Tutorial on Intermittency and the multifractal formalism

Edinburgh, LMS-EPSRC Short Course

Following previous works [6, 7], the (Eulerian) velocity increment $\delta_{\ell} u(x) = u(x+\ell) - u(x)$ is modeled as the product of two **independent** random variables (the scale ℓ is assumed smaller than the integral length scale L):

$$\delta_{\ell} u \stackrel{\text{law}}{=} \beta_{\ell} \times \delta ,$$

where δ is a Gaussian zero-average unit-variance random variable, and β_{ℓ} a *stochastic variance*, namely a positive random variable, assumed of the form

$$\beta_\ell = \sigma \left(\frac{\ell}{L}\right)^h \;,$$

with $\sigma^2 = \langle (\delta_L u)^2 \rangle$ the large-scale velocity increment variance and h a random exponent (called the Hölder exponent in multifractal terminology [6]) of density

$$\mathcal{P}_{h}^{(\ell)}(h) = \frac{1}{\mathcal{Z}(\ell)} \left(\frac{\ell}{L}\right)^{1-\mathcal{D}(h)} ,$$

where $\mathcal{D}(h)$ is a (scale independent) parameter function called the singularity spectrum and $\mathcal{Z}(\ell)$ a normalizing function.

- Compute the q^{th} -order structure function $M_q(\ell) = \langle |\delta_\ell u|^q \rangle$. hint: $\langle |\delta|^p \rangle = \Gamma\left(\frac{p+1}{2}\right) / \sqrt{2^p \pi}$ where Γ is the Gamma function.
- assuming that $\min_h [1 \mathcal{D}(h)] = 0$ and considering vanishing scales, i.e. $\ell/L \to 0$, show that structure functions behave as power-laws,

$$M_q(\ell) \sim \left(\frac{\ell}{L}\right)^{\zeta_q}$$
,

with

$$\zeta_q = \min_h \left[qh + 1 - \mathcal{D}(h) \right] \; .$$

hint: apply a steepest-descent approximation.

Figure 1: (a) PDFs of signed longitudinal velocity increments in Modane data [1]. Represented scales (from top to bottom): $\ln(\ell/L) = -6.4137$, -5.6028, -4.6645, -3.6411, -2.7501, -1.8598, -0.8685, 0.1226. All curves are arbitrarily vertically shifted for the sake of clarity and their variance is set to unity. The solid curves correspond to theoretical predictions (see Ref. [2]). (b) PDFs of Lagrangian temporal increments from the ENS-Lyon experiment, for time lags (from bottom to top, symbols •) $\tau/T = 0.07$, 0.16, 0.35, 1 and from Cornell acceleration data (symbols \circ , from Ref. [4]). Also, the curves are displayed with an arbitrary vertical shift for clarity, the variance is set to unity at any scales, and the original axis for the acceleration PDF (\circ) has been shrunk by a factor 4. Solid lines correspond to theoretical predictions (see Ref. [5]).

• Lognormal model:

$$\mathcal{D}^{\text{LN}}(h) = 1 - \frac{(h - c_1)^2}{2c_2},$$

the parameter c_2 is called the intermittency coefficient. Compute ζ_q^{LN} .

• She-Lévêque model:

$$\begin{split} \mathcal{D}^{\mathrm{SL}}(h) &= -1 + 3 \left[\frac{1 + \ln(\ln(3/2))}{\ln(3/2)} - 1 \right] (h - 1/9) - \frac{3}{\ln(3/2)} (h - 1/9) \ln(h - 1/9) \\ &\text{Compute } \zeta_q^{\mathrm{SL}}. \end{split}$$

• Finally, show that the velocity increment probability density function in the general case reads:

$$\mathcal{P}_{\delta_{\ell} u}(\delta_{\ell} u) = \int_{h_{\min}}^{h_{\max}} \frac{1}{\sigma} \left(\frac{\ell}{L}\right)^{-h} \mathcal{P}_{\delta}\left[\frac{\delta_{\ell} u}{\sigma} \left(\frac{\ell}{L}\right)^{-h}\right] \mathcal{P}_{h}^{(\ell)}(h) dh ,$$

where $\mathcal{P}_{\delta}(x) = \exp(-x^2/2)/\sqrt{2\pi}$ is the PDF of a unit-variance zeromean Gaussian variable.

References

- H. Kahalerras, Y. Malécot, Y. Gagne, and B. Castaing, Intermittency and Reynolds number, Phys. Fluids 10 (1998), 910.
- [2] L. Chevillard, B. Castaing, E. Lévêque, and A. Arneodo, Unified multifractal description of velocity increments statistics in turbulence: Intermittency and skewness, Physica D 218 (2006), 77.
- [3] N. Mordant, P. Metz, O. Michel, and J.-F. Pinton, Measurement of Lagrangian Velocity in Fully Developed Turbulence, Phys. Rev. Lett. 87 (2001), 214501.
- [4] N. Mordant, A. M. Crawford and E. Bodenschatz, Experimental Lagrangian acceleration probability density function measurement, Physica D 193 (2004), 245.
- [5] L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, and A. Arneodo, Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation, Phys. Rev. Lett. 91 (2003), 214502.
- [6] U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995.
- [7] B. Castaing, Y. Gagne and E. Hopfinger, Velocity probability density functions of high Reynolds number turbulence, Physica D 46 (1990), 177.