Turbulence as a problem of a (statistical) fluid mechanics

Emmanuel Lévêque Laurent Chevillard

Laboratoire de physique de l'Ens de Lyon France

Lecture 5: dealing with turbulence in practice for mathematicians, physicists and engineers

toys models of turbulence:

While recognizing that eventually the Navier-Stokes turbulence needs to be fully understood, it is worthwhile to examine carefully various other dynamical systems, usually **much easier to handle analytically and numerically than the N-S equations** but exhibiting the essential features of developed turbulent dynamics:

- cascade
- irreversibility in time \leftrightarrow out-of-equilibrium statistics
- intermittency and anomalous scaling laws

Studies on various turbulent systems allow us to differentiate the NS system from others and **identify the role of the essential ingredients**:

-the conservation laws -the degree of non-linearity, etc.

It should also provide a test bench for analytical techniques and a convenient ground to test new ideas

The 1d Burgers equation – Burgulence

$$\partial_t u + u \cdot \partial_x u = v \Delta u + f$$

simplest case of turbulence, that is a non-linear system out of statistical equilibrium

The 1D Burgers equation gives a concrete example of how energy dissipation can have a finite non-vanishing limit when the viscosity tends to zero in spite of the fact that the inviscid equation formally conserves energy.

 \rightarrow cascade dynamics, coherent structures and intermittency, anomalous scaling laws

Burgulence, Firsch U. and J. Bec (2001), Les Houches 2000: New trends in turbulence, Springer EDP Science

Burgers turbulence, J. Bec and K. Khanin Phys. Rep. 447, 1–66, 2007

Intermittency in non-linear dynamics and singularities at complex times U. Frisch and R. Morf Phys. Rev. A, vol. 23 (5), 1981, 2673–2705 → investigation of singularities by nonperturbative methods

The shell-model of turbulence

$$\begin{pmatrix} \frac{d}{dt} + \nu k_n^2 \end{pmatrix} u_n = (ik_n u_{n+1}^* u_{n+2}^* - i\varepsilon k_{n-1} u_{n+1}^* u_{n-1}^* - i(1-\varepsilon) k_{n-2} u_{n-1}^* u_{n-2}^*) + f_n \\ a \text{ caricature of the Navier-Stokes equations in the Fourier space} \\ (\frac{\partial}{\partial t} + \nu k^2) \hat{u}_\alpha(\vec{k}, t) = -k_\gamma \left(\delta_{\alpha\beta} - \frac{k_\alpha k_\beta}{k^2} \right) \sum_{p+q=\vec{k}} \hat{u}_\beta(\vec{p}, t) \hat{u}_\gamma(\vec{q}, t) + f_\alpha(\vec{k}, t)$$

$$(u_n)_{0 \le n \le N} : \text{complex variables which model the Fourier space excitations in shells of wavenumbers} \\ k_n = k_0 \lambda^n \le k < k_{n+1}$$
The coefficients of the non-linear term follow from the requirements that the total energy is conserved and the phase volume is conserved by the inviscid dynamics.
$$E = \frac{1}{2} \sum |u_n|^2 \\ H = \sum (-1)^n k_n E_n$$
 is conserved if $\lambda = \frac{1}{1-\varepsilon}$

 \rightarrow dynamical system which is much easier to handle analytically and numerically... allows us to reach the *limit of infinite Reynolds numbers*

Shell models of energy cascade in turbulence Annual Review of Fluid Mechanics vol 35, 441-468 (2003)

Analytic study of the shell model of turbulence P. Constantin, B. Levant, E.S. Titi Phys. Rev. E 75(1) Physica D 219 (2006)

A note on the regularity of inviscid shell models of turbulence Phys. Rev. E 75(1) (2007)

 \rightarrow existence and uniqueness of solutions

Theoretical Fluid Dynamics, Heriot-Watt University, Edinburgh

After a transitory regime, the system displays very rich chaotic dynamics and achieves a cascade of energy between the forcing and the dissipative shells

Order p	ζ_p/ζ_3 (shell model)	SL model: $0.125p + 1.49(1 - 0.58^{p/3})$
1	0.375±0.005	0.372
2	0.705 ± 0.003	0.703
3	1.000	1.000
4	1.268 ± 0.006	1.268
5	1.512 ± 0.014	1.513
6	1.738 ± 0.026	1.737
7	1.946 ± 0.040	1.946
8	2.141 ± 0.058	2.140
9	2.323 ± 0.078	2.323
10	2.50 ± 0.10	2.50

Numerical application: L~1m, U~10 m/s, air

→10¹⁴ grid points →10¹⁸ floating-point operations (~Re³)

Rank 1 supercomputer (2011) :8.10¹⁵ Flops (548352 cores)... 10 mins

Excessive computing costs call for development of "reduced models of turbulent flows"

In Large-Eddy Simulation, the mesh resolution is deliberately reduced so that only the large-scale motions are resolved. This is physically justifiable since large-sized eddies contain most of the kinetic energy, and their strength make them the efficient carriers of momentum, heat, mass, etc. On the contrary, small-sized eddies are mainly responsible for dissipation and contribute little to transport. Avoiding the numerical integration of small-scale motions is therefore desirable in most situations.

How to deal with missing interactions between scales of motions ?

$$\frac{(\frac{\partial}{\partial t} + \left(\nu + \frac{\nu_{turb.}(\vec{k}, t)}{k}\right)k^2)\hat{u}_{\alpha}(\vec{k}, t) = -k_{\gamma}\left(\delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{k^2}\right)\sum_{\vec{p}+\vec{q}=\vec{k}}\hat{u}_{\beta}(\vec{p}, t)\hat{u}_{\gamma}(\vec{q}, t) + f_{\alpha}(\vec{k}, t)$$

$$\frac{eddv-viscositv}{k} \text{ for interactions with}$$

eddy-viscosity for interactions with unresolved modes

interactions between resolved modes

Equations of large-scale motions in physical space?

the solution of a LES is expected to represent the real flow variables filtered over a "filter window" whose characteristic width Δ corresponds to the grid resolution

Modeling of the SGS viscosity

Heriot–Watt University, Edinburgh

9

Further readings:

C. Meneveau and J. Katz Annu. Rev. Fluid Mech. 2000

Large-eddy simulation of incompressible flows P. Sagaut Springer 2006

Shear-improved Smagorinsky model for the large-eddy simulation of wall-bounded turbulent flows E. Lévêque, F. Toschi, L. Shao and J.-P. Bertoglio J. Fluid Mech. (2007) vol. 570, pp. 491–502