Tutorial on Intermittency and the

multifractal formalism
Edinburgh, LMS-EPSRC Short Course

Following previous works [6, 7], the (Eulerian) velocity increment d,u(z) =
u(z+¢) —u(x) is modeled as the product of two independent random vari-
ables (the scale ¢ is assumed smaller than the integral length scale L):
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where 0 is a Gaussian zero-average unit-variance random variable, and S, a
stochastic variance, namely a positive random variable, assumed of the form

h
5@2(7(%) ’

with 02 = ((6zu)?) the large-scale velocity increment variance and h a ran-
dom exponent (called the Holder exponent in multifractal terminology [6])
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where D(h) is a (scale independent) parameter function called the singularity
spectrum and Z(¢) a normalizing function.
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e Compute the ¢""-order structure function M, (¢) = (|d,ul9).

hint: (|§|P) =T (1) /v/2°7 where T is the Gamma function.

e assuming that min, [1 — D(h)] = 0 and considering vanishing scales,
i.e. /L — 0, show that structure functions behave as power-laws,

with
G = mhin [gh +1—D(h)] .

hint: apply a steepest-descent approximation.
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Figure 1: (a) PDF's of signed longitudinal velocity increments in Modane data
[1]. Represented scales (from top to bottom): In(¢/L) = -6.4137, -5.6028, -
4.6645, -3.6411, -2.7501, -1.8598, -0.8685, 0.1226. All curves are arbitrarily
vertically shifted for the sake of clarity and their variance is set to unity. The
solid curves correspond to theoretical predictions (see Ref. [2]). (b) PDFs
of Lagrangian temporal increments from the ENS-Lyon experiment, for time
lags (from bottom to top, symbols e) 7/T = 0.07, 0.16, 0.35, 1 and from
Cornell acceleration data (symbols o, from Ref. [4]). Also, the curves are
displayed with an arbitrary vertical shift for clarity, the variance is set to
unity at any scales, and the original axis for the acceleration PDF (o) has
been shrunk by a factor 4. Solid lines correspond to theoretical predictions
(see Ref. [5]).

e Lognormal model:
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the parameter ¢, is called the intermittency coefficient. Compute CqLN.

e She-Léveque model:

1+ 1n(In(3/2)) 3
n(3/2) ~1 (h—1/9)—m(h—1/9)1n(h_1/9)'

DSL(h) = —143



e Finally, show that the velocity increment probability density function
in the general case reads:
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where Ps(z) = exp(—z?/2)/V/27 is the PDF of a unit-variance zero-
mean Gaussian variable.
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