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Summary of this talk

(i) Mathematically : What are the issues? What is their history?

(ii) Physically : Can NS-analysis tell us anything interesting physically about

3D NS-flows without first having the full solution of the regularity problem?

We will address this problem by looking at resolution lengths.

Intermittency may be the key to understanding the NSE :

(a) Intermittent events are manifest as violent spiky surges away from space-

time averages in both vorticity & strain. Spectra have non-Gaussian charac-

teristics – see Batchelor & Townsend 1949.

(b) This raises the question : Are the spikes smooth down to some small scale

or does vorticity cascade down to small scales where the NSE are invalid?

Later in this talk : some very new results on intermittency.
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Dissipation-range intermit-

tency from wind tunnel

turbulence where hot wire

anemometry has been used

to measure the longitudinal

velocity derivative at a single

point (D. Hurst & J. C. Vas-

silicos). The horizontal axis

spans 8 integral time scales

with Reλ ∼ 200.
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Vorticity iso-surfaces in a 5123

sub-domain of the LANL de-

caying 20483 NS-simulation

at Reλ ∼ 200. Un-

even clustering results in in-

termittency ; Batchelor &

Townsend (1949); Kuo &

Corrsin (1971), Sreenivasan &

Meneveau (1988, 1991); Frisch

(1995) : courtesy of Darryl

Holm.
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A 3D statistically station-

ary homogeneous isotropic NS-

flow at Reλ ∼ 107 showing iso-

surfaces of ω2 at 10× ω2av in a

(2π)3 cube resolved with 20483

points : courtesy of Jörg Schu-

macher of TU Ilmenau.

1. Morphological changes from quasi-2D sheets → quasi-1D tubes is typical.

2. Why do the 3D-NS equations produce these topologically thin sets in the

vorticity field? – Frisch & Orszag (1990), Karniadakis & Orszag (1993),

Vincent & Meneguzzi (1994); Schumacher, Eckhardt & Doering (2010).
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What do statistical physicists calculate in turbulence?

Based on Kolmogorov’s axioms : see Uriel Frisch, Turbulence : the legacy of

A. N. Kolmogorov, CUP, 1995 or Davidson, Turbulence, OUP (2004).

In K41 statistical theory the standard −5/3 inertial-range energy-spectrum

has a cut-off appearing at Lkc ∼ Re3/4 : the Kolmogorov length.

The objects that are used to study intermittency are the ensemble-averaged

velocity structure functions

〈 |u(x + r)− u(x)|p 〉ens.av. ∼ r
ζp

Kolmogorov predicted a linear relation between ζp and p : the two coincide for

p = 3. Departure from this is called anomalous scaling & is usually

manifest by ζp lying on a concave curve below linear for p > 3.

Problem : the idea is not amenable to NS analysis.
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Conditional 3D-NS regularity : a very brief history

1. Leray (1934) ; Prodi (1959), Serrin (1963) & Ladyzhenskaya (1964) :

every Leray-Hopf solution u of the 3D-NSE with u ∈ Lr ((0, T ) ;Ls) is

regular on (0, T ] provided 2/r + 3/s = 1 with s ∈ (3, ∞] or if u ∈

L∞ ((0, T ) ;Lp) with p > 3.

2. For the case s = 3 : von Wahl (1983) & Giga (1986) first proved the

regularity in the space C
(
(0, T ] ;L3

)
: see also Kozono & Sohr (1997) &

Escauriaza, Seregin & Sverák (2003).

3. Various regularity results involving the pressure or one velocity derivative :

Kukavic & Ziane (2006, 2007), Zhou (2002), Cao & Titi (2008, 2010), Cao

(2010), Cao, Qin & Titi (for channel flows) (2008), & Chen & Gala (2011),

or on the direction of vorticity (Constantin & Fefferman (1993) & Vasseur

(2008), or with the use of Besov spaces (see Cheskidov & Shvydkoy (2011).

4. Books by Constantin & Foias 1988 & Foias, Manley, Rosa & Temam 2001.
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Physical assumptions corresponding to conditional regularity?

• ‖u‖p (p ≥ 3) assumed to be bounded. Drawback : no physical interpre-

tation.

• Likewise, assumptions on bounds on the pressure or single derivatives of

the velocity field have no physical interpretation.

• The global enstrophy H1 =
∫
V |ω|

2dV is assumed to be bounded pointwise

in time : Drawback : assumes the answer we’re seeking. It also ignores

intermittency, which is important.

• Short time regularity : the upper

bound on H1 blows up at t
∗.

t
t∗

H1(t)

....

....

....

....

....

....

....

....

....

....
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Use of higher moments of vorticity for the NS equations

How might we pick up intermittent behaviour? Consider higher moments of

vorticity (m ≥ 1) as the “frequencies”

Ωm(t) =

(

L−3
∫

V
|ω|2mdV

)1/2m
+$0

The basic frequency associated with the domain is given by $0 = νL
−2.

Ω21 = L
−3
∫

V
|ω|2dV +$0 H1-norm

is the enstrophy/unit volume which is related to the energy dissipation rate.

The higher moments will naturally pick up events at smaller scales

$0 ≤ Ω1(t) ≤ Ω2(t) ≤ . . . ≤ Ωm(t) ≤ Ωm+1(t) ≤ . . .
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Estimates in terms of Re

Traditionally, most NS-estimates have been found in terms of the Grashof

number Gr (f 2rms = L
−3‖f‖22) of the divergence-free forcing f (x) but it

would be more helpful to express these in terms of the Reynolds number Re

to facilitate comparison with the results of statistical physics.

Gr = L3frmsν
−2 , Re = U0Lν

−1 .

Doering and Foias 2002 used the idea of defining U0 as

U 20 = L
−3
〈
‖u‖22

〉
T

where the time average
〈
∙
〉
T
over an interval [0, T ] is defined by

〈g(∙)〉T = lim sup
g(0)

1

T

∫ T

0

g(τ ) dτ .

Gr is fixed provided f is L2-bounded, while Re is the system response.
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Leray’s energy inequality shows that

1
2

d

dt

∫

V
|u|2 dV ≤ −ν

∫

V
|ω|2 dV + ‖f‖2‖u‖2 ,

〈
Ω21
〉
T
≤ $20GrRe +O

(
T−1

)
.

Doering & Foias (2002) showed that NS-solutions obey Gr ≤ cRe2 provided

the spectrum of f is concentrated in a narrow-band around a single frequency

or its spectrum is bounded above & below

〈
Ω21
〉
T
≤ c$20Re

3 +O
(
T−1

)
.

ν
〈
Ω21
〉
T
is the time-averaged energy dissipation rate over [0, T ] and the Kol-

mogorov length scale λ−1k is estimated as

λ−4k =
ν
〈
Ω21
〉
T

ν3
⇒ Lλ−1k ≤ cRe

3/4 +O
(
T−1/4

)
.
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Weak solution result

Theorem 1 : Weak solutions of the 3D-Navier-Stokes equations satisfy

〈(
$−10 Ωm

)αm〉
T
≤ cRe3 +O

(
T−1

)
, 1 ≤ m ≤ ∞ ,

where $0 = νL
−2, c is a uniform constant and

αm =
2m

4m− 3
.

Remark : The exponent αm =
2m
4m−3 appears to be a natural scaling, consis-

tent with the application of Hölder & Sobolev inequalities.

Proof : (JDG 2011, CMS) The proof is based on a result of Foias, Guillopé

and Temam (1983), New a priori estimates for Navier-Stokes equations in

Dimension 3, Comm. Partial Diff. Equat., 6, 329–359, 1981 (their Theorem

3.1) for weak solutions.

J. D. Gibbon : HW 2011 12



Imperial College London

When modified in the manner of Doering & Foias (02) the FGT result becomes
〈

H
1

2N−1
N

〉

T

≤ cNL
−1ν

2
2N−1Re3 +O

(
T−1

)
,

where

HN =

∫

V

∣
∣∇Nu

∣
∣2 dV =

∫

Vk

k2N |û|2 d3k ,

where H1 =
∫
V |∇u|

2 dV =
∫
V |ω|

2 dV . An interpolation between ‖ω‖2m
and ‖ω‖2 is found using HN

‖ω‖2m ≤ cN,m‖∇
N−1ω‖a2 ‖ω‖

1−a
2 , a =

3(m− 1)
2m(N − 1)

,

for N ≥ 3. ‖ω‖2m is now raised to the power αm, to be determined.

In effect, we are translating from derivatives to L2m-norms.
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〈‖ω‖αm2m〉T ≤ c
αm
N,m

〈
‖∇N−1ω‖aαm2 ‖ω‖

(1−a)αm
2

〉

T

≤ cαmN,m

〈

H
1

2N−1
N

〉1
2aαm(2N−1)

T

〈

H
(1−a)αm

2−aαm(2N−1)
1

〉1−12aαm(2N−1)

T

An explicit upper bound in terms of Re is available only if the exponent of

H1 within the average is unity ; that is

(1− a)αm
2− aαm(2N − 1)

= 1 .

This determines αm, uniformly in N , as

αm =
2m

4m− 3
.

The constant cN,m can be minimized by choosing N = 3 which is finite even

when m =∞ ; thus we take the largest value of cαm3,m and call this c. �
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A continuum of length scales

Based on the definition of the inverse Kolmogorov length λ−1k , a generaliza-

tion of this to a hierarchy of inverse lengths λ−1m suggests :

(
Lλ−1m

)2αm :=
〈(
$−10 Ωm

)αm〉
T

with αm =
2m
4m−3 and where $0 = νL

−2 :

Lλ−1m ≤ cRe
3/2αm +O

(
T−1/2αm

)
1 ≤ m ≤ ∞

m 1 9/8 3/2 2 3 . . . ∞

3/2αm 3/4 1 3/2 15/8 9/4 . . . 3

Values of the Re-exponent 3/2αm = 3
(
1− 3

4m

)
.
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1. For m > 1 the λm are interpreted here as the length scales corresponding

to ever deep intermittent events.

2. Computationally it is hard to get beyond m = 1. m = 9/8 (corresponding

to Re1) is close to modern resolutions. Two alternative views : either

• Flow resolution difficulties could be a symptom of the lack of uniqueness

of weak solutions :

• Or, these difficulties may simply be caused by the practical challenges of

computing a system where even the naturally largest scale (other than

L) lies close to the limit of what can currently be resolved.

3. As m → ∞, the Re3 bound has an exponent 4× greater than the Kol-

mogorov length ; this lies below molecular scales where the NSE are invalid.
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Another look at conditional regularity : arXiv/1108.4651 [nlin.CD]

Lemma 1 : With 1 ≤ m < ∞, and define αm = 2m
4m−3 ; βm =

4
3m(m + 1)

and n = 1
2(m + 1), Ωm(t) formally satisfies

Ω̇m ≤ $0Ωm

{

−
1

c1,m

(
Ωm+1
Ωm

)βm
+ c2,m

(
$−10 Ωn

)2αn + c3,mGr

}

(∗)

The proof requires just two remarks : see JDG (2010) [?]

(i) In the Laplacian term, need to show that (Am = ω
m)

d

dt

∫

V
|ω|2m dV ≤ −cm

∫

V
|∇Am|

2 dV

plus a Sobolev inequality ‖Am‖2(m+1)
m
≤ cm ‖∇Am‖

3/2(m+1)
2 ‖Am‖

(2m−1)/2(m+1)
2

(ii) For the nonlinear term a Hölder inequality gives (n = 1
2(m + 1))

d

dt

∫

V
|ω|2m dV ≤ Ω2mm+1‖∇u‖m+1 ≤ cmΩ

2m
m+1Ωn
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2(m + 1))

d

dt

∫

V
|ω|2m dV ≤ Ω2mm+1‖∇u‖m+1 ≤ cmΩ

2m
m+1Ωn

J. D. Gibbon : HW 2011 17



Imperial College London

ym =
(
$−10 Ωm

)−2αn
Fm =

(
Ωm+1
Ωm

)βm
− c1,mc3,mGr

Using the fact that Ωn ≤ Ωm, (*) linearizes to (τ = 2$0αnc−11,mt)

dym

dτ
≥ Fm ym − c2,m ,

and integrates to

{
$−10 Ωm(τ )

}2αn ≤
exp
(
−
∫ τ
0 Fmdξ

)

ym,0 − c2,m
∫ τ
0 exp

(
−
∫ ξ
0 Fmdξ

′
)
dξ

(∗∗)

where the initial value ym,0 = ym(0).

1. Can the denominator develop a zero in a finite time?

2. Control of Ωm(τ ) from above for any m ≥ 1 will control the H1-norm.
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Lower bounds on the dissipation

Choose a set of parameters μm such that with αm =
2m
4m−3 & βm =

4
3m(m+1)

αm

(
1− μm
μm

)

= βm , ⇒ μm =
3

(2m− 1)(4m + 3)

Lemma 2 :
αm

2m
4m−3

αm − αm+1 6
(4m+1)(4m−3)

βm 4
3m(m+ 1)

μm
3

(2m−1)(4m+3)
1−μm
μm

= βm
αm

2
3 (m+ 1)(4m− 3)

αm
αm+1

1+μm
1−μm(

αm
αm+1

− 1
)(

1−μm
μm

)
2

∫ τ

0

(
Ωm+1
Ωm

)βm
dξ ≥ τ−1




(∫ τ
0

(
$−10 Ωm+1

)αm+1 dξ
) αm
αm+1

∫ τ
0

(
$−10 Ωm

)αm dξ





βm/αm

.
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Corollary : Using the average notation 〈∙〉(τ) =
1
τ

∫ τ
0 ∙ dξ, Lemma 2 can be

re-written as

〈(
Ωm+1
Ωm

)βm
〉

(τ)

≥






〈(
$−10 Ωm+1

)αm+1〉
αm
αm+1

(τ)〈(
$−10 Ωm

)αm〉
(τ)






βm
αm

.

Proof of Lemma 2 : Clearly μm lies in the range 0 < μm < 1 so a Hölder

inequality gives

∫ τ

0

Ω
αm(1−μm)
m+1 dξ =

∫ τ

0

(
Ωm+1
Ωm

)αm(1−μm)
Ωαm(1−μm)m dξ

≤




∫ τ

0

(
Ωm+1
Ωm

)αm(1−μmμm )
dξ





μm(∫ τ

0

Ωαmm dξ

)1−μm
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thus leading to

∫ τ

0

(
Ωm+1
Ωm

)βm
dξ ≥

( ∫ τ
0 Ω

αm(1−μm)
m+1 dξ

(∫ τ
0 Ω

αm
m dξ

)1−μm

)1/μm
.

It is easily checked that

αm
(
1− μm

)
= μmβm =

4m(m + 1)

8m2 + 2m− 3

>
2(m + 1)

4m + 1
= αm+1

so a further Hölder inequality on the numerator of gives

∫ τ

0

Ω
αm+1
m+1 dξ ≤ τ

μm
1+μm

(∫ τ

0

Ω
αm(1−μm)
m+1 dξ

) 1
1+μm

.
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The following theorem formally expresses the main result of the paper :

Theorem 2 : If there exists a value of m lying in the range 1 ≤ m <∞,

with initial data Ωm,0 < Cm$0Gr
Δm/2αn, for which the integral lies on or

above the critical value

c
(
τ Gr2δm+1 + η2

)
≤
∫ τ

0

(
$−10 Ωm+1

)αm+1 dξ ,

where η2 ≥ η1Gr2(δm+1−1), and where δm+1 lies in the range

αm+1

αm

(

1 +
αm

2βm

)

< δm+1 < 1 ,

then Ωm(τ ) remains bounded for all time.
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with initial data Ωm,0 < Cm$0Gr
Δm/2αn, for which the integral lies on or

above the critical value

c
(
τ Gr2δm+1 + η2

)
≤
∫ τ

0

(
$−10 Ωm+1

)αm+1 dξ ,
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Proof : The lower bound on the dissipation is

∫ τ

0

(
Ωm+1
Ωm

)βm
dξ ≥ cmτ

−1






(
τGr2δm+1 + η1Gr

2(δm+1−1)
)αm/αm+1

(τGr2 + η1)






βm/αm

≥ cmτ
(
αm
αm+1

−1
)
βm
αm
−1
Gr
2
{
δm+1

αm
αm+1

−1
}
βm
αm

= cm τ Gr
Δm

where

Δm = 2

{

δm+1
αm

αm+1
− 1

}
βm

αm
.

Therefore ∫ τ

0

Fmdξ ≥
{
cmGr

Δm − c3Gr
}
τ .

To have the dissipation greater than forcing (Δm > 1) raises the lower bound

on δm+1 away from
αm+1
αm
.
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∫ τ

0

exp

(

−
∫ ξ

0

Fmdξ
′

)

dξ ≤ Gr−Δm
[
1− exp

(
−τGrΔm

)]
,

and so the denominator of (**) satisfies

Denominator of (**) ≥ ym,0 − c1,mc2,mGr
−Δm

(
1− e−τGr

Δm
)

This can never go negative if ym,0 > c1,mc2,mGr
−Δm, which means large initial

data is restricted by

(
$−10 Ωm,0

)2αn
< CmGr

Δm

where 1 < Δm ≤ 4. �
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Intermittency

1. A feature of intermittent flows lies in the strong excursions of the vorticity

away from average with periods of inactivity between the spikes. How does

the critical lower bound imposed as an assumption in Theorem 2 lead to

this?

2. If
〈
Ω
αm+1
m+1

〉
(τ)
lies above critical then not only Ωm cannot blow up but

it actually collapses exponentially. Curiously, & counter-intuitively, if the

value of this integral drops below critical then the occurrence of a singular

event must still formally be considered.

3. Experimentally, signals go through cycles of growth/collapse : thus it is

not realistic to expect the critical lower bound to hold for τ .
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Sequence of events

1. For τ0 ≤ τ ≤ τ1, if
〈
Ω
αm+1
m+1

〉
(τ)
lies above the critical lower bound then

Ωm(τ ) collapses. The H1-norm (Ω
2
1) (which controls the regularity of all

variables) is suppressed. In turn, Ωm+1(τ ) collapses.

2. Because of the collapse in the point-wise value of Ωm+1(τ ), the magnitude

of
〈
Ω
αm+1
m+1

〉
(τ)
in the region τ1 ≤ τ ≤ τ2 decays but remains above the

critical lower bound for a period of time, thus leading to both Ωm(τ ) and

Ωm+1(τ ) remaining small.

3. In the region τ2 ≤ τ ≤ τ3 the continuing smallness of Ωm+1(τ ) finally

causes
〈
Ω
αm+1
m+1

〉
(τ)
to drop below the critical lower bound, in which case

Ωm(τ ) is free to grow. At this point there are two options :

(a) Rapid growth in Ωm (and thus in Ωm+1) leads to
〈
Ω
αm+1
m+1

〉
(τ)
rising back

through the critical lower bound leading to a renewed cycle of collapse
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at τ3 : this requires a re-setting and a conformity of the initial conditions

at τ = τ3. The dynamics thus behave like a relaxation oscillator.

(b) There is still the possibility that pointwise growth in Ωm+1, but with-

out significant growth in
〈
Ω
αm+1
m+1

〉
(τ)
, could lead to the formation of

an integrable singularity. This would restrict any singular event to

Ω
αm+1
m+1 ∼ (t0 − t)

−p for 0 < p < 1.

While option 3a) is the most attractive, the possibility of singularity formation

implied by option 3b) cannot formally be ruled out. The intriguing mathemat-

ical question remains concerning what happens to solutions when
〈
Ω
αm+1
m+1

〉
(τ)

drops below critical. Can regularity be proved in this case?
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Cascade?? (JDG – arXiv/1108.4651, 2011)

It is always true that Ωm ≤ Ωm+1 but αm > αm+1.

Ωαmm ≶ Ω
αm+1
m+1 ??

Now use our definition of a length scale

(
Lλ−1m

)2αm =
〈(
$−10 Ωm

)αm〉
(τ)

although λm ≶ λm+1?? Our lower bound becomes
〈(
Ωm+1
Ωm

)βm
〉

(τ)

≥

(
λm

λm+1

)2βm
.

We could enforce the assumption that there exists an ordered cascade of length

scales λm > λm+1, decreasing sufficiently fast with m to take advantage of

the quadratic nature of βm.
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