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Lecture 3: the dynamical mechanism of the energy cascade : 
vortex structures, intermittency and anomalous scaling laws
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Intense vortex filaments

Well-defined characteristic vortex structures
arise in the interior of homogeneous and
isotropic turbulence.

Different scenario:

(1) the structures do not affect statistics. It is possible
to ignore structures and construct successful
approximations, e.g. Kolmogorov’s theory.

(2) the structures do affect statistics but it is not
necessary to capture their detailed form.
Approximations can be constructed that crudely, but
sufficiently, account for structures and their effects

(3) there is no statistical mechanics of turbulence!
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Vortex stretching : a kinematic feature of turbulence (in 3d)
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vorticity stretching (in 3d only)
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vorticity line

dtu





s
The chaotic nature of turbulence tends to
separate two-fluid elements initially close
to each other. Consequently there is a
tendency to stretch initial vorticity
distribution into elongated structures until
viscosity stops the thinning.

time t time t+dt

advection

diffusion

purely kinematic
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Intensification of vorticity

is conserved during the stretching
process. This means that the
stretching of vorticity line is
accompanied by an intensification
of the vorticity: The fluid spins
harder.

Eventually, an initial distribution of
vorticity tends to stretch and
concentrate on thin and elongated
fluid structures.

Furthermore, 



s

The vorticity becomes concentrated in a 
sparse collection of intense thin  filaments
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The limitations of Kolmogorov’s theory
failure (to some degree) of scenario (1)
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velocity structure functions

 the normalized moments are universal independent of the mean dissipation rate
 and the scale r (according to Kolmogorov’s 1941-theory):

Kolmogorov’s hypotheses yield

Instead, the values of the normalized moments 
increase dramatically with both p and 1/r
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 Note that the scale-by-scale energy budget of the energy cascade yields as an exact result 
from the Navier-Stokes equations (see tutorial):

for p≠3
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Kolmogorov’s law for the energy spectrum is well supported. However, high-order
statistics are not universal in the sense of Kolmogorov’s hypotheses.
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 may be viewed as a measure of intermittency, i.e. the ratio of 
intense to quiescent fluid motions at scale r

3/)(Log rF

flatness of velocity increment distributions

F=3 for a Gaussian distribution and increases as long tails develop

velocity increment distributions

decreasing scale r
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The refined theory of Kolmogorov and Obouhkov
scenario (2)

a refinement of K41 theory, in which the spatial fluctuations of the energy 
dissipation rate are taken into account
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Kolmogorov’s similarity hypotheses are refined by
considering that turbulence is locally conditioned

at scale r by r

at scale r
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introduction of the integral scale is related to the idea that the energy cascade
results from the iteration of the same elementary process. The number of cascade
steps required for an excitation to propagate from the integral scale l0 to the small
scale r is measured by -log(r/l0). It is assumed that each step of the cascade is
stochastic in nature and statistically independent from the previous steps. The
result is a build up of intermittency at each cascade step, which may be viewed as
a multiplicative process.
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More generally

with

log-normal model

intermittency parameter… 

to be adjusted (≈0.2)
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Attempt to connect Log-normality and vortex stretching
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A (very) crude model assumes that the vorticity is stochastically independent of 
the local velocity shear and obeys

b(t) is an effective velocity shear: random 

function independent of (t)

For times t very large compared to the correlation time of b(t), the statistics of (t)
becomes log-normal (according to the central limit theorem)

gives support to the log-normal hypothesis

However, a realistic model should take into account the correlation between b(t)
and (t)…
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The Log-Poisson model by She & Lévêque
other scenario (2)

p

r

p

rp

r






1

)(





pr
p

r

p

rp

r






 ~

1

)(





pr
p

rppp


 ~with1  

p
p




  lim...0 10

0 

0 

Slice of dissipation field

Consider the hierarchy of fluctuation levels

instead of moments
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 Kolmogorov’s theory (1941) is recovered

is the mean dissipation rate weighted by 
)( p
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as p increases more weight 
on large amplitude events
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The importance of fluid dynamics in the cascade process naturally calls
for a Lagrangian representation of turbulence. The Lagrangian coordinate
system moves with the fluid and therefore gets ride of advection effects
by the large-sized eddies (sweeping effects) but focuses on distortion
effects responsible for the local energy transfer mechanism.

 See next lecture on Lagrangian dynamics of velocity gradients

Further readings:

On Kolmogorov’s inertial range theories
R.H. Kraichnan
J. Fluid Mech. (1974) vol. 62 (2), pp. 305-330


