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0 Introduction
@ The Hamilton’s principle framework for ideal fluids
@ This framework has many applications
@ Fluid flows & Lie symmetries are related . . .

e Hamilton’s principle and Noether's Theorem
@ Hamilton’s principle implies the ideal fluid equations
@ Noether’s Theorem with advected quantities

e Examples of symmetry vector fields
@ Example 1 (mass advection)
@ Example 2 (two advection laws: a density and a scalar)
@ Example 3 (two advection laws: a density and a 2-form)
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Abstract

We show how Noether conservation laws of ideal fluids with
advected quantities can be obtained from flows of Eulerian
vector fields for Lie symmetries.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Hamilton’s principle gives a framework for ideal fluids
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

This framework has many applications
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

For example, in ocean circulation ...
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

The applications also include solitons
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QR Camassa, DDH,
An integrable shallow water equation with peaked solitons. Phys Rev Lett 71: 1661-1664 (1993)

@ DDH, M Staley, Interaction dynamics of singular wave fronts. See M Staley, webpage.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Fluid flow is a sort of shape morphing . . .
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

so these applications even extend to Image Matching

@ CJ Cotter & DDH, Geodesic boundary value problems with symmetry,
J Geom Mech 2:1, 417—-444 (2010)

@ CJ Cotter & DDH, Continuous and discrete Clebsch variational principles, FOCM, 9:2, 221-242, (2009)
@ cJ Cotter, The variational particle-mesh method for matching curves, J Phys A, 41:34, 340301—-18 (2008)
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Introduction
This framework has many applications

.since image analysis relates to the flow of shape!

momentum
0.02

Figure: A segmented brain image from our 3D diffeomorphic shooting

algorithm. The colours represent the initial momentum, which is a scalar

valued function on the surface, associated with the registration problem.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Key points of the lecture

Point #1:

Ideal fluid equations follow from Hamilton’s principle

5S=0 with sz/e(u,a)dt

Point #2:

The geometric approach reveals the symmetry vector fields
responsible for the conservation laws for ideal fluids.

Point #3:

The result is Noether’s theorem for ideal fluids in Eulerian form.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Fluid flows & Lie

symmetries are related ...

Reference Current
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

.because fluid flows are flows of vector fields

Flows of vector fields arise,
whenever a Lie group G acts on a manifold M.

Thus, fluid flows & Lie symmetry are related.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Thus, fluid flows are Lie group actions on manifolds

Fluid flows for the Lie group action G = Diff(R®)

Reference Current
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Lie group actions summon differential-form operations

@ Exterior derivative d raises the degree of a k-form:
ANK — AR
@ Contraction _I with a vector field X € X lowers the degree:
X INK s AR
@ Lie derivative Lx by vector field X preserves the degree:

d
LxNC— AR where LA = | gink,
dt|i_o
in which ¢; is the flow of the vector field X.
@ Lie derivative Ly satisfies Cartan’s formula:

Lxa=X_dda+d(X _da) for aeAk.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Differential & contraction relations in vector notation

Exterior derivative
df = Vf-dx,
d(v-dx) = (curlv)-dS,
d(A-dS) = (divA)dV.

0=d?f=d(Vf-dx) = (curlgradf)-dS,
0=d?(v-dx) =d((curlv)-dS) = (divcurlv)dV.
Contraction with X = X -V
Xdv-dx = v-X,
X_1B-dS = —XxB-dx,
X_1dV = X-dS,
d(X_ dV) = d(X-dS)=(divX) dV.
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Lie derivative relations in vector notation

(a) Lxf=X_1df =X-Vf,

(b) Lx(v-dx)=(— X xcurlv+ V(X-V))-dx,
(€) Lx(w-dS)= (- curl(X x w)+ Xdivw) -dS,
(d) Lx(fdV) = (divfX)dV,

(e) For vector fields X and Y

LxY=[X,Y]:=(X- VY=Y -VX) -V =:adxV,
where [X, Y] = adyY is the commutator of X and Y € X.
(f) Fora 1-form density m=m-dx®dV € X*
Lxm=(V-(X@m)+(VX)"-m) dx®dV =:ad} m.
(9) Pairing X* x X — Rwith (m, u) := [qu_ImdV
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Fluid flows arise as Lie group actions on manifolds

Fluid flows for the Lie group action G = Diff(R®)

Reference Current

g ™

. 8 |
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Introduction The Hamilton’s principle framework for ideal fluids
This framework has many applications
Fluid flows & Lie symmetries are related ...

Fluid flows of the Lie group action G = Diff(R?®)

e For fluids, the Lie group G = Diff(R?) is the group of
smooth invertible maps of R3 with smooth inverses.

e Attime t, the mapping g(t) takes the label space to the
physical domain so that the path

x(t) = g(t)xo, with velocity x(t) = gg(t)~"x(t) =: u(x, t)
describes Lagrangian particle trajectories for each label xp.
e Recalling Z(g9(t)~") = —g~'gg™", the solution

a(t) = agg(t)~" of a(t)=—au(t)=—-L,a
is called an advected quantity for fluids, with, e.g., a € AX.
e Under the relabelling transformation g — gh for any h € G
a(t) — (aoh~")g(t)"" and u(t) := gg(t)~" € X(R®)

that is, the spatial fluid velocity vector field u(t) is right-invariant.
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle and Noether’s Theorem

Hamilton’s principle
0=6S=46[) [,I(u,a)dVdt

and Noether's Theorem
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Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle and Noether’s Theorem Noether’s Theorem with advected quantities

Hamilton’s principle and Noether’s Theorem

Hamilton’s principle for Lagrangian /(u, a) in spatial variables is

_53_5// uadth—// ( 5u+5a)dth,

where the variations du = u’(e, t)|.—o and da = a’(e, t)|.—o are
given via the vector field w = 5gg~' = 9’9" (¢, t)|—o as

u—w=[u,w|=radyw, da=—-Lya.

Here a denotes any quantity that is advected with the flow, and
[uw]=u-Vw—w-Vu
is the commutator of vector fields u & w, and finally
—Lyalt) = | a0 () = —a0|g (. )g'g (e, 1)
denotes the derlvatlve of a along the flow g(e, t) of w.
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Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle and Noether’s Theorem Noether’s Theorem with advected quantities

Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle for /(u, a) in spatial variables yields
8 ol TR 51 T
- — -wdV Vi .
/ / <8t6u dusy 5a<>a> wd +[ u e ]O
Here ad}, is the dual operator to ad, defined for a vector field w,
/ W-ad’[,de:/ m-ad,wdV,
Q Q
ad;, has an explicit formula, given for m = 6//6u as

adim=V-(uom)+(Vu)" -m=L,m,

and the diamond operation < is defined by

a1 sl
/Q<5av<>a> -wdV = QE-(—Ewa)dv.
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Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle and Noether’s Theorem Noether’s Theorem with advected quantities

Noether’s Theorem for EP with advected quantities

A vector field n is a symmetry of Hamilton’s principle if it obeys
Su=n+[un =0 and da=-Lya=0.

Hamilton’s principle for /(u, a) in spatial variables then yields

0 6l ol 61
//<6t5u “(5u_6<>a> ndV—l—[/ ndV]

= 0 (EP equation)
Theorem (Noether theorem for EP with advected quantities)

For solutions of the EP equation, each symmetry vector field n
of the EP Lagrangian yields an integral of the motion satisfying

d
dt (5

-ndV =0. (1)
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Hamilton’s principle implies the ideal fluid equations

Hamilton’s principle and Noether’s Theorem Noether’s Theorem with advected quantities

Kelvin’s circulation theorem

The Euler-Poincaré equation

0 ol 6l
<at+£u>6u_63<>a_o’

in combination with the mass conservation law

0
(at—l—ﬁu) pdV =0,

yields Kelvin’s circulation theorem in terms of (v - dx) :=p

d 0 16/
— v-dx:% <+£>v-dx:7{ ——oca
dt Joq) o \ot = ¢ ( ) c(u) poa

—16l
ou
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle and Noether’s Theorem

Theorems for advected quantities

Theorem (Commutator)

A commutation relation holds among the Lie derivatives,

[0t + Lyty s L)) at) = Liqun alt) - 2)

Proof.
By the product rule for Lie derivatives

(81' + [fu(t)) Lya(t) = Lotumalt) + Ly (3t + £u(t)) a(t).

Hence, commutation relation (2) holds, and because a(t) € V'is
arbitrary, the Lie derivative commutation relation holds

[0t + Lugey > L£n] = L [um) - (3)
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Hamilton’s principle implies the ideal fluid equations
Noether’s Theorem with advected quantities

Hamilton’s principle and Noether’s Theorem

Corollary and Ertel’s Theorem for advected quantities

Corollary (Symmetry)

If a vector field ) is a symmetry, then the Lie derivative L,
commutes with the evolution operator, (9; + Ly t)).

By (3) [0t+ Ly, Lyl alt)=0 for i+[un =0. (4)

Theorem (Ertel theorem)

If a is an advected quantity so that (8; + L)) a(t) = 0 and the
vector field n is a symmetry, then L, a is also advected.

Relation (4) implies the advection relation for £, a,
(8t + Eu(t)) Lya(t) =L, (3t + Eu(t)) a(t)=0. (5)
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Examples of symmetry
vector fields

Noether quantity Defining equation Symmetry vector field
Vorticity w = p'curl (%%) n=p tcurlW .V
pou p ou

Potential Vorticity

UCH:P_1B'V

\
|
‘ ny = p'curl (%g—lll)
|
Cross helicity density \

I \ |
H | H
H Helicity density ‘ Ay = (‘ 5/) -curl(li’) H
H 1 q=p tcurl (%%) VT | ey =p (Vo x VT)-V H

Table: Vector fields of relabelling symmetries for ideal fluids and MHD.
The vector v = 1 5’ is the circulation velocity in Kelvin's Theorem.
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 1 (mass advection)

Solving the symmetry relations

The solutions of the symmetry relations

Su=n+[un =0 and da=-L,a=0,
depend on the number and type of advected quantities, a(t).

Case 1. If the only advected quantity is the mass density
a = pdV, the symmetry condition is (by Cartan’s formula)

Ly(pdV)=d(ndpdV)=0.
In a simply connected domain, d? = 0 then implies that

ndpdV=d(W.dx)=curl¥.dS = 75=p curl¥W.V
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Case 1 (cont): Conservation of vorticity

Case 1 (cont): One advected quantity, pdV.
Substituting the solution = p~'curl¥ - V into Noether’s
theorem and using Corollary (4) yields

O_Ei’ _d/_,f”
= odt\ew) T dt Jo T su

d 7161 d [ 10l
- dt/Q,0(5 LdX A (n 1 pdV) = dt/ﬂpad Ad(W - dx)

_ _/ <§t+£u(,)>d<:“;” .dx )/\(\Il-dx).

This is the weak form of conservation of the vorticity 2-form,

0 146/
(01‘ + Eu) <cur15 dS)
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Case 1 (re-cont): Conservation of helicity

Case 1 (re-cont).
Upon choosing the arbitrary vector W to be

19/

Noether’s theorem for the case of one advected quantity
becomes

0 = /1‘5[,-dxAd(w.dx)

d 10/ 10/

This is conservation of helicity.
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Ertel’s theorem in usual hydrodynamic notation

Identify the evolutionary operator with the Lagrangian time

derivative b
Ot + »Cu(t) = Di’
and define
16/ 16/
_ -1 1O o _

ny =p curl <p5u> V=1p w-V with w:=curl <p5u>
Write the symmetry relation (4) as

D _ ;

pi @ Vialt) = (" w- V)fa(t) (6)

This is the usual form of the classical Ertel theorem.

For a scalar advected function, a € A%, (6) yields another scalar
conservation law, for g = (p~'w - V)a.
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 2 (two advection laws)

Case 2. Two advected quantities: a density and a scalar

Theorem

With two advected quantities a; = pdV € A3, a, = T € A9, the
simultaneous solution of L,(pdV) = 0 and L, T = 0 is for any
¢ €N,

ndpdV =d(¢dT). (7)

Proof.

The proof is simple, since a; = pdVisatop formand a, = T is
a bottom form. Hence, dT An JpdV = (VT -n)pdV = 0.
Thus, the advected quantities a; = pdV € A3, a, = T satisfy

0= (VTn)pdV = dTA(y 1 pdV) = dTA(W-dx) = dTAd(¢dT).
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Case 2 (cont): Conservation of potential vorticity

Substitute -1 pdV = d(¢dT) into our previous Noether
theorem calculation and recompute, finding this time that:

d /ol d 1(5/

d [ /14l
By (1) = Q< = -dx >/\d(¢dT)

9 14l
This is the weak form of potential vort|C|ty (PV) conservation,
0
(5 +20) (@pav) 0. ®

(gpdV):=d 16—l dx | AdT = curl 1ol -VTadVv. (9
pou pou
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Lie symmetries: Case 3

Case 3. Two advected quantities: a density and a 2-form

Theorem

For the case that a; = pdV € A3 and
a, = B-dS = d(A-dx) € A2, the only simultaneous solution of
LypdV =0andL,B-dS=0is

ndpdV=B-dS=p'B_ipdV. (10)

Proof.

Recall n_1pdV =d(W-dx) andidentify d(Ww-dx)= B-dS.

Ol
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Case 3 (cont): Conservation of cross vorticity

In this case, Noether’s theorem implies the conserved quantity

d /él d 16/
19/

By (10) = ;t/ﬂpw-dm B.dS

d 16/
- 2/ (B. 1% qv.
dt Q( P5U>d

This is the cross helicity, which is known to be conserved, in
particular, for ideal magnetohydrodynamics (MHD)
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Flows of Lie symmetries for Euler’s equations

Our solutions of the symmetry relations in Noether’s Theorem
Su=n+[un =0 and da=-Ly,a=0,

has yielded the following conserved quantities and symmetry
vector fields

Noether quantity Defining equation Symmetry vector field
Vorticity w=p 'curl (; gzl:) n=p curlW .V
H

Potential Vorticity

\ [
| H
()()} m = (35) 7 H
\ |

I \
| |
H Helicity density ‘ A
H | a=
I \

Cross helicity density

Table: Vector fields of relabelling symmetries for ideal fluids and MHD.
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

The flows generated by the symmetry vector fields

Here are the flows associated with our Noether symmetries:

@ The symmetry vector field n = p~'curlW - V generates a
flow along a simple closed curve C(t) that is transported
by the fluid velocity u, according to the symmetry relation
(&% + Lun) n =1+ [u,n] = du=0.

This is Kelvin’s circulation theorem.

@ ny =p 'eurl (%g%) -V = flow along vortex lines.

@ npy = p (Vo x VT) -V = flow along level sets of T.
@ 1cy = p B -V = flow along magnetic field lines.

Each of these flows may be regarded as a particle relabelling
symmetry, but Lagrangian fluid particles were not invoked!
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Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

Thanks for listening!

The key points of the lecture were:

Point #1:

Ideal fluid equations follow from Hamilton’s principle

5S=0 with S= / ((u, a)dt.

Point #2:

The geometric approach reveals the symmetry vector fields
responsible for the conservation laws for ideal fluids.

Point #3:

The result is Noether’s theorem for ideal fluids in Eulerian form.

Darryl D Holm Imperial College London In collaboration witt. Noether’s theorem for ideal fluids



Example 1 (mass advection)
Example 2 (two advection laws: a density and a scalar)
Examples of symmetry vector fields Example 3 (two advection laws: a density and a 2-form)

References for background reading

@ Geometric Mechanics and Symmetry: From Finite to Infinite
Dimensions,
DD Holm,T Schmah and C Stoica.
Oxford University Press, (2009).
ISBN 978-0-19-921290-3

@ Geometric Mechanics I: Dynamics and Symmetry,
DD Holm.
World Scientific: Imperial College Press, Singapore, (2008).
ISBN 978-1-84816-195-5

© Geometric Mechanics II: Rotating, Translating and Rolling
DD Holm
World Scientific: Imperial College Press, Singapore, (2008).
ISBN 978-1-84816-155-9

@ The Euler—Poincaré equations and semidirect products with
applications to continuum theories,
DD Holm, JE Marsden and TS Ratiu,
Adv. in Math., 137 (1998) 1-81,
http://xxx.lanl.gov/abs/chao-dyn/9801015.
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