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Lecture 2: Turbulence as a problem of statistical physics

Mount St Helens, 1980

There is the hope that statistically distinct properties can be identified and 
profitably examined. 
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The need for a statistical description of
turbulence arises both from the
complexity of individual flow
realizations and from the strong
instability of realizations to small
perturbations in initial and boundary
conditions .

 examine ensemble of realizations
rather than individual realization.
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Solutions of the forced Navier-Stokes 
equations in a periodic cubic box
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the  external force mimics the large-scale stirring 
of turbulence 

kinetic energy 
of mean flow

kinetic energy 
of turbulence

Turbulence stirring Turbulence dissipation
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Stationary Homogeneous and Isotropic Turbulence
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Eulerian velocity correlation functions
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The quantities of theoretical interest in the statistical description of turbulence 
are velocity correlation function in space and time

the simplest and probably most important is 
the two-point correlation function in space

Taylor’s development of the
two-point velocity correlations
laid the ground work for the
modern statistical approach of
turbulence

G.I. Taylor 1886-1975

under hypothesis of stationary, homogeneous and isotropic (mirror symmetric) turbulence

incompressibility implies

r

r

longitudinal correlation

transverse correlation
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Micro and macro-scales of turbulence

the focus is on the longitudinal auto-correlation function f(r):
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longitudinal increment

integral scale

may roughly be regarded as a measure of the
diameter of the smallest eddies which are
responsible for the dissipation of energy, according
to G. Taylor
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 the Taylor’s micro-scale over-estimates 
the smallest scale of turbulent fluctuations





Taylor’s microscale

decorrelation length scale
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From Taylor (1935) to Kolmogorov (1941)

A.N. Kolmogorov 1903-1987
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large eddies – turbulence stirring
small eddies – energy dissipation
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According to G. Taylor

wrong

locally

or Reynolds number based on the Taylor’s micro-scale
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The energy cascade in the Fourier space
see tutorial for energy cascade in physical space
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),(),(),()2( 2 tktkTtkEk injt wavenumber-by-wavenumber energy budget
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density of kinetic energy at wavenumber k: energy spectrum
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with

triad interaction

external force: 
turbulence stirring

dissipation
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The cascade of energy is rooted in the idea that a eddy
of a given scale mainly interacts with eddies of similar
scale. Indeed, it is plausible that motions on much
large scales should act to transport this eddy without
distorting it. On the opposite, the shears associated
with excitations at much smaller scales should cancel
out over the extend of the eddy.

the energy cascade characterizes the out-of-equilibrium state of turbulence
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energy flux

in the stationary state
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Kolmogorov‘s theory of turbulence (1941)
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Kolmogorov’s theory focuses on

 for the distributions of are universal and fixed by the 
kinematic viscosity of the fluid and the mean energy-dissipation rate 
(per unit mass) 
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Kolmogorov’s similarity hypotheses:
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for the energy spectrum

more generally

Kolmogorov’s constant
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Energy spectrum in frequency

by substituting Eulerian

Lagrangian

Further readings:

Turbulence: The Legacy of Kolmogorov
U. Frisch
Cambridge University Press 1995


