
Tutorial on Intermittency and the
multifractal formalism

Edinburgh, LMS-EPSRC Short Course

Following previous works [6, 7], the (Eulerian) velocity increment δ`u(x) =
u(x+ `)−u(x) is modeled as the product of two independent random vari-
ables (the scale ` is assumed smaller than the integral length scale L):

δ`u
law
= β` × δ ,

where δ is a Gaussian zero-average unit-variance random variable, and β` a
stochastic variance, namely a positive random variable, assumed of the form

β` = σ

(
`

L

)h
,

with σ2 = 〈(δLu)2〉 the large-scale velocity increment variance and h a ran-
dom exponent (called the Hölder exponent in multifractal terminology [6])
of density

P(`)
h (h) =

1

Z(`)

(
`

L

)1−D(h)

,

where D(h) is a (scale independent) parameter function called the singularity
spectrum and Z(`) a normalizing function.

• Compute the qth-order structure function Mq(`) = 〈|δ`u|q〉.
hint: 〈|δ|p〉 = Γ

(
p+1
2

)
/
√

2pπ where Γ is the Gamma function.

• assuming that minh [1−D(h)] = 0 and considering vanishing scales,
i.e. `/L→ 0, show that structure functions behave as power-laws,

Mq(`) ∼
(
`

L

)ζq
,

with
ζq = min

h
[qh+ 1−D(h)] .

hint: apply a steepest-descent approximation.
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Figure 1: (a) PDFs of signed longitudinal velocity increments in Modane data
[1]. Represented scales (from top to bottom): ln(`/L) = -6.4137, -5.6028, -
4.6645, -3.6411, -2.7501, -1.8598, -0.8685, 0.1226. All curves are arbitrarily
vertically shifted for the sake of clarity and their variance is set to unity. The
solid curves correspond to theoretical predictions (see Ref. [2]). (b) PDFs
of Lagrangian temporal increments from the ENS-Lyon experiment, for time
lags (from bottom to top, symbols •) τ/T = 0.07, 0.16, 0.35, 1 and from
Cornell acceleration data (symbols ◦, from Ref. [4]). Also, the curves are
displayed with an arbitrary vertical shift for clarity, the variance is set to
unity at any scales, and the original axis for the acceleration PDF (◦) has
been shrunk by a factor 4. Solid lines correspond to theoretical predictions
(see Ref. [5]).

• Lognormal model:

DLN(h) = 1− (h− c1)2

2c2
,

the parameter c2 is called the intermittency coefficient. Compute ζLN
q .

• She-Lévêque model:

DSL(h) = −1+3

[
1 + ln(ln(3/2))

ln(3/2)
− 1

]
(h−1/9)− 3

ln(3/2)
(h−1/9) ln(h−1/9) .

Compute ζSL
q .
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• Finally, show that the velocity increment probability density function
in the general case reads:

Pδ`u(δ`u) =

∫ hmax

hmin

1

σ

(
`

L

)−h
Pδ

[
δ`u

σ

(
`

L

)−h]
P(`)
h (h)dh ,

where Pδ(x) = exp(−x2/2)/
√

2π is the PDF of a unit-variance zero-
mean Gaussian variable.
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[1] H. Kahalerras, Y. Malécot, Y. Gagne, and B. Castaing, Intermittency
and Reynolds number, Phys. Fluids 10 (1998), 910.

[2] L. Chevillard, B. Castaing, E. Lévêque, and A. Arneodo, Unified multi-
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