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Lecture 5: dealing with turbulence in practice
for mathematicians, physicists and engineers

toys models of turbulence:

While recognizing that eventually the Navier-Stokes turbulence needs to be fully
understood, it is worthwhile to examine carefully various other dynamical systems,
usually much easier to handle analytically and numerically than the N-S equations
but exhibiting the essential features of developed turbulent dynamics:

- cascade
— irreversibility in time €<-> out-of-equilibrium statistics
- intermittency and anomalous scaling laws

Studies on various turbulent systems allow us to differentiate the NS system from
others and identify the role of the essential ingredients:

—-the conservation laws
~-the degree of non-linearity, etc.

It should also provide a test bench for analytical techniques and a convenient
ground to test new ideas



The 1d Burgers equation - Burgulence

oUu+u-ou=vAu+f

simplest case of turbulence, that is a non-linear system out of statistical
equilibrium

The 1D Burgers equation gives a concrete
example of how energy dissipation can have a
finite non-vanishing limit when the viscosity
tends to zero in spite of the fact that the
inviscid equation formally conserves energy.

- cascade dynamics, coherent structures and intermittency, anomalous scaling laws

Burgulence, Firsch U. and J. Bec (2001), Les Houches 2000: New trends in turbulence,
Springer EDP Science

Burgers turbulence, J. Bec and K. Khanin
Phys. Rep. 447, 1-66, 2007

Intermittency in non-linear dynamics and singularities at complex times
U. Frisch and R. Morf

Phys. Rev. A, vol. 23 (5), 1981, 2673-2705
- investigation of singularities by nonperturbative methods



The shell-model of turbulence

(%"‘Vkﬁ jun = (ikn u:+1 :+2 —le kn—l u:+1u:—1 —1(1-¢) kn—2 u:—lu:—Z) + f“

o) 2, . 7 g
(— + vk )iig(k,t) = —k, (Cv

at

afB — ) ) Z g (P, t)i(q,t) + fa [i t)

F+q=k

(U, )ocnen - COmplex variables which model the Fourier
space excitations in shells of wavenumbers
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The coefficients of the non-linear term follow
from the requirements that the total energy is
conserved and the phase volume is conserved
by the inviscid dynamics.
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- dynamical system which is much easier to handle analytically and numerically...
allows us to reach the /imit of infinite Reynolds numbers

shell n
usually x=2
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Annual Review of Fluid Mechanics vol 35, 441-468 (2003) 8 2.141%0.058 2.140
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Analytic study of the shell model of turbulence
P. Constantin, B. Levant, E.S. Titi
Phys. Rev. E 75(1) Physica D 219 (2006)

A note on the regularity of inviscid shell models of turbulence
Phys. Rev. E 75(1) (2007)
- existence and uniqueness of solutions
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Treating turbulence numerically - for engineers
5x the large-eddy simulation (LES)

<>

size of the flow

- Re3/4

elementary size of turbulent motions

numerical grid

Numerical application: L~1m, U~10 m/s, air

> 10 grid points
->10'8 floating-point operations (~Re3)

Rank 1 supercomputer (2011) :8.10'> Flops (548352 cores)... 10 mins

Excessive computing costs call for development of ‘reduced models of turbulent flows”

In Large-Eddy Simulation, the mesh resolution is deliberately
reduced so that only the large-scale motions are resolved. This is
physically justifiable since large-sized eddies contain most of the
kinetic energy, and their strength make them the efficient carriers
of momentum, heat, mass, etc. On the contrary, small-sized
eddies are mainly responsible for dissipation and contribute little
to transport. Avoiding the numerical integration of small-scale
motions is therefore desirable in most situations.
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How to deal with missing interactions
between scales of motions ?

in Fourier space:
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eddy-viscosity for interactions with

unresolved modes interactions between resolved modes
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Equations of large-scale motions in physical space ?

the solution of a LES is expected to represent the real flow variables filtered over a
“filter window” whose characteristic width A corresponds to the grid resolution

Gix): Filter
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subgrid-scale viscosity
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Modeling of the SGS viscosity
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Smagorinsky model (1963): v, =(C.A)*[S|
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Further readings:

C. Meneveau and J. Katz
Annu. Rev. Fluid Mech. 2000

Large-eddy simulation of incompressible flows
P. Sagaut
Springer 2006

Shear-improved Smagorinsky model for the large-eddy simulation of
wall-bounded turbulent flows

E. Lévéque, F. Toschi, L. Shao and J.-P. Bertoglio

J. Fluid Mech. (2007) vol. 570, pp. 491-502



