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1 Introduction

We consider the incompressible Navier–Stokes equations in R3, assuming suitable decay

of the solution at infinity. Our goal is to provide the essential arguments underlying

the celebrated conditional regularity result of Constantin and Fefferman [1] from 1993.

The main theorem they prove can be stated as follows.

Theorem 1 (Constantin and Fefferman, 1993) Suppose there exists constants Ω and

ρ such that

| sin φ| ≤ |y|
ρ

,

holds whenever |ω(x, t)| > Ω and |ω(x+y, t)| > Ω, for 0 6 t 6 T for any T > 0. Here

ω = ω(x, t) is the vorticity field and φ is the angle between the vorticity vectors ω(x, t)

and ω(x + y, t). Then the solution to the initial value problem of the Navier–Stokes

equation is strong and hence smooth on the time interval [0, T ].

Our proof is brief. We will list the caveats thus induced at the end.

2 Proof

2.1 Enstrophy evolution

We start by writing the incompressible Navier–Stokes equations in the form

∂tu+ ω ∧ u = ν ∆u−∇
`
p + 1

2 |u|
2´,

∇ · u = 0.

By taking the curl of the Navier–Stokes equation we arrive at the equation for the

evolution of the vorticity ω = ∇∧ u as follows:

∂tω + u · ∇ω = ν ∆ω + Dω,
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where D is the deformation matrix (defined as the symmetric part of ∇u). Considering

the L2-inner product of this evolution equation for the vorticity with the vorticity itself,

we generate the equation for the evolution of the enstrophy

1
2

d

dt
‖ω‖2L2 + ν‖∇ω‖2L2 =

Z
ω · (Dω) dx.

We implicity assumed suitable decay for the vorticity at infinity when integrating by

parts to derive the dissipative term. The main idea in Constantin and Fefferman’s paper

is to try to be more subtle about estimating the vorticity stretching term. Lastly, note

that since u is divergence-free the following quantities are equivalent:

‖∇u‖2L2 = ‖ω‖2L2 = 2

Z
Ω

tr
`
D2´ dx.

2.2 Biot–Savart Law

Note that since ∇·u = 0, there exists a vector potential ψ such that u = ∇∧ψ. Hence

we see that ω = −∇∧ψ and thus u(x) = −
`
∇∧ (∆−1ω)

´
(x). This is the Biot–Savart

Law from potential theory. More explicitly, we have

u(x) =
1

4π

Z
ω(x+ y) ∧∇

„
1

|y|

«
dy.

This is a convolution and in the integrand we can freely swap x+ y and y.

2.3 Deformation matrix

Taking the gradient with respect to x of the Biot–Savart Law we see that

∇u(x) =
1

4π

Z
ω(x+ y) ∧∇∇

„
1

|y|

«
dy

=
1

4π

Z
ω(x+ y) ∧

`
3 ŷ ⊗ ŷ − I

´ dy

|y|3
,

where we have used that (by direct computation)

∇∇
„

1

|y|

«
=

1

|y|3
`
3 ŷ ⊗ ŷ − I

´
.

Here I is the 3 × 3 identity matrix and ŷ := y/|y| is the corresponding unit vector.

Note that if V = ω ∧ (v ⊗ v), which is a 3× 3 matrix, then

1
2

`
V + V T´ = 1

2

`
(ω ∧ v)⊗ v + v ⊗ (ω ∧ v)

´
.

Hence for example, note that I = ê ⊗ ê, where êi for i = 1, 2, 3 represent the unit

direction vectors. Thus set V = ω∧(ê⊗ê) = (ω∧ê)⊗ê, and let R be the antisymmetric
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part of ∇u defined by Rv = 1
2ω∧v for any v ∈ R3. Then, by the antisymmetry of the

cross product, we see that

V + V T = (ω ∧ e)⊗ e+ e⊗ (ω ∧ e)
= 2(R e)⊗ e+ 2e⊗ (R e)

= 2R(e⊗ e) + 2e⊗ (R e)

= 2(R + RT)

= O.

Hence we deduce that

D(x) =
3

8π

Z `
ω(x+ y) ∧ ŷ ⊗ ŷ + ŷ ⊗ ω(x+ y) ∧ ŷ

´ dy

|y|3
.

2.4 Vorticity stretching

Now consider the vorticity stretching term. If we set ω̂ := ω/|ω|, then we see that`
ω̂ · (Dω̂)

´
(x) =

3

4π

Z
ω̂(x) ·

`
ω̂(x+ y) ∧ ŷ

´`
ŷ · ω̂(x)

´˛̨
ω(x+ y)

˛̨ dy

|y|3
.

Note that the integrand contains the triple scalar product given by

ω̂(x) ·
`
ω̂(x+ y) ∧ ŷ

´
.

This is invariant to a cyclic rotation of the vectors therein and so it is equivalent to

ŷ ·
`
ω̂(x) ∧ ω̂(x+ y)

´
.

It can also be thought of as det
`
ŷ, ω̂(x), ω̂(x+y)

´
. Importantly though, in magnitude

it has an upper bound given by˛̨̨
ŷ ·
`
ω̂(x) ∧ ω̂(x+ y)

´˛̨
6 | sin φ|,

where φ is the angle between ω̂(x) and ω̂(x+ y).

2.5 Estimating vorticity stretching

Using the assummption on | sin φ| stated in the theorem, we see that the vorticity

stretching term can be bounded as followsZ
ω̂ · (Dω̂)(x)

˛̨
ω(x)

˛̨2
dx 6

3

4π

Z ˛̨
ω(x)

˛̨2 Z | sin φ|
˛̨
ω(x+ y)

˛̨ dy

|y|3
dx

6
c

ρ
‖ω‖2L4 ·

 Z „Z ˛̨
ω(x+ y)

˛̨ dy

|y|2

«2

dx

!1/2

6
c

ρ
‖∇ω‖3/2

L2 ‖ω‖
1/2
L2 · ‖ω‖2/3

L1 ‖ω‖
1/3
L2

6
ν

8
‖∇ω‖2L2 +

c

ν3ρ4

`
‖ω‖8/3

L1 ‖ω‖
4/3
L2

´
‖ω‖2L2 ,

where we have used the Hölder, Gagliardo–Nirenberg–Sobolev and Young inequalities.
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2.6 Bounded enstrophy

If we now include this estimate for the vortex stretching term in the evolution equation

for the enstrophy in Section 2.1 we can deduce that for any T > 0, the enstrophy is

bounded. This is sufficient to establish regular smooth solutions to the Navier–Stokes

equations in R3 for all time.

3 Caveats

Here is the list of results that we glossed over in our proof of the Constantin and

Fefferman conditional regularity result above:

1. Constantin and Fefferman establish, in a very succint proof on page 782, that ‖ω‖L1

is bounded on any finite time interval. Combining this with the fact that ‖ω‖L2

is square-integrable in time allows us to draw the conclusion about the enstrophy

being bounded for all time in Section 2.6. (Of course we are implicitly assuming

the condition on | sin φ| stated in the theorem.);

2. If we know that the enstrophy is bounded in time, then we know that solutions to

the Navier–Stokes equations are in fact strong and thus smooth;

3. More rigorously we should actually consider an approximate system to the Navier–

Stokes equations for which we know global regularity—say the approximate system

is a perturbation by a parameter ε away. We would carry through analogous es-

timates for the approximate system to those above, proving bounds uniform in ε.

Then passing to a subsequence if necessary, we would take the limit as ε → 0. In

the case of Constantin and Fefferman, they constructed their approximate system

by mollifying the advecting velocity, i.e. by replacing the term u · ∇u by uε · ∇u,

where uε is a smoother (mollified) velocity field.
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