2a4

2 r2
− ρgz + ρΩ2 a2.

Using that the pressure at the free surface is p(r, z) = P0, we see that for r > a the

free surface is given by

z = −Ω
2a4

g r2
+
Ω2 a2

g
.

8 Kelvin’s circulation theorem, vortex lines and tubes

We turn our attention to important concepts centred on vorticity in a flow.

Definition 3 (Circulation) Let C be a simple closed contour in the fluid at time t = 0.

Suppose that C is carried along by the flow to the closed contour Ct at time t, i.e.

Ct = ϕt(C). The circulation around Ct is defined to be the line integral

K =

I

Ct

u · dx.

Using Stokes’ Theorem an equivalent definition for the circulation is

K =

I

Ct

u · dx =

Z

S
(∇× u) · n dS =

Z

S
ω · n dS

where S is any surface with perimeter Ct; see Fig. 12. In other words the circulation is

equivalent to the flux of vorticity through the surface with perimeter Ct.

Theorem 3 (Kelvin’s circulation theorem (1869)) For ideal, incompressible flow with-

out external forces, the circulation K for any closed contour Ct is constant in time.

Proof Using a variant of the Transport Theorem for closed loops of fluid particles, and

the Euler equations, we see that

d

dt

I

Ct

u · dx =

I

Ct

Du

Dt
· dx = −

I

Ct

∇p · dx = 0

since Ct is closed. ⊓⊔

Corollary 2 The flux of vorticity across a surface moving with the fluid is constant in

time.
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Definition 4 (Vortex lines) These are the lines that are everywhere parallel to the

local vorticity ω, i.e. with t fixed they solve

d

ds
x(s) = ω(x(s), t).

These are the trajectories for the field ω for t fixed.

Definition 5 (Vortex tube) This is the surface formed by the vortex lines through the

points of a simple closed curve C; see Fig. 12. We can define the strength of the vortex

tube to be
Z

S
ω · n dS ≡

I

Ct

u · dx.

Remark 4 This is a good definition because it is independent of the precise cross-

sectional area S, and the precise circuit C around the vortex tube taken (because

∇ ·ω ≡ 0); see Fig. 12. Vorticity is larger where the cross-sectional area is smaller and

vice-versa. Further, for an ideal fluid, vortex tubes move with the fluid and the strength

of the vortex tube is constant in time as it does so (Helmholtz’s theorem; 1858); see

Chorin and Marsden [3, p. 26].

C t

SS

S

21

0

Fig. 11 Stokes’ theorem tells us that the circulation around the closed contour C equals the
flux of vorticity through any surface whose perimeter is C. For example here the flux of vorticity
through S0, S1 and S2 is the same.

C

S

Fig. 12 The strength of the vortex tube is given by the circulation around any curve C that
encircles the tube once.
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9 Bernoulli’s Theorem

Theorem 4 (Bernoulli’s Theorem) Suppose we have an ideal homogeneous incompress-

ible stationary flow with a conservative body force f = −∇Φ, where Φ is the potential

function. Then the quantity

H := 1
2
|u|2 +

p

ρ
+ Φ

is constant along streamlines.

Proof We need the following identity that can be found in Appendix A:

1
2
∇
`

|u|2
´

= u · ∇u + u × (∇× u).

Since the flow is stationary, Euler’s equation of motion for an ideal fluid imply

u · ∇u = −∇
“p

ρ

”

−∇Φ.

Using the identity above we see that

1
2
∇
`

|u|2
´

− u × (∇× u) = −∇
“p

ρ

”

−∇Φ

⇔ ∇
“

1
2
|u|2 +

p

ρ
+ Φ

”

= u × (∇× u)

⇔ ∇H = u × (∇× u),

using the definition for H given in the theorem. Now let x(s) be a streamline that

satisfies x′(s) = u
`

x(s)
´

. By the fundamental theorem of calculus, for any s1 and s2,

H
`

x(s2)
´

−H
`

x(s1)
´

=

Z s2

s1

dH
`

x(s)
´

=

Z s2

s1

∇H · x′(s) ds

=

Z s2

s1

`

u × (∇× u)
´

· u
`

x(s)
´

ds

= 0,

where we used that (u × a) · u ≡ 0 for any vector a (since u × a is orthogonal to u).

Since s1 and s2 are arbitrary we deduce that H does change along streamlines. ⊓⊔

Example (Torricelli 1643). Consider the problem of an oil drum full of water that

has a small hole punctured into it near the bottom. The problem is to determine the

velocity of the fluid jetting out of the hole at the bottom and how that varies with the

amount of water left in the tank—the setup is shown in Fig 13. We shall assume the

hole has a small cross-sectional area α. Suppose that the cross-sectional area of the

drum, and therefore of the free surface (water surface) at z = 0, is A. We naturally

assume A ≫ α. Since the rate at which the amount of water is dropping inside the

drum must equal the rate at which water is leaving the drum through the punctured

hole, we have

„

−dh

dt

«

·A = U · α ⇔
„

−dh

dt

«

=
“α

A

”

· U.
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h

z=0

z=−h
P

U

P = air pressure0

0

Typical streamline

Fig. 13 Torricelli problem: the pressure at the top surface and outside the puncture hole is
atmospheric pressure P0. Suppose the height of water above the puncture is h. The goal is to
determine how the velocity of water U out of the puncture hole varies with h.

We observe that A≫ α, i.e. α/A≪ 1, and hence we can deduce

1

U2

„

dh

dt

«2

=
“α

A

”2

≪ 1.

Since the flow is quasi-stationary, incompressible as it’s water, and there is conserva-

tive body force due to gravity, we apply Bernoulli’s Theorem for one of the typical

streamlines shown in Fig. 13. This implies that the quantity H is the same at the free

surface and at the puncture hole outlet, hence

1
2

„

dh

dt

«2

+
P0

ρ
= 1

2
U2 +

P0

ρ
− gh.

Thus cancelling the P0/ρ terms then we can deduce that

gh = 1
2
U2 − 1

2

„

dh

dt

«2

= 1
2
U2

„

1 − 1

U2

„

dh

dt

«2«

= 1
2
U2

„

1 −
“α

A

”2
«

∼ 1
2
U2

for α/A≪ 1. Thus in the asymptotic limit gh = 1
2
U2 so that

U =
p

2gh.

Remark 5 Note the pressure inside the container at the puncture hole level is P0+ρgh.

The difference between this and the atmospheric pressure P0 outside, accelerates the

water through the puncture hole.
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x

P0

UH

u
h(x)

y(x)

Fig. 14 Channel flow problem: a steady flow of water, uniform in cross-section, flows over a
gently undulating bed of height y = y(x) as shown. The depth of the flow is given by h = h(x).
Upstream the flow is characterized by flow velocity U and depth H.

Example (Channel flow: Froude number). Consider the problem of a steady flow

of water in a channel over a gently underlating bed—see Fig 14. We assume that the

flow is shallow and uniform in cross-section. Upstream the flow is characterized by flow

velocity U and depth H. The flow then impinges on a gently undulating bed of height

y = y(x) as shown in Fig 14, where x measures distance downstream. The depth of the

flow is given by h = h(x) whilst the fluid velocity at that point is u = u(x), which is

uniform over the depth throughout. Re-iterating slightly, our assumptions are thus,

˛

˛

˛

˛

dy

dx

˛

˛

˛

˛

≪ 1 (bed gently undulating)

and

˛

˛

˛

˛

dh

dx

˛

˛

˛

˛

≪ 1 (small variation in depth).

The continuity equation (incompressibility here) implies that for all x,

uh = UH.

Then Euler’s equations for a steady flow imply Bernoulli’s theorem which we apply

to the surface streamline, for which the pressure is constant and equal to atmospheric

pressure P0, hence we have for all x:

1
2
U2 + gH = 1

2
u2 + g(y + h).

Substituting for u = u(x) from the incompressibility condition above, and rearranging,

Bernoulli’s theorem implies that for all x we have the constraint

y =
U2

2g
+H − h− (UH)2

2gh2
.

We can think of this as a parametric equation relating the fluid depth h = h(x) to the

undulation height h = h(x) where the parameter x runs from x = −∞ far upstream

to x = +∞ far downstream. We plot this relation, y as a function of h, in Fig 15. Note

that y has a unique global maximum y0 coinciding with the local maximum and given

by

dy

dh
= 0 ⇔ h = h0 =

(UH)2/3

g1/3
.
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h

y

h
0

y0

Fig. 15 Channel flow problem: The flow depth h = h(x) and undulation height y = y(x) are
related as shown, from Bernoulli’s theorem. Note that y has a maximum value y0 at height
h0 = HF2/3 where F = U/

√
gH is the Froude number.

Note that if we set

F := U/
p

gH

then h0 = HF2/3, where F is known as the Froude number. It is a dimensionless

function of the upstream conditions and represents the ratio of the oncoming fluid

speed to the wave (signal) speed in fluid depth H.

Note that when y = y(x) attains its maximum value at h0, then y = y0 where

y0 := H
`

1 + 1
2
F2 − 3

2
F2/3

´

.

This puts a bound on the height of the bed undulation that is compatible with the

upstream conditions. In Fig 16 we plot the maximum permissible height y0 the undula-

tion is allowed to attain as a function of the Froude number F. Note that two different

values of the Froude number F give the same maximum permissible undulation height

y0, one of which is slower and one of which is faster (compared with
√
gH).

F

y0 / H

F=1 F>1F<10

Fig. 16 Channel flow problem: Two different values of the Froude number F give the same
maximum permissible undulation height y0. Note we actually plot the normalized maximum
possible height y0/H on the ordinate axis.

Let us now consider and actual given undulation y = y(x). Suppose that it attains

an actual maximum value ymax. There are three cases to consider, in turn we shall

consider ymax < y0, the more interesting case, and then ymax > y0. The third case

ymax = y0 is an exercise (see the Exercises section at the end of these notes).
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In the first case, ymax < y0, as x varies from x = −∞ to x = +∞, the undulation

height y = y(x) varies but is such that y(x) 6 ymax. Refer to Fig. 15, which plots

the constraint relationship between y and h resulting from Bernoulli’s theorem. Since

y(x) 6 ymax as x varies from −∞ to +∞, the values of (h, y) are restricted to part

of the branches of the graph either side of the global maximum (h0, y0). In the figure

these parts of the branches are the locale of the shaded sections shown. Note that the

derivative dy/dh = 1/(dh/dy) has the same fixed (and opposite) sign in each of the

branches. In the branch for which h is small, dy/dh > 0, while the branch for which

h is larger, dy/dh < 0. Indeed note the by differentiating the constraint condition, we

have

dy

dh
= −

„

1 − (UH)2

gh3

«

.

Using the incompressibility condition to substitute for UH we see that this is equivalent

to

dy

dh
= −

„

1 − u2

gh

«

.

We can think of u/
√
gh as a local Froude number if we like. In any case, note that since

we are in one branch or the other, and in either case the sign of dy/dh is fixed, this

means that using the expression for dy/dh we just derived, for any flow realization the

sign of 1− u2/gh is also fixed. When x = −∞ this quantity has the value 1−U2/gH.

Hence the sign of 1 − U2/gH determines the sign of 1 − u2/gh. Hence if F < 1 then

U2/gH = F2 < 1 and therefore for all x we must have u2/gh < 1. And we also deduce

in this case that we must be on the branch for which h is relatively large as dy/dh is

negative. The flow is said to be subcritical throughout and indeed we see that

dh

dy
=

„

dy

dh

«−1

= −
„

1 − u2

gh

«−1

< −1 ⇒ d

dy
(h+ y) < 0.

Hence in this case, as the bed height y increases, the fluid depth h decreases and vice-

versa. On the otherhand if F > 1 then U2/gH > 1 and thus u2/gh > 1. We must be

on the branch for which h is relatively small as dy/dh is positive. The flow is said to

be supercritical throughout and we have

dh

dy
= −

„

1 − u2

gh

«−1

> 0 ⇒ d

dy
(h+ y) > 1.

Hence in this case, as the bed height y increases, the fluid depth h increases and vice-

versa. Both cases, F < 1 and F > 1, are illustrated by a typical scenario in Fig. 17.

In the second case, ymax > y0, the undulation height is larger than the maximum

permissibe height y0 compatible with the upstream conditions. Under the conditions

we assumed, there is no flow realized here. In a real situation we may imagine a flow

impinging on a large barrier with height ymax > y0, and the result would be some

sort of reflection of the flow occurs to change the upstream conditions in an attempt

to make them compatible with the obstacle. (Our steady flow assumption obviously

breaks down here.)
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U U

F<1 F>1

Fig. 17 Channel flow problem: for the case ymax < y0, when F < 1, as the bed height y
increases, the fluid depth h decreases and vice-versa. Hence we see a depression in the fluid
surface above a bump in the bed. On the other hand, when F > 1, as the bed height y increases,
the fluid depth h increases and vice-versa. Hence we see an elevation in the fluid surface above
a bump in the bed.

10 Irrotational/potential flow

Many flows have extensive regions where the vorticity is zero; some have zero vorticity

everywhere. We would call these, respectively, irrotational regions of the flow and

irrotational flows. In such regions

ω = ∇× u = 0.

Hence the field u is solenoidal and there exists a scalar function φ such that

u = ∇φ.

The function φ is known as the flow potential. In turn this implies that

K =

I

C

u · dx = 0

for all simple closed curves C in the region (the reverse implication is also true).

If the fluid is also incompressible, then φ is harmonic since ∇ · u = 0 implies

∇2φ = 0.

Hence for such situations, we in essense need to solve Laplace’s equation∆φ = 0 subject

to certain boundary conditions. For example for an ideal flow, u ·n = ∇φ ·n = ∂φ/∂n

is given on the boundary, and this would consitute a Neumann problem for Laplace’s

equation.

Example (linear two-dimensional flow) Consider the flow field u = (kx,−ky) where

k is a constant. It is irrotational. Hence there exists a flow potential φ = 1
2
k(x2 − y2).

Since ∇ · u = 0 as well, we have ∆φ = 0. Further, since this flow is two-dimensional,

there also exists a streamfunction ψ = kxy.

Example (line vortex) Consider the flow field (ur, uθ, uz) = (0, k/r, 0) where k > 0

is a constant. This is the idealization of a thin vortex tube. Direct computation shows

that ∇× u = 0 everywhere except at r = 0, where ∇× u is infinite. For r > 0, there

exists a flow potential φ = kθ. For any closed circuit C in this region, we have

K =

I

C

u · dx = 2πkN
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where N is the number of times the closed curve C winds round the origin r = 0. The

circulation K will be zero for all circuits reducible continuously to a point without

breaking the vortex.

Example (D’Alembert’s paradox) Consider a uniform flow into which we place an

obstacle. We would naturally expect that the obstacle represents an obstruction to the

fluid flow and that the flow would exert a force on the obstacle, which if strong enough,

might dislodge it and subsequently carry it downstream. However for an ideal flow, as

we are just about to prove, this is not the case. There is no net force exerted on an

obstacle placed in the midst of a uniform flow.

We thus consider a uniform ideal flow into which is placed a sphere, radius a.

The set up is shown in Fig. 18. We assume that the flow around the sphere is steady,

incompressible and irrotational. Suppose further that the flow is axisymmetric. By this

we mean the following. Use spherical polar coordinates to represent the flow with the

south-north pole axis passing through the centre of the sphere and aligned with the

uniform flow U at infinity; see Fig. 18. Then the flow is axisymmetric if it is independent

of the azimuthal angle ϕ of the spherical coordinates (r, θ, ϕ). Further we also assume

no swirl so that uϕ = 0. Since the flow is incompressible and irrotational, it is a

U

UU

U

r

θ

Fig. 18 Consider an ideal steady, incompressible, irrotational and axisymmetric flow past a
sphere as shown. The net force exerted on the sphere (obstacle) in the flow is zero. This is
D’Alembert’s paradox.

potential flow. Hence we seek a potential function φ such that ∇2φ = 0. In spherical

polar coordinates this is equivalent to

1

r2

„

∂

∂r

„

r2
∂φ

∂r

«

+
1

sin θ

∂

∂θ

„

sin θ
∂φ

∂θ

««

= 0.

The general solution to Laplace’s equation is well known, and in the case of axisym-

metry the general solution is given by

φ(r, θ) =

∞
X

n=0

„

Anr
n +

Bn

rn+1

«

Pn(cos θ)

where Pn are the Legendre polynomials; with P1(x) = x. The coefficients An and Bn

are constants, most of which, as we shall see presently, are zero. For our problem we



Introductory fluid mechanics 35

have two sets of boundary data. First, that as r → ∞ in any direction, the flow field is

uniform and given by u = (0, 0, U) (expressed in Cartesian coordinates with the z-axis

aligned along the south-north pole) so that as r → ∞

φ→ Ur cos θ.

Second, on the sphere r = a itself we have a no normal flow condition

∂φ

∂r
= 0.

Using the first boundary condition for r → ∞ we see that all the An must be zero

except A1 = U . Using the second boundary condition on r = a we see that all the

Bn must be zero except for B1 = 1
2
Ua3. Hence the potential for this flow around the

sphere is

φ = U(r + a3/2r2) cos θ.

In spherical polar coordinates, the velocity field u = ∇φ is given by

u = (ur, uθ) =
`

U(1 − a3/r3) cos θ,−U(1 + a3/2r3) sin θ
´

.

Since the flow is ideal and steady as well, Bernoulli’s theorem applies and so along a

typical streamline 1
2
|u|2 + P/ρ is constant. Indeed since the conditions at infinity are

uniform so that the pressure P∞ and velocity field U are the same everywhere there,

this means that for any streamline and in fact everywhere for r > a we have

1

2
|u|2 + P/ρ =

1

2
U2 + P∞/ρ.

Rearranging this equation and using our expression for the velocity field above we have

P − P∞

ρ
= 1

2
U2
`

1 − (1 − a3/r3)2 cos2 θ − (1 + a3/2r3)2 sin2 θ
´

.

On the sphere r = a we see that

P − P∞

ρ
= 1

2
U2
`

1 − 9
4

sin2 θ
´

.

Note that on the sphere, the pressure is symmetric about θ = 0, π/2, π, 3π/2. Hence

the fluid exerts no net force on the sphere! (There is no drag or lift.) This result, in

principle, applies to any shape of obstacle in such a flow. In reality of course this cannot

be the case, the presence of viscosity remedies this paradox (and crucially generates

vorticity).

11 Dynamical similarity and Reynolds number

Our goal in this section is to demonstrate an important scaling property of the Navier–

Stokes equations for a homogeneous incompressible fluid without body force:

∂u

∂t
+ u · ∇u = ν ∆u − 1

ρ
∇p,

∇ · u = 0.
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Note that two physical properties inherent to the fluid modelled are immediately ap-

parent, the mass density ρ, which is constant throughout the flow, and the kinematic

viscosity ν. Suppose we consider such a flow which is characterized by a typical length

scale L and velocity U . For example we might imagine a flow past an obstacle such a

sphere whose diameter is characterized by L and the impinging/undisturbed far-field

flow is uniform and given by U . These two scales naturally determine a typically time

scale T = L/U . Using these scales we can introduce the dimensionless variables

x
′ =

x

L
, u

′ =
u

U
and t′ =

t

T
.

Directly substituting for u = Uu′ and using the chain rule to replace t by t′ and x by

x′ in the Navier–Stokes equations, we obtain:

U

T

∂u′

∂t′
+
U2

L
u
′ · ∇x′u

′ =
νU

L2
∆x′u

′ − 1

ρL
∇x′p.

The incompressibility condition becomes ∇x′ ·u′ = 0. Using that T = L/U and dividing

through by U2/L we get

∂u′

∂t′
+ u

′ · ∇x′u
′ =

ν

UL
∆x′u

′ − 1

ρU2
∇x′p.

If we set p′ = p/ρU2 and then drop the primes, we get

∂u

∂t
+ u · ∇u =

1

Re
∆u −∇p,

which is the representation for the Navier–Stokes equations in dimensionless variables.

The dimensionless number

Re :=
UL

ν

is the Reynolds number. Its practical significance is as follows. Suppose we want to

design a jet plane (or perhaps just a wing). It might have a characteristic scale L1 and

typically cruise at speeds U1 with surrounding air having viscosity ν1. Rather than

build the plane to test its airflow properties it would be cheaper to build a scale model

of the aircraft—with exactly the same shape/geometry but smaller, with characteristic

scale L2. Then we could test the airflow properties in a wind tunnel for example, by

using a driving impinging wind of characteristic velocity U2 and air of viscosity ν2 so

that
U1L1

ν1
=
U2L2

ν2
.

The Reynolds number in the two scenarios are the same and the dimensionless Navier–

Stokes equations for the two flows identical. Hence the shape of the flows in the two

scenarios will be the same. We could also for example, replace the wind tunnel by a

water tunnel: the viscosity of air is ν1 = 0.15 cm2/s and of water ν2 = 0.0114 cm2/s,

i.e. ν1/ν2 ≈ 13. Hence for the same geometry and characteristic scale L1 = L2, if we

choose U1 = 13U2, the Reynolds numbers for the two flows will be the same. Such

flows, with the same geometry and the same Reynolds number are said to be similar.

Remark 6 Some typical Reynolds are as follows: aircraft: 108 to 109; cricket ball: 105;

blue whale: 108; cruise ship: 109; canine artery: 103; nematode: 0.6; capilliaries: 10−3.



Introductory fluid mechanics 37

12 Exercises

Exercise (streamlines: Cartesian coordinates) Sketch streamlines for the following

steady flow fields: (a) (u, v) = (U + αy, 0); (b) (u, v) = (kx,−ky); (c) (u, v) =

(−Ωy,Ωx); (d) (u, v, w) = (αx, αy,−2αz); where U , α, k, and Ω are all constants.

Exercise (streamlines: plane/cylindrical polar coordinates) Sketch streamlines for the

steady flow fields: (a) (ur, uθ) = (0, Ωr); (b) (ur, uθ) = (0, k/r); (c) (ur, uθ, uz) =

α(t) · (x−y, x+y, 0)—show that the streamlines are exponential spirals (Hint: convert

to polar coordinates first). Here Ω and k are constants, and α = α(t) is an arbitrary

function of t. We use (r, θ) as plane polar coordinates, and (r, θ, z) as cylindrical polar

coordinates. Note that in these coordinates the equations for trajectories are

dr

dt
= ur, r

dθ

dt
= uθ, and

dz

dt
= uz .

Exercise (trajectories and streamlines: two dimensions) For a given velocity flow field

u = u(x, t) prescribed at position x and time t, the particle trajectories are given by

the solutions to the system of ordinary differential equations

dx

dt
= u(x(t), t).

Streamlines are given by the solutions to the system of ordinary differential equations

(where t is fixed)
dx

ds
= u

`

x(s), t
´

.

(a) Explain what particle trajectories and streamlines are, and their difference.

(b) For the two-dimensional flow in Cartesian coordinates,

(u, v) =
`

u0, v0 cos(kx− αt)
´

,

where u0, v0, k and α are constants, find the general equation for a streamline.

Show that the streamline passing through (x, y) = (0, 0) at t = 0 is

y =
v0
ku0

sin(kx).

Find the equation for the path of the particle which is at (x, y) = (0, 0) at t = 0.

Comment briefly on the contrast between the above streamline and particle path

in the two separate limiting cases: first α→ 0; second k → 0.

Exercise (trajectories and streamlines: three dimensions) Find the trajectories and

streamlines when u = (xe2t−z , ye2t−z , 2e2t−z). What is the track of the particle passing

through (1, 1, 0) at time t = 0?

Exercise (channel flow) Consider the two-dimensional channel flow (with U a given

constant)

u =

 

0, U

„

1 − x2

a2

«

, 0

!

,

between the two walls x = ±a. Show that there is a stream function and find it. (Hint:

a stream function ψ exists for a velocity field u = (u, v, w) when ∇·u = 0 and we have
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an additional symmetry. Here the additional symmetry is uniformity with respect to

z. You thus need to verify that if

u =
∂ψ

∂y
and v = −∂ψ

∂x
,

then ∇ · u = 0 and then solve this system of equations to find ψ.)

Show that approximately 91% of the volume flux across y = y0 for some constant

y0 flows through the central part of the channel |x| 6
3
4
a.

Exercise (flow inside and around a disc) Calculate the stream function ψ for the flow

field

u =
`

U cos θ · (1 − a2/r2),−U sin θ · (1 + a2/r2) − Γ/2πr
´

in plane polar coordinates, where U, a, γ are constants.

Exercise (steady oscillating channel flow) An incompressible fluid is in steady two-

dimensional flow in the channel

−∞ < x <∞, −π/2 < y < π/2,

with velocity

u = (1 + x sin y, cos y).

Find the equation of the streamlines and sketch them. Show that the flow has stagnation

points at (1,−π/2) and (−1, π/2).

Exercise (Flow in an infinite pipe: Poiseuille flow) Consider an infinite pipe with

circular cross-section of radius a, whose centre line is aligned along the z-axis. Assume

no-slip boundary conditions at r = a, for all z, i.e. on the inside surface of the cylinder.

Using cylindrical polar coordinates, look for a solution to the fluid flow in the pipe

of the following form. Assume there is no radial flow, ur = 0, and no swirl, uθ = 0.

Further assume there is a constant pressure gradient down the pipe, i.e. that p = −Cz
for some constant C. Lastly, suppose that the flow down the pipe, i.e. the velocity

component uz , has the form uz = uz(r) (it is a function of r only).

(a) Using the Navier–Stokes equations, show that

C = −ρν∆uz = −ρν
„

1

r

∂

∂r

„

r
∂uz

∂r

««

.

(b) Integrating the equation above yields

uz = −Cρ
4ν

r2 +A log r +B,

where A and B are constants. We naturally require that the solution be bounded.

Explain why this implies A = 0. Now use the no-slip boundary condition to deter-

mine B. Hence show that

uz =
Cρ

4ν
(a2 − r2).

(c) Show that the mass-flow rate across any cross section of the pipe is given by
Z

ρuz dS = ρ2πCa4/8ν.

This is known as the fourth power law.
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z
a

Fig. 19 Poiseuille flow: a viscous fluid flows along an infinite horizontal pipe with circular
cross-section of radius a, whose centre line is aligned along the z-axis. A constant pressure
gradient is assumed, as well as axisymmetry, no radial flow and no swirl.

(From Chorin and Marsden, pp. 45-6.)

Exercise (Couette flow)Let Ω be the region between two concentric cylinders of radii

R1 and R2, where R1 < R2. Suppose the velocity field in cylindrical coordinates

u = (ur, uθ, uz) of the fluid flow inside Ω, is given by

ur = 0, uz = 0, and uθ =
A

r
+Br,

where

A = −R
2
1R

2
2(ω2 − ω1)

R2
2
−R2

1

and B = −R
2
1ω1 −R2

2ω2

R2
2
−R2

1

.

This is known as a Couette flow—see Fig. 20. Show that the:

(a) velocity field u = (ur, uθ, uz) is a stationary solution of Euler’s equations of motion

for an ideal fluid with density ρ ≡ 1 (hint: you need to find a pressure field p that

is consistent with the velocity field given);

(b) angular velocity of the flow (i.e. the quantity uθ/r) is ω1 on the cylinder r = R1

and ω2 on the cylinder r = R2.

(c) the vorticity field ω = ∇× u = (0, 0, 2B).

two walls of the cylinders
fluid lies between the
Region of flow isΩ :

R1R2

Fig. 20 Couette flow between two concentric cylinders of radii R1 < R2.

Exercise (hurricane) We devise a simple model for a hurricane.
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(a) Using the Euler equations for an ideal incompressible flow in cylindrical coordinates

(see the bath or sink drain problem in the main text) show that at position (r, θ, z),

for a flow which is independent of θ with ur = uz = 0, we have

u2
θ

r
=

1

ρ0

∂p

∂r
,

0 =
1

ρ0

∂p

∂z
+ g,

where p = p(r, z) is the pressure and g is the acceleration due to gravity (assume

this to be the body force per unit mass). Verify that any such flow is indeed in-

compressible.

(b) In a simple model for a hurricane the air is taken to have uniform constant density

ρ0 and each fluid particle traverses a horizontal circle whose centre is on the fixed

vertical z-axis. The (angular) speed uθ at a distance r from the axis is

uθ =

(

Ωr, for 0 6 r 6 a,

Ω a3/2

r1/2
, for r > a,

where Ω and a are known constants.

(i) Now consider the flow given above in the inner region 0 6 r 6 a. Using the

equations in part (a) above, show that the pressure in this region is given by

p = P0 + 1
2
ρ0Ω

2r2 − gρ0z,

where P0 is a constant. A free surface of the fluid is one for which the pressure

is constant. Show that the shape of a free surface for 0 6 r 6 a is a paraboloid

of revolution, i.e. it has the form

z = Ar2 +B,

for some constants A and B. Specify the exact form of A and B.

(ii) Now consider the flow given above in the outer region r > a. Again using the

equations in part (a) above, and that the pressure must be continuous at r = a,

show that the pressure in this region is given by

p = P0 − ρ0
r
Ω2a3 − gρ0z + 3

2
ρ0Ω

2a2,

where P0 is the same constant (reference pressure) as that in part (i) above.

Exercise (Elliptic pipe flow) Show that for a flow of a viscous fluid through a pipe of

constant cross-section under pressure gradient −G, the speed u satisfies

∂2u

∂x2
+
∂2u

∂y2
= −G

µ
,

where x and y are coordinates in a plane of cross-section. State the boundary conditions

for this elliptic partial differential problem.

Show for an elliptic pipe of semi-axes a, b, that u = A + Bx2 + Cy2 for suitable

choices of A, B and C. Verify that the flux of fluid through the pipe is πa3b3G/4(a2 +

b2)µ. Deduce that for a given elliptical cross-sectional area, the optimal choice of a and

b to maximize the discharge rate is a = b.
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Exercise (Wind blowing across a lake) Wind blowing across the surface of a lake of

uniform depth d exerts a constant and uniform tangential stress S. The water is initially

at rest. Find the water velocity at the surface as a function of time for νt≪ d2. (Hint:

solve for the vorticity using the vorticity equation for a very deep lake.)

Suppose now that the wind has been blowing for a sufficiently long time to es-

tablish a steady state. Assuming that the water velocity can be taken to be almost

uni-directional and that the horizontal dimensions of the lake are large compared with

d, show that the water velocity at the surface is Sd/4µ. (Hint: A pressure gradient

would be needed to ensure no net flux (why?) in the steady state, and this pressure

gradient leads to a small rise in the surface elevation of the lake in the direction of the

wind.)

Exercise (Venturi tube) Consider the Venturi tube shown in Fig. 21. Assume that the

ideal fluid flow through the construction is homogeneous, incompressible and steady.

The flow in the wider section of cross-sectional area A1, has velocity u1 and pressure

p1, while that in the narrower section of cross-sectional area A2, has velocity u2 and

pressure p2. Separately within the uniform wide and narrow sections, we assume the

velocity and pressure are uniform themselves.

(a) Why does the relation A1u1 = A2u2 hold? Why is the flow faster in the narrower

region of the tube compared to the wider region of the tube?

(b) Use Bernoulli’s theorem to show that

1
2
u2
1 +

p1
ρ0

= 1
2
u2
2 +

p2
ρ0
,

where ρ0 is the constant uniform density of the fluid.

(c) Using the results in parts (a) and (b), compare the pressure in the narrow and wide

regions of the tube.

(d) Give a practical application where the principles of the Venturi tube is used or

might be useful.

streamline

A  , u , p 1       1       1A  , u , p 1       1       1
A  , u  , p 2       2        2

Fig. 21 Venturi tube: the flow in the wider section of cross-sectional area A1 has velocity
u1 and pressure p1, while that in the narrower section of cross-sectional area A2 has velocity
u2 and pressure p2. Separately within the uniform wide and narrow sections, we assume the
velocity and pressure are uniform themselves.

Exercise (Clepsydra or water clock) A clepsydra has the form of a surface of revolution

containing water and the level of the free surface of the water falls at a constant rate,

as the water flows out through a small hole in the base. The basic setup is shown in

Fig. 22.
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(a) Apply Bernoulli’s theorem to one of the typical streamlines shown in Fig. 22 to

show that
1

2

„

dz

dt

«2

= 1
2
U2 − gz

where z is the height of the free surface above the small hole in the base, U is the

velocity of the water coming out of the small hole and g is the acceleration due to

gravity.

(b) Assuming that the constant rate at which the level surface is falling is very slow,

explain why we can deduce that

U ≈
p

2gz.

(c) If S is the cross-sectional area of the hole in the bottom, and A is the cross-sectional

area of the free surface, explain why we must have

A
dz

dt
= S U.

(d) Combine the results from (b) and (c) above, to show that the shape of the container

that guarantees that the free surface of the water drops at a constant rate must

have the form z = C r4 in cylindrical polars, where C is a constant.

r

z

P0 = air pressure

U

typical streamline

r

z

free surface

P0

Fig. 22 Clepsydra (water clock).

Exercise (coffee in a mug) A coffee mug in the form of a right circular cylinder (diam-

eter 2a, height h), closed at one end, is initially filled to a depth d > 1
2
h with static

inviscid coffee. Suppose the coffee is then made to rotate inside the mug—see Fig. 23.

(a) Using the Euler equations for an ideal incompressible homogeneous flow in cylin-

drical coordinates show that at position (r, θ, z), for a flow which is independent of

θ with ur = uz = 0, the Euler equations reduce to

u2
θ

r
=

1

ρ

∂p

∂r
,

0 =
1

ρ

∂p

∂z
+ g,

where p = p(r, z) is the pressure, ρ is the constant uniform fluid density and g is

the acceleration due to gravity (assume this to be the body force per unit mass).

Verify that any such flow is indeed incompressible.
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(b) Assume that the coffee in the mug is rotating as a solid body with constant angular

velocity Ω so that the velocity component uθ at a distance r from the axis of

symmetry for 0 6 r 6 a is

uθ = Ωr.

Use the equations in part (a), to show that the pressure in this region is given by

p = 1
2
ρΩ2r2 − gρz + C,

where C is an arbitrary constant. At the free surface between the coffee and air,

the pressure is constant and equal to the atmospheric pressure P0. Use this to show

that the shape of the free surface has the form

z =
Ω2

2g
r2 +

C − P0

ρg
.

(c) Note the we are free to choose C = P0 in the equation of the free surface so that

it is described by z = Ω2r2/2g. This is equivalent to choosing the origin of our

cylindrical coordinates to be the centre of the dip in the free surface. Suppose that

this origin is a distance z0 from the bottom of the mug.

(i) Explain why the total volume of coffee is πa2d. Then by using incompressibility,

explain why the following constraint must be satisfied:

πa2z0 +

Z a

0

Ω2r2

2g
· 2πr dr = πa2d.

(ii) By computing the integral in the constraint in part (i), show that some coffee

will be spilled out of the mug if Ω2 > 4g(h − d)/a2. Explain briefly why this

formula does not apply when the mug is initially less than half full.

O

d

2a

h

P
0

free surface

coffee

Fig. 23 Coffee mug: we consider a mug of coffee of diameter 2a and height h, which is initially
filled with coffee to a depth d. The coffee is then made to rotate about the axis of symmetry
of the mug. The free surface between the coffee and the air takes up the characteristic shape
shown, dipping down towards the middle (axis of symmetry). The goal is to specify the shape
of the free surface.

Exercise (Channel flow: Froude number) Recall the scenario of the steady channel

flow over a gently undulating bed given in Section 9. Consider the case when the

maximum permissible height y0 compatible with the upstream conditions, and the
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actual maximum height ymax of the undulation are exactly equal, i.e. ymax = y0. Show

that the flow becomes locally critical immediately above ymax and, by a local expansion

about that position, show that there are subcritical and supercritical flows downstream

consistent with the continuity and Bernoulli equations (friction in a real flow leads to

the latter being preferred).

Exercise (Bernoulli’s Theorem for irrotational unsteady flow) Consider Euler’s equa-

tions of motion for an ideal homogeneous incompressible fluid, with u = u(x, t) de-

noting the fluid velocity at position x and time t, ρ the uniform constant density,

p = p(x, t) the pressure, and f denoting the body force per unit mass. Suppose that

the flow is unsteady, but irrotational, i.e. we know that

∇× u = 0

throughout the flow. This means that we know there exists a scalar potential function

ϕ = ϕ(x, t) such that u = ∇ϕ. Also suppose that the body force is conservative so

that f = −∇Φ for some potential function Φ = Φ(x, t).

(a) Using the identity

u · ∇u = 1
2
∇(|u|2) − u × (∇× u),

show from Euler’s equations of motion that the Bernoulli quantity

H :=
∂ϕ

∂t
+ 1

2
|u|2 +

p

ρ
+ Φ

satisfies ∇H = 0 throughout the flow.

(b) From part (a) above we can deduce that H can only be a function of t throughout

the flow, say H = f(t) for some function f . By setting

V := ϕ−
Z t

0

f(τ) dτ

throughout the flow show that the Bernoulli quantity

H :=
∂V

∂t
+ 1

2
|u|2 +

p

ρ
+ Φ

is constant throughout the flow.

Exercise (rigid body rotation) An ideal fluid of constant uniform density ρ0 is contained

within a fixed right-circular cylinder (with symmetry axis the z-axis). The fluid moves

under the influence of a body force field f = (αx + βy, γx + δy, 0) per unit mass,

where α, β, γ and δ are independent of the space coordinates. Use Euler’s equations of

motion to show that a rigid body rotation of the fluid about the z-axis, with angular

velocity ω(t) given by ω̇ = 1
2
(γ−β) is a possible solution of the equation and boundary

conditions. Show that the pressure is given by

p = p0 +
1

2
ρ0
`

(ω2 + α)x2 + (β + γ)xy + (ω2 + δ)y2
´

,

where p0 is the pressure at the origin.
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Exercise (vorticity and streamlines) An inviscid incompressible fluid of uniform density

ρ is in steady two-dimensional horizontal motion. Show that the Euler equations are

equivalent to
∂H

∂x
= vω and

∂H

∂y
= −uω,

where H = p/ρ+ 1
2
(u2 + v2), where p is the dynamical pressure, (u, v) is the velocity

field and ω is the vorticity. Deduce that ω is constant along streamlines and that this

is in accord with Kelvin’s theorem.

Exercise (vorticity, streamlines with gravity) An incompressible inviscid fluid, under the

influence of gravity, has the velocity field u = (2αy,−αx, 0) with the z-axis vertically

upwards; and α is constant. Also the density ρ is constant. Verify that u satisfies

the governing equations and find the pressure p. Show that the Bernoulli function

H = p/ρ + 1
2
|u|2 + Φ is constant on streamlines and vortex lines, where Φ is the

gravitational potential.

13 Notes

13.1 Streaklines

A streakline is the locus of all the fluid elements which at some time have past through

a particular point, say (x0, y0, z0). We can obtain the equation for a streakline through

(x0, y0, z0) by solving the equations

d

dt
x(t) = u(x(t), t),

assuming that at t = t0 we have
`

x(t0), y(t0), z(t0)
´

= (x0, y0, z0). Eliminating t0 be-

tween the equations generates the streakline corresponding to (x0, y0, z0). For example,

ink dye injected at the point (x0, y0, z0) in the flow will trace out a streakline.

13.2 Ideal fluid flow and conservation of energy

We show that an ideal fluid that conserves energy is necessarily incompressible. We

have derived two conservation laws thusfar, first, conservation of mass,

∂ρ

∂t
+ ∇ · (ρu) = 0,

and second, balance of momentum,

ρ
Du

Dt
= −∇p+ ρ f .

If we are in three dimensional space so d = 3, we have four equations, but five

unknowns—namely u, p and ρ. We cannot specify the fluid motion completely without

specifying one more condition.

Definition 6 (Kinetic energy) The kinetic energy of the fluid in the region Ω ⊆ D is

E := 1
2

Z

Ω
ρ |u|2 dV.
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The rate of change of the kinetic energy, using the transport theorem, is given by

dE

dt
=

d

dt

„

1
2

Z

Ωt

ρ |u|2 dV

«

= 1
2

Z

Ωt

ρ
D|u|2

Dt
dV

= 1
2

Z

Ωt

ρ
D

Dt
(u · u) dV

=

Z

Ωt

ρu · Du

Dt
dV

=

Z

Ωt

u ·
„

ρ
Du

Dt

«

dV.

Here we assume that all the energy is kinetic. The principal of conservation of energy

states (from Chorin and Marsden, page 13):

the rate of change of kinetic energy in a portion of fluid equals the rate at which

the pressure and body forces do work.

In other words we have

dE

dt
= −

Z

∂Ωt

pu · n dS +

Z

Ωt

ρu · f dV.

We compare this with our expression above for the rate of change of the kinetic energy.

Equating the two expressions, using Euler’s equation of motion, and noticing that the

body force term immediately cancels, we get
Z

∂Ωt

pu · n dS =

Z

Ωt

u · ∇p dV

⇔
Z

Ωt

∇ · (up) dV =

Z

Ωt

u · ∇p dV

⇔
Z

Ωt

u · ∇p+ (∇ · u) p dV =

Z

Ωt

u · ∇p dV

⇔
Z

Ωt

(∇ · u) p dV = 0.

Since Ω and therefore Ωt is arbitrary we see that the assumption that all the energy

is kinetic implies

∇ · u = 0.

Hence our third conservation law, conservation of energy has lead to the equation of

state, ∇ · u = 0, i.e. that an ideal fluid is incompressible.

Hence the Euler equations for a homogeneous incompressible flow in D are

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ f ,

∇ · u = 0,

together with the boundary condition on ∂D which is u · n = 0. Note, as we did for

the Navier–Stokes equations, since ρ is constant, it is convenient to re-label p/ρ to be

p, thus removing ρ from the equations above completely.
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13.3 Isentropic flows

A compressible flow is isentropic if there is a function π, called the enthalpy, such that

∇π =
1

ρ
∇p.

The Euler equations for an isentropic flow are thus

∂u

∂t
+ u · ∇u = −∇π + f

∂ρ

∂t
+ ∇ · (ρu) = 0,

in D, and on ∂D, u ·n = 0 (or matching normal velocities if the boundary is moving).

For compressible ideal gas flow, the pressure is often proportional to ργ , for some

constant γ > 1, i.e.

p = C ργ ,

for some constant C. This is a special case of an isentropic flow, and is an example of

an equation of state. In fact we can actually compute

π =

Z ρ p′(z)

z
dz =

γ C ργ

γ − 1
,

and the internal energy (see Chorin and Marsden, pages 14 and 15)

ǫ = π − (p/ρ) =
C ργ

γ − 1
.

A Multivariable calculus identities

We provide here some useful multivariable calculus identities. Here φ and ψ are generic scalars,
and u and v are generic vectors.

1. ∇× u = det

0

@

i j k

∂/∂x ∂/∂y ∂/∂z
u v w

1

A =

0

B

@

∂w
∂y

− ∂v
∂z

∂u
∂z

− ∂w
∂x

∂v
∂x

− ∂u
∂y

1

C

A
.

2. ∇ · (∇φ) = ∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.

3. ∇× (∇φ) ≡ 0.

4. ∇ · (∇× u) ≡ 0.

5. ∇× (∇× u) = ∇(∇ · u) −∇2u.

6. ∇(φψ) = φ∇ψ + ψ∇φ.

7. ∇(u · v) = (u · ∇)v + (v · ∇)u + u× (∇× v) + v × (∇× u).

8. ∇ · (φu) = φ(∇ · u) + u · ∇φ.

9. ∇ · (u× v) = v · (∇× u) − u · (∇× v).

10. ∇× (φu) = φ∇× u + ∇φ× u.

11. ∇× (u× v) = u(∇ · v) − v (∇ · u) + (v · ∇)u− (u · ∇)v.
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B Navier–Stokes equations in cylindrical polar coordinates

The incompressible Navier–Stokes equations in cylindrical polar coordinates (r, θ, z) with the
velocity field u = (ur, uθ, uz) are

∂ur

∂t
+ (u · ∇)ur −

u2

θ

r
= −1

ρ

∂p

∂r
+ ν

„

∆ur − ur

r2
− 2

r2
∂uθ

∂θ

«

+ fr,

∂uθ

∂t
+ (u · ∇)uθ +

uruθ

r
= − 1

ρr

∂p

∂θ
+ ν

„

∆uθ +
2

r2
∂ur

∂θ
− uθ

r2

«

+ fθ,

∂uz

∂t
+ (u · ∇)uz = −1

ρ

∂p

∂z
+ ν∆uz + fz ,

where p = p(r, θ, z, t) is the pressure, ρ is the mass density and f = (fr, fθ, fz) is the body
force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ

r

∂

∂θ
+ uz

∂

∂z

and

∆ =
1

r

∂

∂r

„

r
∂

∂r

«

+
1

r2
∂2

∂θ2
+

∂2

∂z2

Further the gradient operator and the divergence of a vector field u are given in cylindrical
coordinates, respectively, by

∇ =

„

∂

∂r
,
1

r

∂

∂θ
,
∂

∂z

«

and

∇ · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+
∂uz

∂z
.

Lastly in cylindrical coordinates ∇× u is given by

∇× u =

0

@

ωr

ωθ

ωz

1

A =

0

B

@

1

r
∂uz
∂θ

− ∂uθ
∂z

∂ur
∂z

− ∂uz
∂r

1

r
∂
∂r

(ruθ) − 1

r
∂ur
∂θ

1

C

A
.

C Navier–Stokes equations in spherical polar coordinates

The incompressible Navier–Stokes equations in spherical polar coordinates (r, θ, ϕ) with the
velocity field u = (ur, uθ, uϕ) are (note θ is the angle to the south-north pole axis and ϕ is
the azimuthal angle)

∂ur

∂t
+ (u · ∇)ur −

u2

θ

r
−
u2

ϕ

r
= −1

ρ

∂p

∂r

+ ν

„

∆ur − 2
ur

r2
− 2

r2 sin θ

∂

∂θ
(uθ sin θ) − 2

r2 sin θ

∂uϕ

∂ϕ

«

+ fr,

∂uθ

∂t
+ (u · ∇)uθ +

uruθ

r
−
u2

ϕ cos θ

r sin θ
= − 1

ρr

∂p

∂θ

+ ν

„

∆uθ +
2

r2
∂ur

∂θ
− uθ

r2 sin2 θ
− 2

cos θ

r2 sin2 θ

∂uϕ

∂ϕ

«

+ fθ,

∂uϕ

∂t
+ (u · ∇)uϕ +

uruϕ

r
+
uθuϕ cos θ

r sin θ
= − 1

ρr sin θ

∂p

∂ϕ

+ ν

„

∆uϕ +
2

r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ
− uϕ

r2 sin2 θ

«

+ fz ,
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where p = p(r, θ, ϕ, t) is the pressure, ρ is the mass density and f = (fr, fθ, fϕ) is the body
force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ

r

∂

∂θ
+

uϕ

r sin θ

∂

∂ϕ

and

∆ =
1

r2
∂

∂r

„

r2
∂

∂r

«

+
1

r2 sin θ

∂

∂θ

„

sin θ
∂

∂θ

«

+
1

r2 sin2 θ

∂2

∂ϕ2
.

Further the gradient operator and the divergence of a vector field u are given in spherical
coordinates, respectively, by

∇ =

„

∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂ϕ

«

and

∇ · u =
1

r2
∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(sin θuθ) +

1

r sin θ

∂uϕ

∂ϕ
.

Lastly in spherical coordinates ∇× u is given by

∇× u =

0

@

ωr

ωθ

ωϕ

1

A =

0

B

@

1

r sin θ
∂
∂θ

(sin θuϕ) − ∂uθ
∂ϕ

1

r sin θ
∂ur
∂ϕ

− 1

r
∂
∂r

(ruϕ)
1

r
∂
∂r

(ruθ) − 1

r
∂ur
∂θ

1

C

A
.
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