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The relation between the form of a body force driving a turbulent shear flow and the
dissipation factor β = ε�/U 3 is investigated by means of rigorous upper bound analysis
and direct numerical simulation. We consider unidirectional steady forcing functions
in a three-dimensional periodic domain and observe that a rigorous infinite Reynolds
number bound on β displays the same qualitative behaviour as the computationally
measured dissipation factor at finite Reynolds number as the force profile is varied.
We also compare the measured mean flow profiles with the Stokes flow profile for the
same forcing. The mean and Stokes flow profiles are strikingly similar at the Reynolds
numbers obtained in the numerical simulations, lending quantitative credence to the
notion of a turbulent eddy viscosity.
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1. Introduction
In the first half of the last century, Richardson (1922), Taylor (1938) and

Kolmogorov (1941) developed a theory of turbulence based on the concept of
a cascade whereby energy is transferred at a constant rate from larger unstable
eddies to smaller eddies until viscosity effectively dissipates the kinetic energy. For
incompressible Newtonian fluids, the energy dissipation rate per unit mass is

ε = 2ν〈SijSij 〉, (1.1)

where Sij is the rate of strain tensor, ν is the kinematic viscosity coefficient, and 〈·〉
is an appropriate averaging procedure. The ‘zeroth law of turbulence’ asserts that, all
other controls held constant, ε tends to a finite positive limit as ν → 0 (Sreenivasan
1984; Frisch 1995). Specifically, suppose U = 〈u2〉1/2 is the steady-state root mean
square (r.m.s.) velocity in a statistical steady state where 〈·〉 is a space–time average,
� is a characteristic length scale, the Reynolds number is

Re = U�/ν, (1.2)

and the dimensionless dissipation factor is defined by

β = ε�/U 3. (1.3)

† Email address for correspondence: bertrand@lanl.gov



Variations on Kolmogorov flow 205

The zeroth law may then be interpreted as the claim that for developed turbulence,
β(Re) → β(∞) > 0 as Re → ∞. This leaves us with the issue of the theoretical prediction
of the magnitude of the residual energy dissipation β(∞) and its dependence on
details of the forces driving the flow (Sreenivasan 1998). These questions are the
central focus of this paper.

An analysis of the Navier–Stokes equations has produced rigorous limits on the
mean energy dissipation rate for incompressible flows directly from the governing
Navier–Stokes equations without additional hypothesis or approximations. Physically
relevant results for some boundary driven flows were first derived in the 1960s by
Howard (1972) and Busse (1978) and developed and extended further several decades
later (Doering & Constantin 1992, 1994; Wang 1997; Kerswell 1998). Rigorous limits
on bulk dissipation for body-force-driven flows in a fully periodic domain have been
developed by Foias, Manley & Temam (1993), Foias (1997), Childress, Kerswell &
Gilbert (2001) and Doering & Foias (2002). The last named work showed that for
general square-integrable steady body forces, the energy dissipation rate is bounded
from above according to

ε � c1νU 2/�2 + c2U
3/�, (1.4)

where, specifically, � is the longest characteristic length scale in the body-force function
and the finite positive coefficients c1 and c2 depend only on the functional ‘shape’
(defined precisely in the next section) of the body force. Dividing by U 3/� yields

β(Re) � c1

1

Re
+ c2, (1.5)

in qualitative agreement with theoretical, computational and experimental results for
homogeneous isotropic turbulence. (This form of an upper bound for β(Re) depends
crucially on the square-integrability of the forcing function. ‘Fractal’ body forces with
significant components at small length scales may produce high-Reynolds-number
dissipation factors and estimates β(Re) � Reα , with exponent α > 0 that depends on
details of the high-wavenumber spectrum of the forcing; see Cheskidov, Doering &
Petrov (2007).) Soon thereafter, Doering, Eckhardt & Schumacher (2003) derived an
explicit upper bound for β(∞) depending only on the shape of a unidirectional driving
force in a channel with stress-free walls; see also Petrov, Lu & Doering (2005).

In this paper, we describe a study of qualitative features of the high-Reynolds-
number dissipation factor by considering variations of Kolmogorov forcing, i.e. steady
unidirectional body forces of varying profiles, both by upper bound theory and via
direct numerical simulations (DNS). This study aims at showing that the upper
bound theory, valid when Re → ∞, gives an indication of β at large but finite Re.
Turbulence driven by Kolmogorov forces with monochromatic (single wavenumber)
profiles has previously been studied in DNS by Borue & Orszag (1996) and also
via an upper bound analysis by Childress et al. (2001), but this is the first attempt
to systematically investigate the force-shape dependence of some aspects of the
turbulence. The remainder of the paper is organized as follows. In the next section,
we describe the upper bound analysis for steady generalized Kolmogorov forces in a
periodic domain. In § 3, we investigate the force-shape dependence of the asymptotic
high-Reynolds-number bound on the dissipation factor, and in § 4 we compare the
rigorous estimates with the DNS results. In § 5, we compare the observed mean flow
profiles with Stokes flow profiles, which for these Kolmogorov forces are also steady
Navier–Stokes solutions, albeit with an appropriately renormalized eddy viscosity.
Section 6 contains a brief summary and discussion of the results.
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2. Bound on the dissipation factor
Consider a body-force-driven incompressible flow on a three-dimensional periodic

domain of volume Lx × Ly × Lz. The dynamics is governed by the Navier–Stokes
equations

∂u
∂t

+ (u · ∇) u + ∇p = ν∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u(x, t) is the velocity vector field, p(x, t) is the pressure, and f (x) is a steady
driving force. A recent estimate of an upper bound on the dissipation factor β can
be found in Dascaliuc, Foias & Jolly (2009). However, Doering et al. (2003) provide
an upper bound on β that explicitly and only depends on the shape of the forcing
function for a channel flow. Here, we generalize that estimate to the case of a three-
dimensional domain with fully periodic boundary conditions. In the following, we
limit ourselves to recalling key points of the derivation, highlighting the differences,
and refer to the earlier work for detailed descriptions of the parts of the analysis that
are the same.

The steady generalized Kolmogorov force driving the flow is

f (x) = Fφ(y/l)ex, (2.3)

where l, an integer fraction of Ly , is the longest length scale in the forcing profile, F

is the forcing amplitude, and the dimensionless square integrable (or smoother) shape
function φ(η) satisfies periodic boundary conditions for η ∈ [0, 1] with zero mean,∫ 1

0
φ(η) dη =0. When the shape function is normalized, for example by

∫ 1

0
φ(η)2 dη =1,

then a unique forcing amplitude F is defined.
We introduce the dimensionless ‘potential’ Φ(η), also periodic on [0,1], defined up to

an additive constant by Φ ′ = −φ. Next, we introduce another periodic (on [0,1]) mean-

zero ‘multiplier’ function ψ(η) that is not orthogonal to φ, i.e.
∫ 1

0
φ(η)ψ(η) dη 	= 0, and

define the derivative of the multiplier function Ψ (η) = ψ ′(η), which is also periodic
and zero mean. The inner product of φ and ψ is equal to the inner product of Φ and

Ψ :
∫ 1

0
Φ(η)Ψ (η) dη =

∫ 1

0
φ(η)ψ(η) dη.

For a statistically steady flow such as developed turbulence, Doering et al. (2003)
showed that a formulation for β using the potential Φ and derivative multiplier Ψ is

β =
〈Φ ′u〉〈Ψ uv + Re−1Ψ ′u〉

〈ΦΨ 〉 , (2.4)

where u and v are the streamwise and vertical components of the velocity field scaled
by the r.m.s. speed U . The upper bound βb on the dissipation factor is obtained
by maximizing the right-hand side of (2.4) over all such unit normalized, periodic,
divergence-free velocity fields and then minimizing over all appropriate multiplier
functions Ψ :

β � min
Ψ

max
u

[
〈Φ ′u〉〈Ψ uv〉

〈ΦΨ 〉 + Re−1 〈Φ ′u〉〈Ψ ′u〉
〈ΦΨ 〉

]
= βb(Re). (2.5)

Note that the maximization is over a set of velocity fields that is larger than, but
includes, the solution set of the Navier–Stokes equation. The bound βb depends on
the Reynolds number (which we display explicitly) and the shape of the applied force
φ = −Φ ′.
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Focusing on the Re → ∞ limit, Doering et al. (2003) showed that

lim sup
Re→∞

β(Re) � βb(∞) = min
Ψ

1√
27

〈φ2〉1/2

〈ΦΨ 〉 sup
y∈[0,1]

|Ψ (y)|, (2.6)

and evaluating this minimum over multiplier functions Ψ (y) is where the difference
with Doering et al. (2003) appears. Given periodic mean-zero functions Φ(y) and
Ψ (y), for any constant C,∫ 1

0

Φ(y ′) Ψ (y ′) dy ′ =

∫ 1

0

[Φ(y ′) − C] Ψ (y ′) dy ′ �

∫ 1

0

|Φ(y ′) − C| dy ′ × sup
y

|Ψ (y)|.

(2.7)
Inequality (2.7) is saturated by functions Ψm(y) ∼ sign[Φ(y) − C ]. Thus,

βb(∞) =
1√
27

〈φ2〉1/2

min
C

∫ 1

0

|Φ(y ′) − C| dy ′
. (2.8)

To determine the critical value Cm realizing the extremum, we regularize the
denominator of (2.8) by writing

min
C

∫ 1

0

|Φ(y) − C| dy = min
C

lim
δ→0

∫ 1

0

√
(Φ(y) − C)2 + δ2 dy

= lim
δ→0

min
C

∫ 1

0

√
(Φ(y) − C)2 + δ2 dy. (2.9)

Then, the condition defining Cm is

0 =
d

dC

∫ 1

0

√
(Φ(y) − C)2 + δ2 dy

∣∣∣∣
C=Cm

=

∫ 1

0

Φ(y) − Cm√
(Φ(y) − Cm)2 + δ2

dy (2.10)

and sending δ → 0 we conclude that

0 =

∫ 1

0

sign[Φ(y ′) − Cm] dy ′. (2.11)

This uniquely fixes Cm and thus

βb(∞) =
1√
27

√
〈φ2〉

〈|Φ − Cm|〉 . (2.12)

3. Force-shape dependence of the dissipation factor
The body-force shape dependence of the dissipation factor is investigated on

a family of generalizations of the traditional Kolmogorov forcing ∼ ex sin2πy/Ly

by adding a second component with amplitude Ak for an additional integer
wavenumber k:

f (x) = [sin(2πy/Ly) + Ak sin(2πky/Ly)]ex for k � 2. (3.1)

Then, the amplitude and normalized shape functions are respectively

F =

√
1 + A2

k

2
, φ(η) =

√
2

1 + A2
k

[sin(2πη) + Ak sin(2πkη)]. (3.2)
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Figure 1. High-Reynolds-number dissipation factor βb(∞) from (3.3), normalized by

β1 ≡ βb(∞) for the traditional Kolmogorov force (i.e. π2/
√

54), plotted as a function of
the amplitude of the second mode forced, Ak (or amplitude α for classic Kolmogorov
force). Dotted line, simple Kolmogorov force f (x) = α sin(2πy/l)ex; dashed line, f (x) =
[sin(2πy/l)+A2 sin(2 × 2πy/l)] ex; dash-dotted line, f (x) = [sin(2πy/l)+A3 sin(3 × 2πy/l)] ex;
solid line, f (x) = [sin(2πy/l) + A4 sin(4 × 2πy/l)] ex .

We use (2.12) to evaluate the high-Re bound on β for these shapes:

βb(∞) =
1√
27

1∫ 1

0

∣∣∣∣∣ 1

2π

√
2

1 + A2
k

(
cos(2πη) +

Ak

k
cos(2πkη)

)
− Cm

∣∣∣∣∣ dη

. (3.3)

The integrals in the denominator of (3.3) can be easily evaluated numerically, but
first we consider some simple cases. The case of the classical Kolmogorov forcing
(Ak = 0 and Cm =0) is straightforward:

βb(∞) =
1√
27

1∫ 1

0

∣∣∣∣ 1

2π

√
2 cos(2πη)

∣∣∣∣dη

=
π2

√
54

= 1.343 . . . ≡ β1. (3.4)

Another elementary case is when Ak  1 and the contribution of the primary term to
the forcing function can be neglected. Then, the driving is a Kolmogorov force with
fundamental wavenumber greater than the minimum wavenumber and

βb(∞) =
1√
27

1

1

2π

√
2

A2
k

∫ 1

0

∣∣∣∣Ak

k
cos(2πkη)

∣∣∣∣dη

=
kπ2

√
54

. (3.5)

Hence, when the longest scale in the force profile � is used in the definition β = ε�/U 3,
the upper bound on the asymptotic high-Re value of the dissipation factor is linearly
proportional to k =L/�.

Figure 1 shows the bound on βb(∞) from (3.3) for a non-trivial force-shape
normalized by the value of βb(∞) obtained for the classic Kolmogorov force, i.e.
π2/

√
54, as a function of the amplitude of the secondary term. In addition to the
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Figure 2. Ratio between the measured dissipation factor β for a given force shape and the
asymptotic dissipation factor for the Kolmogorov force shape β1. (a) β/β1 from DNS as
a function of the larger mode amplitude, Ak (or amplitude α for the classic Kolmogorov
force shape). β1 is the average value of β in simulations using a Kolmogorov forcing,
since these simulations appear to be in the asymptotic regime for β . Squares, dotted
line, f (x) = α sin(2πy/l) ex , α = 1, 3, 7; otherwise, f (x) = [sin(2πy/l) + Ak sin(k × 2πy/l)] ex;
diamonds, dashed line, k = 2; down triangles, dash-dotted line, k = 3; up triangle, solid line,
k =4. (b) β/β1 as a function of the larger mode forced, at constant Reynolds number
(Re ∼ 2000). Here β1 is defined as previously for the DNS data and takes the theoretical
value otherwise. Solid symbols are DNS results for A2 = 8, A3 = 12 and A4 = 18. For these
amplitudes, the computed dissipation factors are presumably close to their asymptotic values
(see figure 2a). Hollow symbols are asymptotic predictions by theory (see (3.4) and (3.5)).

property exposed by (3.5), this figure also shows that βb(∞) is quite sensitive to
the change in shape of the forcing function. Indeed, βb(∞) increases as soon as a
secondary term is added to the original Kolmogorov forcing, and then eventually
plateaus when the higher wavenumber term becomes dominant.

4. Comparison with direct numerical simulations
DNS were performed using a fully de-aliased spectral code. The time stepping

was based on a third-order Runge–Kutta algorithm for the nonlinear and forcing
terms, the viscous term was integrated through an analytic factor, and stability was
ensured by a Courant–Friedrichs–Lewy (CFL) condition. The flow was computed in
a 2π periodic cubic box with 128 × 128 × 128 grid points. The viscosity was set to
ν = 0.015625, large enough to ensure satisfactory resolution of the turbulence.

While the bounds on the dissipation factor, β , are derived in the infinite Reynolds
number limit, we compare them with finite Reynolds number DNS. Considering
the computer power available nowadays, we can only hope that Reynolds numbers
of DNS are high enough, so that the variables considered display some of their
features as in the infinite Reynolds number limit. Figure 2(a) shows the measured
dissipation factors β normalized by the average value of β in the case of the classic
Kolmogorov forcing at different amplitudes as a function of the amplitude of the
secondary term. The symbols designating a particular secondary wavenumber k are
linked by straight lines using the same nomenclature as in figure 1 to facilitate
comparison between the infinite Reynolds number bounds there, and the results
of the finite Reynolds number simulations where the Taylor microscale Reynolds
number, Rλ, varies between about 50 and 100. We verified that all the simulations
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satisfied the convergence criterion for the Kolmogorov flow defined by Sarris
et al. (2007). The simulations with secondary term amplitudes of Ak = 18 satisfied
kmaxλK > 1.2, where kmax was the largest wavenumber of the simulation and λK the
Kolmogorov length scale, slightly under the commonly used flow resolution criterion
kmaxλK > 1.5.

The central point is the qualitative similarity of figures 1 and 2(a). Firstly, β has a
nearly constant value when only one mode is forced, suggesting that the turbulence is
reasonably well developed at these parameter values to be in the asymptotic regime
for β . (In the case of the traditional Kolmogorov forcing, the limit of resolution
was achieved for amplitude α =7.) Secondly, for the multi-mode force shapes, β

increases as a function of Ak until the secondary term becomes dominant and β

plateaus, reaching its asymptotic value. A slight decrease in the dissipation factor is
observed for k = 2 and k = 3 as Ak increases. A possible cause for this slight overshoot
might be a comparable contribution of the modes in the forcing function. As in
figure 2(a), figure 2(b) shows the dissipation factor enhancement, β/β1, but at a
constant Reynolds number (Re ∼ 2000), as a function of the secondary mode in
the forcing function. We observe that the analytical upper bound estimate on the
dissipation factor predicts qualitatively the linear pattern of the dissipation factor
at a modest and constant Reynolds number. The quantitative mismatch may be
due to some viscous effects or to the upper bound estimate. Much higher-resolution
simulations are needed to address this issue, and will be left for future work. Patterns
observed in figures 2(a) and 2(b) are indications that, in this study, the constraint is
to be in a sufficiently turbulent regime (Reynolds number high but not necessarily
constant) to observe the qualitative behaviour extracted from the analysis.

The analytic upper bound on the dissipation factor in the infinite Reynolds number
limit thus qualitatively predicts the behaviour of β in the relatively low-Reynolds-
number turbulent simulations. The dissipation factor is not only sensitive to the shape
of the forcing but also depends strongly on it.

Despite the qualitative agreement of figures 1 and 2, the numerical values for β

are about a factor 5 below the upper bound (Doering et al. 2003), not visible here
because of the normalization of β in the figures. Figures 1 and 2(a) also clearly show
that the bounds do not accurately predict the magnitude of the increase in β when
the force includes an additional wavenumber. The increase, i.e. the sensitivity to the
details of the force shape, are larger in the infinite Reynolds number upper bounds
than observed in the simulations. Nevertheless, it is interesting to note that upper
bound analysis can predict some features of the force-shape dependence.

5. Mean velocity profile dependence on the force profile
Figure 3 shows the measured mean velocity profiles U (y), the profile shape UStokes(y)

of the associated Stokes flow, the infinite Reynolds number optimal multiplier
profile ψm(y) and the corresponding forcing function f (y) = sin(y) + sin(ky), where
k = 2, 3, 4 respectively in figures 3(a), 3(b) and 3(c). The steady Stokes flow solving
0 = ν̃U

′′
Stokes(y)+Fφ(y/l) (which for these Kolmogorov-like forces is also a solution of

Navier–Stokes) realizes the lower bound on the dissipation factor β given the mean
power balance; its profile shape is simply obtained by integrating the forcing function
twice:

UStokes(y) = −F

ν̃

∫ y

0

(∫ y′

0

Fφ(y ′′/l) dy ′′

)
dy ′. (5.1)
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Figure 3. Mean velocity profile U (y) (triangles), rescaled Stokes flow profile UStokes(y) (solid
line), optimal multiplier profile ψm(y) (piecewise linear dashed line) and corresponding
forcing profiles f (y) (dotted line). (a) f (y) = sin(y) + sin(2y), (b) f (y) = sin(y) + sin(3y) and
(c) f (y) = sin(y) + sin(4y).

The Stokes profiles plotted in figure 3 have in each case been rescaled, by adjusting the
effective viscosity ν̃, for plotting along with the data. The infinite Reynolds number
optimal multiplier ψm is defined by (the normalization is arbitrary)

ψm(y) =

∫ y

0

sign

(∫ y′

0

φ(y ′′/l) dy ′′ − C

)
dy ′, (5.2)

where C is the parameter determined by the zero-mean condition.
A key feature of the observed mean velocity profiles is that they are strikingly

similar to the Stokes flow profiles. For the mean velocity profiles shown in
figure 3, the dominant mode is clearly the basic sine function but the relative amplitude
of the secondary term is properly reflected in the Stokes flow profiles. However, the
magnitude of the Stokes flow in (5.1) using the molecular viscosity ν is much larger
than the measured mean flow. The rescaling employed in the plots amounts to the
utilization of a renormalized turbulent eddy-viscosity value for ν̃. In their simulations
with a single-mode Kolmogorov force, Borue & Orszag (1996) noted the validity of
the concept of an effective viscosity in the sense that the mean flow profiles were also
simple sinusoids, albeit with an appropriately suppressed amplitude. In the results
presented here, the eddy-viscosity concept is put to – and passes – a more stringent
test: the relative contributions of the modes in the generalized Kolmogorov forces to
the mean profile are in quantitative accord with the standard diffusive suppression
of higher wavenumbers. Distinct from the DNS presented in Doering et al. (2003),
where the flow was bounded by channel walls and the mean flow profile appeared
linear despite a single Fourier mode forcing, the domain used for the simulations here
is periodic in all three directions without any (even free-slip) boundaries to constrain
turbulent velocity fluctuations. This apparently allows the turbulence to generate an
effective diffusion of momentum that is well described, at least on relatively long
length scales, by an effective viscosity coefficient. A detailed investigation of effective
eddy viscosity for these flows is being pursued in a modelling perspective, and we
shall report the findings in a future publication.

The optimal multiplier profiles in figure 3 reflect only the primary term of the
forcing functions; they are clearly sensitive to different features of the forcing than
the mean flow profile. Figure 4 allows a broader perspective on behaviour of the
optimal multiplier ψm. In this figure, we plot the optimal multiplier profile, the mean
velocity profile and the normalized force profile as the amplitude of the secondary
mode is increased. We observe that ψm can be less sensitive to the force shape
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Figure 4. (a) Optimal multiplier profiles ψm(y) for the force profiles sin(y) + Ak sin(3y) for
Ak = 1, 2, 4, 8. (b) Mean velocity profiles U (y) for the force profiles sin(y) + Ak sin(3y) for
Ak = 1, 2, 4, 8. (c) Force profiles sin(y) + Ak sin(3y) for Ak = 1, 2, 4, 8, normalized by their
maximum values. Triangles on dotted line, Ak = 1; squares on solid line, Ak = 2; diamonds on
dotted line, Ak = 4; circles on solid line, Ak = 8.

than the mean flow profile. Indeed, ψm displays the same profile for force shapes
sin(y) and sin(y) + sin(3y). For larger amplitudes (Ak � 2), ψm displays a shape
characteristic of the wavenumbers composing the force shape. Figure 4(b) also shows
that the relation between ψm and the mean velocity profile is unclear. For the force
shape sin(y) + sin(3y), for example, the optimal multiplier shows no indication of the
influence of the secondary term whereas the mean velocity profile clearly does.

6. Conclusions
The influence of the shape of a driving body force on the bulk energy dissipation

rate β = ε�/U 3 was investigated by means of rigorous analysis and DNS. Upper
bounds on the asymptotic high-Reynolds-number dissipation factor, depending
explicitly on the form of generalized Kolmogorov-like forcing functions in a domain
without boundaries, were derived by variational methods. Then, simulations at finite
Reynolds numbers in a fully periodic domain confirmed qualitative predictions of
the mathematical analysis at infinite Reynolds numbers. These results confirm the
dependence of the dissipation factor on the force shape, as anticipated by the solution
of the optimization problem for the best bound. We discern two major tendencies:
(i) when the forcing function is mainly shaped by a single wavenumber, the high-
Reynolds-number dissipation factor is approximately proportional to the dominant
wavenumber, and (ii) β increases as additional higher wavenumber components on
increasing amplitude are added to the forcing function.

We also observed that the measured mean velocity profiles were very well described
by a Stokes-like profile utilizing an effective eddy viscosity, providing quantitative
validation of the concept, at least for the restricted class of turbulent flows considered
here. The optimal multiplier function employed in the derivation of the variational
bounds is also related to the force shape, but in a highly nonlinear way; its relation
to the mean velocity profile – and its physical significance, if there is any – remains
unclear.

In this paper, we have demonstrated that in unbounded turbulence the shape of
the forcing plays a major role in the energy dissipation rate. The variational upper
bound approach adapted from the analysis of Doering et al. (2003) captures this
dependence qualitatively for a variety of generalized turbulent Kolmogorov flows and
the high-Reynolds-number predictions from the analysis remain qualitatively valid
for even moderate Reynolds numbers. Improvements in the quantitative prediction of
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the dissipation factor would be necessary in order to be able to use such a theoretical
dissipation in a turbulence model, but the successful theoretical prediction of some
features of the turbulence bodes well for the role that rigorous mathematical analysis
may play in the study of developed turbulent flows.
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