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Abstract

We show how Noether conservation laws of ideal fluids with
advected quantities can be obtained from flows of Eulerian
vector fields for Lie symmetries.
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Hamilton’s principle gives a framework for ideal fluids
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This framework has many applications
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

For example, in ocean circulation . . .
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

The applications also include solitons

R Camassa, DDH,

An integrable shallow water equation with peaked solitons. Phys Rev Lett 71: 1661–1664 (1993).

DDH, M Staley, Interaction dynamics of singular wave fronts. See M Staley, webpage.
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Fluid flow is a sort of shape morphing . . .
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

so these applications even extend to Image Matching

CJ Cotter & DDH, Geodesic boundary value problems with symmetry,
J Geom Mech 2:1, 417–444 (2010)

CJ Cotter & DDH, Continuous and discrete Clebsch variational principles, FoCM, 9:2, 221–242, (2009)

CJ Cotter, The variational particle-mesh method for matching curves, J Phys A, 41:34, 340301–18 (2008)
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

. . . since image analysis relates to the flow of shape!

Figure: A segmented brain image from our 3D diffeomorphic shooting
algorithm. The colours represent the initial momentum, which is a scalar
valued function on the surface, associated with the registration problem.
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Key points of the lecture

Point #1:
Ideal fluid equations follow from Hamilton’s principle

δS = 0 with S =

∫
`(u,a)dt

Point #2:
The geometric approach reveals the symmetry vector fields
responsible for the conservation laws for ideal fluids.

Point #3:
The result is Noether’s theorem for ideal fluids in Eulerian form.
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Fluid flows & Lie
symmetries are related . . .
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Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

. . . because fluid flows are flows of vector fields

Flows of vector fields arise,
whenever a Lie group G acts on a manifold M.
Thus, fluid flows & Lie symmetry are related.

Darryl D Holm Imperial College London In collaboration with Colin J CotterNoether’s theorem for ideal fluids



Introduction
Hamilton’s principle and Noether’s Theorem

Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Thus, fluid flows are Lie group actions on manifolds

Fluid flows for the Lie group action G = Diff(R3)
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The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Lie group actions summon differential-form operations

Exterior derivative d raises the degree of a k -form:

dΛk 7→ Λk+1 .

Contraction with a vector field X ∈ X lowers the degree:

X Λk 7→ Λk−1 .

Lie derivative LX by vector field X preserves the degree:

LX Λk 7→ Λk , where LX Λk :=
d
dt

∣∣∣∣
t=0

φ∗t Λk ,

in which φt is the flow of the vector field X .

Lie derivative LX satisfies Cartan’s formula:

LXα = X dα + d(X α) for α ∈ Λk .
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Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Differential & contraction relations in vector notation

Exterior derivative

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) dV .

0 = d 2f = d(∇f · dx) = (curl grad f ) · dS ,
0 = d 2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) dV .

Contraction with X = X · ∇
X v · dx = v · X ,
X B · dS = −X× B · dx ,

X dV = X · dS ,
d(X dV ) = d(X · dS) = (divX) dV .
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Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Lie derivative relations in vector notation

(a) LX f = X df = X · ∇f ,

(b) LX (v · dx) =
(
− X× curl v +∇(X · v)

)
· dx ,

(c) LX (ω · dS) =
(
− curl (X× ω) + X divω

)
· dS ,

(d) LX (f dV ) = (div fX) dV ,

(e) For vector fields X and Y

LX Y = [X , Y ] :=
(
X · ∇Y− Y · ∇X

)
· ∇ =: adX Y ,

where [X , Y ] = adX Y is the commutator of X and Y ∈ X.

(f) For a 1-form density m = m · dx⊗ dV ∈ X∗

LX m =
(
∇ · (X⊗m) + (∇X)T ·m

)
· dx⊗ dV =: ad∗X m .

(g) Pairing X∗ × X→ R with 〈m , u 〉 :=
∫

Ω u m dV
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Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Fluid flows arise as Lie group actions on manifolds

Fluid flows for the Lie group action G = Diff(R3)

g 1-

x

CurrentReference

g(t)

(t)

x0

Darryl D Holm Imperial College London In collaboration with Colin J CotterNoether’s theorem for ideal fluids



Introduction
Hamilton’s principle and Noether’s Theorem

Examples of symmetry vector fields

The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related . . .

Fluid flows of the Lie group action G = Diff(R3)

• For fluids, the Lie group G = Diff(R3) is the group of
smooth invertible maps of R3 with smooth inverses.
• At time t , the mapping g(t) takes the label space to the
physical domain so that the path

x(t) = g(t)x0, with velocity ẋ(t) = ġg(t)−1x(t) =: u(x , t)
describes Lagrangian particle trajectories for each label x0.
• Recalling d

dt (g(t)−1) = −g−1ġg−1, the solution
a(t) = a0g(t)−1 of ȧ(t) = −au(t) = −Lua

is called an advected quantity for fluids, with, e.g., a ∈ Λk .
• Under the relabelling transformation g → gh for any h ∈ G

a(t)→ (a0h−1)g(t)−1 and u(t) := ġg(t)−1 ∈ X(R3)

that is, the spatial fluid velocity vector field u(t) is right-invariant.
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle

0 = δS = δ
∫ T

0

∫
Ω l(u,a)dV dt

and Noether’s Theorem
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle and Noether’s Theorem

Hamilton’s principle for Lagrangian l(u,a) in spatial variables is

0 = δS = δ

∫ T

0

∫
Ω

l(u,a) dV dt =

∫ T

0

∫
Ω

(
δl
δu
· δu +

δl
δa

δa
)

dV dt ,

where the variations δu = u ′(ε, t)|ε=0 and δa = a ′(ε, t)|ε=0 are
given via the vector field w = δgg−1 = g ′g−1(ε, t)|ε=0 as

δu − ẇ = [u,w ] =: aduw , δa = −Lwa .

Here a denotes any quantity that is advected with the flow, and
[u,w ] = u · ∇w − w · ∇u

is the commutator of vector fields u & w , and finally
−Lwa(t) = d

dε

∣∣∣
ε=0

a0g−1(ε, t) = −a0

[
g−1(ε, t)g ′g−1(ε, t)

]
ε=0

denotes the derivative of a along the flow g(ε, t) of w .
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle for l(u,a) in spatial variables yields

0 = −
∫ T

0

∫
Ω

(
∂

∂t
δl
δu

+ ad∗u
δl
δu
− δl
δa
� a
)
·w dV +

[∫
Ω

δl
δu
· w dV

]T

0
.

Here ad∗u is the dual operator to adu defined for a vector field w ,∫
Ω

w · ad∗u m dV =

∫
Ω

m · adu w dV ,

ad∗u has an explicit formula, given for m = δl/δu as

ad∗u m = ∇ · (u ⊗m) + (∇u)T ·m = Lum,

and the diamond operation � is defined by∫
Ω

(
δl
δa
� a
)
· w dV :=

∫
Ω

δl
δa
· (−Lwa) dV .

Darryl D Holm Imperial College London In collaboration with Colin J CotterNoether’s theorem for ideal fluids



Introduction
Hamilton’s principle and Noether’s Theorem

Examples of symmetry vector fields

Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Noether’s Theorem for EP with advected quantities

A vector field η is a symmetry of Hamilton’s principle if it obeys

δu = η̇ + [u, η] = 0 and δa = −Lηa = 0 .

Hamilton’s principle for l(u,a) in spatial variables then yields

0 = −
∫ T

0

∫
Ω

(
∂

∂t
δl
δu

+ ad∗u
δl
δu
− δl
δa
� a
)

︸ ︷︷ ︸
= 0 (EP equation)

·η dV +

[∫
Ω

δl
δu
· η dV

]T

0
.

Theorem (Noether theorem for EP with advected quantities)
For solutions of the EP equation, each symmetry vector field η
of the EP Lagrangian yields an integral of the motion satisfying

d
dt

∫
Ω

δl
δu
· η dV = 0 . (1)
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Kelvin’s circulation theorem

The Euler-Poincaré equation(
∂

∂t
+ Lu

)
δl
δu
− δl
δa
� a = 0 ,

in combination with the mass conservation law(
∂

∂t
+ Lu

)
ρdV = 0 ,

yields Kelvin’s circulation theorem in terms of (v · dx) := ρ−1 δl
δu

d
dt

∮
c(u)

v · dx =

∮
c(u)

(
∂

∂t
+ Lu

)
(v · dx) =

∮
c(u)

1
ρ

δl
δa
� a
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Theorems for advected quantities

Theorem (Commutator)

A commutation relation holds among the Lie derivatives,[
∂t + Lu(t) , Lη(t)

]
a(t) = L(η̇+[u,η]) a(t) . (2)

Proof.
By the product rule for Lie derivatives(

∂t + Lu(t)
)
Lηa(t) = L(η̇+[u,η])a(t) + Lη

(
∂t + Lu(t)

)
a(t) .

Hence, commutation relation (2) holds, and because a(t) ∈ V is
arbitrary, the Lie derivative commutation relation holds[

∂t + Lu(t) , Lη
]

= L(η̇+[u,η]) . (3)
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Corollary and Ertel’s Theorem for advected quantities

Corollary (Symmetry)

If a vector field η is a symmetry, then the Lie derivative Lη
commutes with the evolution operator,

(
∂t + Lu(t)

)
.

By (3)
[
∂t + Lu(t) , Lη(t)

]
a(t) = 0 for η̇ + [u, η] = 0 . (4)

Theorem (Ertel theorem)

If a is an advected quantity so that
(
∂t + Lu(t)

)
a(t) = 0 and the

vector field η is a symmetry, then Lηa is also advected.

Proof.
Relation (4) implies the advection relation for Lηa,(

∂t + Lu(t)
)
Lηa(t) = Lη

(
∂t + Lu(t)

)
a(t) = 0 . (5)
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Examples of symmetry
vector fields

Noether quantity Defining equation Symmetry vector field

Vorticity ω = ρ−1curl
(

1
ρ

δl
δu

)
η = ρ−1curlΨ · ∇

Helicity density λH =
(

1
ρ

δl
δu

)
· curl

(
1
ρ

δl
δu

)
ηH = ρ−1curl

(
1
ρ

δl
δu

)
· ∇

Potential Vorticity q = ρ−1curl
(

1
ρ

δl
δu

)
· ∇T ηPV = ρ−1 (∇φ×∇T ) · ∇

Cross helicity density λCH = ρ−1B · δl
δu ηCH = ρ−1B · ∇

Table: Vector fields of relabelling symmetries for ideal fluids and MHD.
The vector v = 1

ρ
δl
δu is the circulation velocity in Kelvin’s Theorem.
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 1 (mass advection)

Solving the symmetry relations
The solutions of the symmetry relations

δu = η̇ + [u, η] = 0 and δa = −Lηa = 0 ,

depend on the number and type of advected quantities, a(t).

Case 1. If the only advected quantity is the mass density
a = ρdV , the symmetry condition is (by Cartan’s formula)

Lη(ρdV ) = d (η ρdV ) = 0.

In a simply connected domain, d2 = 0 then implies that

η ρdV = d(Ψ · dx) = curlΨ · dS =⇒ η = ρ−1curlΨ · ∇
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Case 1 (cont): Conservation of vorticity

Case 1 (cont): One advected quantity, ρdV .
Substituting the solution η = ρ−1curlΨ · ∇ into Noether’s
theorem and using Corollary (4) yields

0 =
d
dt

〈
δl
δu
, η

〉
=

d
dt

∫
Ω
η

δl
δu

=
d
dt

∫
Ω

1
ρ

δl
δu
· dx ∧ (η ρdV ) =

d
dt

∫
Ω

1
ρ

δl
δu
· dx ∧ d(Ψ · dx)

= −
∫

Ω

(
∂

∂t
+ Lu(t)

)
d
(

1
ρ

δl
δu
· dx

)
∧ (Ψ · dx) .

This is the weak form of conservation of the vorticity 2-form,(
∂

∂t
+ Lu

)(
curl

1
ρ

δl
δu
· dS

)
= 0 .
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Case 1 (re-cont): Conservation of helicity

Case 1 (re-cont).
Upon choosing the arbitrary vector Ψ to be

η ρdV = d(Ψ · dx) = d
(

1
ρ

δl
δu
· dx

)
,

Noether’s theorem for the case of one advected quantity
becomes

0 =
d
dt

∫
Ω

1
ρ

δl
δu
· dx ∧ d(Ψ · dx)

=
d
dt

∫
Ω

1
ρ

δl
δu
· dx ∧ d

(
1
ρ

δl
δu
· dx

)
.

This is conservation of helicity.
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Ertel’s theorem in usual hydrodynamic notation

Identify the evolutionary operator with the Lagrangian time
derivative

∂t + Lu(t) =
D
Dt

,

and define

ηH = ρ−1curl
(

1
ρ

δl
δu

)
·∇ =: ρ−1ω ·∇ with ω := curl

(
1
ρ

δl
δu

)
.

Write the symmetry relation (4) as

D
Dt

(ρ−1ω · ∇)a(t) = (ρ−1ω · ∇)
D
Dt

a(t) . (6)

This is the usual form of the classical Ertel theorem.

For a scalar advected function, a ∈ Λ0, (6) yields another scalar
conservation law, for q = (ρ−1ω · ∇)a.
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 2 (two advection laws)

Case 2. Two advected quantities: a density and a scalar

Theorem

With two advected quantities a1 = ρdV ∈ Λ3, a2 = T ∈ Λ0, the
simultaneous solution of Lη(ρdV ) = 0 and LηT = 0 is for any
φ ∈ Λ0,

η ρdV = d(φdT ) . (7)

Proof.
The proof is simple, since a1 = ρdV is a top form and a2 = T is
a bottom form. Hence, dT ∧ η ρdV = (∇T · η) ρdV = 0.
Thus, the advected quantities a1 = ρdV ∈ Λ3, a2 = T satisfy

0 = (∇T ·η) ρdV = dT∧(η ρdV ) = dT∧d(Ψ·dx) = dT∧d(φdT ) .
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Case 2 (cont): Conservation of potential vorticity

Substitute η ρdV = d(φdT ) into our previous Noether
theorem calculation and recompute, finding this time that:

0 =
d
dt

〈
δl
δu
,η

〉
=

d
dt

∫
Ω

(
1
ρ

δl
δu
· dx

)
∧ (η ρdV )

By (7) =
d
dt

∫
Ω

(
1
ρ

δl
δu
· dx

)
∧ d(φdT )

= −
∫

Ω

((
∂

∂t
+ Lu(t)

)(
d
(

1
ρ

δl
δu
· dx

)
∧ dT

))
φd V .

This is the weak form of potential vorticity (PV) conservation,(
∂

∂t
+ Lu

)
(q ρdV ) = 0 , (8)

(q ρdV ) := d
(

1
ρ

δl
δu
· dx

)
∧ dT = curl

(
1
ρ

δl
δu

)
· ∇T dV . (9)
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 3

Case 3. Two advected quantities: a density and a 2-form

Theorem

For the case that a1 = ρdV ∈ Λ3 and
a2 = B · dS = d(A · dx) ∈ Λ2, the only simultaneous solution of
LηρdV = 0 and LηB · dS = 0 is

η ρdV = B · dS = ρ−1B ρdV . (10)

Proof.

Recall η ρdV = d(Ψ·dx) and identify d(Ψ·dx) = B ·dS .
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Examples of symmetry vector fields

Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Example 3 (two advection laws: a density and a 2-form)

Case 3 (cont): Conservation of cross vorticity

In this case, Noether’s theorem implies the conserved quantity
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This is the cross helicity, which is known to be conserved, in
particular, for ideal magnetohydrodynamics (MHD)
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Flows of Lie symmetries for Euler’s equations

Our solutions of the symmetry relations in Noether’s Theorem

δu = η̇ + [u, η] = 0 and δa = −Lηa = 0 ,

has yielded the following conserved quantities and symmetry
vector fields

Noether quantity Defining equation Symmetry vector field

Vorticity ω = ρ−1curl
(

1
ρ

δl
δu

)
η = ρ−1curlΨ · ∇

Helicity density λH =
(

1
ρ

δl
δu

)
· curl

(
1
ρ

δl
δu

)
ηH = ρ−1curl

(
1
ρ

δl
δu

)
· ∇

Potential Vorticity q = ρ−1curl
(

1
ρ

δl
δu

)
· ∇T ηPV = ρ−1 (∇φ×∇T ) · ∇

Cross helicity density λCH = ρ−1B · δl
δu ηCH = ρ−1B · ∇

Table: Vector fields of relabelling symmetries for ideal fluids and MHD.
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The flows generated by the symmetry vector fields

Here are the flows associated with our Noether symmetries:

The symmetry vector field η = ρ−1curlΨ · ∇ generates a
flow along a simple closed curve C(t) that is transported
by the fluid velocity u, according to the symmetry relation(
∂
∂t + Lu(t)

)
η = η̇ + [u, η] = δu = 0.

This is Kelvin’s circulation theorem.
ηH = ρ−1curl

(
1
ρ
δl
δu

)
· ∇ =⇒ flow along vortex lines.

ηPV = ρ−1 (∇φ×∇T ) · ∇ =⇒ flow along level sets of T .
ηCH = ρ−1B · ∇ =⇒ flow along magnetic field lines.

Each of these flows may be regarded as a particle relabelling
symmetry, but Lagrangian fluid particles were not invoked!
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Thanks for listening!

The key points of the lecture were:

Point #1:
Ideal fluid equations follow from Hamilton’s principle

δS = 0 with S =

∫
`(u,a)dt .

Point #2:
The geometric approach reveals the symmetry vector fields
responsible for the conservation laws for ideal fluids.

Point #3:
The result is Noether’s theorem for ideal fluids in Eulerian form.
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