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§1. Introduction: Statistical Hydrodynamic approach to turbulence

2D turbulence is described by small-viscosity 2D Navier-Stokes equation (NSE), perturbed

by a random force:

u′t − ν∆u+ (u · ∇)u+∇p = η(t, x),

x ∈ Γ, div u = 0 ; 0 < ν ≤ 1.

Here u(t, x) ∈ R2 – velocity, p(t, x) ∈ R – pressure, η(t, x) ∈ R2 – random force, ν –

viscosity, Γ is either a compact Riemann surface; e.g., Γ = S2 or

Γ = T2 = {(x1, x2) | 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b}. Or

Γ b R2 and u |∂Γ= 0.

Below, for simplicity of notation, Γ = T2; we also assume that
∫
u dx =

∫
η dx = 0.

Now

(u · ∇)u = u1
∂

∂x1
u+ u2

∂

∂x2
u.
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Remark

Another way to introduce randomness in Navier-Stokes equations would be through

random initial data. For that model it is more difficult to get physically interesting results. I

will not discuss it.
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Leray Projection. Denote

H = {u(x) ∈ L2(T2,R2), div u = 0,

∫
u dx = 0}, ‖ · ‖ − the L2-norm.

Then

L2(T2,R2) = H⊕ {u(x) = ∇p} ⊕ R2.

Denote Π : L2 → H. Apply Π to the equation. Since Π∇p = 0 and Πu = u, then

u′t − νAu+B(u) = Π η(t) =: η, (NSE)

where A is the 2d Stokes operator, Au = Π∆u, and B(u) = Π(u · ∇)u.

Let e1, e2, · · · ∈ H be the basis ofH, formed by eigen-functions of A,

Aej = λjej ∀ j ≥ 1

(this is the sin/cos basis, parameterised by natural numbers).
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Random Force. The force η has the form

η(t, x) =
∑
j

bjβj(t)ej(x),

where {βj(t) = βωj (t)} are i.i.d. random processes and the constants bj ≥ 0 fast

enough decay to zero. We can handle 3 classes of forces, corresponding to three classes

of random processes β(t). I will discuss only one of them:

βωj (t) = ∂
∂twj(t) + fj ,

where f1, f2, . . . are non-random vectors inH (i.e. non-random vector-fields) and

w1(t), w2(t), . . . are standard independent Wiener processes.

η(t) = ηω(t) is a white noise in the function spaceH. Other two classes of forces which

we can handle are the kick-forces and forces, which are compound Poisson processes, see

[1,2].
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Solutions. We regard a solution u(t, x) as a random process uω(t) ∈ H. We are

interested NOT in individual trajectories t 7→ uω(t), but in distribution (=the law) of a

solution u, Du(t) =: µt. This is a probability measure inH:

µt(Q) = P(u(t) ∈ Q), Q ⊂ H;

∫
H
f(u)µt(du) = Ef(u(t)).

A solution u(t) is a Markov process. Therefore

µt = S∗t (µ0),

where the operators {S∗t , t ≥ 0} extend to a semi-group of linear operators in the space

of signed measures inH.

Task: Study qualitative properties of distributions of solutions, i.e. of the measures

µt = D(u(t)), t ≥ 0.
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§2. Limit “time to infinity” (mixing).

Definition: a measure µ inH is called a stationary measure for (NSE) if

S∗t µ ≡ µ ∀ t.

If u(t) is a solution such thatDu(0) = µ, thenDu(t) ≡ µ. It is called a stationary

solution.

Existence of a stationary measure is an easy fact which follows from the compactness

argument due to Bogolyubov-Krylov. Not its uniqueness! – This is complicated.
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Recall that we consider

u′t − νAu+B(u) = η, η(t, x) =
∑

bjβj(t)ej(x), (NSE)

x ∈ T2. Coefficients bj decay with j: B0 =
∑
b2j <∞.

Condition (C). bj > 0 for each j ≤ N , where N = N(B0, ν) is sufficiently big.

For example, (C) holds if bj 6= 0 for all j.

THEOREM 1. If (C) holds, then: 1) there exists a unique stationary measure µ.

2) For any solution u(t) of (NSE) we have

dist(Du(t), µ) ≤ Ce−ct, c, C > 0. (mixing)

Here dist is one of the ‘usual’ distances in the space of measures (e.g., Prokhorov’s or

Wasserstein’s).

3) If force η(t, x) is smooth in x, then µ is supported by smooth functions. I.e.,

µ(H ∪ C∞) = 1.
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So, “statistical properties of solutions u(t, x) for t� 1 are universal and are described by

a unique stationary measure µ.” This result always was postulated by physicists as an

axiom:

”... we put our faith in the tendency for dynamical systems with a large number of degrees

of freedom, and the coupling between these degrees of freedom, to approach a statistical

state which is independent (partially, if not wholly) of the initial condition”.

(G. K. Batchelor ”The Theory of Homogeneous Turbulence”, p.6)

Stationary measures µ interest physicists the most.
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§3. Consequences of the mixing.

Ergodicity:

THEOREM 2 (SLLN). If (C) holds, then for any solution u(t) of (NSE) and any ‘good’ f(u)

we have

1

T

∫ T

0

f(u(s)) ds→ 〈µ, f〉 :=

∫
f(u)µ(du), a.s.

Remark. The rate of convergence is T−γ , γ < 1/2.

So “for a turbulent flow time-average equals ensemble-average”. This is another postulate

of the theory of turbulence:

”. . . we can anticipate, assuming applicability of ergodic theory. . . , that a time average is

identical with a probability average for the experimental fields”.

(G. K. Batchelor ”The Theory of Homogeneous Turbulence”, p.17)
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THEOREM 3 (CLT). Let 〈µ, f〉 = 0. Then

D
( 1√

T

∫ T

0

f(u(s)) ds
)
⇀ N(0, σ),

for some σ > 0 (depending on f ).

So “on large time-scales a turbulent flow is Gaussian”. Cf. the book of Batchelor, p.174.
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§4. Inviscid limit (ν → 0)

Consider (NSE) with small ν and with the force, multiplied by some degree of ν:

u′t − νAu+B(u) = νaη, a ∈ R. (∗)

Proposition. Solutions of (∗) remain∼ 1 as ν → 0 if and only if a = 1
2 .

Accordingly, below we discuss the scaled NSE

u′t − νAu+B(u) =
√
ν η, 0 < ν ≤ 1. (NSEν)
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Let all bj 6= 0, i.e. the force η is non-degenerate. Then for each ν eq. (NSEν) has a

unique stationary measure µν , and

• Du(t) ⇀ µν as t→∞ exponentially fast, for any solution u(t).

• There is a solution uν(t, x) s.t. Duν(t) ≡ µν ; uν is stationary in t.

• uν(t, x) is smooth in x if the force η is.

• Reynolds number of uν is Re(uν) ∼ ν−1.

Physicists are interested the most in properties of µν and uν when ν → 0.

Fact: E ‖∇uν(t)‖2 = B0, E ‖∆uν(t)‖2 = B1, where

B0 =
∑

b2j , B1 =
∑

b2jλj

.
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Theorem 4. Every sequence ν′j → 0 has a subsequence νj → 0 such that

uνj (·)→ U(·) as νj → 0,

in distribution, where the random field U = U(t, x) is stationary in t. Moreover,

a) every its trajectory U(t, x) = Uω(t, x) satisfies the free Euler equation

u̇+ (u · ∇)u+∇p = 0, div u = 0. (Eu)

b) The energyE(U) = 1
2‖U(t)‖2 = 1

2

∫
|U(t, x)|2 dx is time-independent ∀ω. If g(·)

is a bounded continuous function, then
∫
g(rot U(t, x)) dx also is time-independent.

c) limµνj = µ0 = DU(t) is an invariant measure for (Eu).

d)
∫
H ‖∇u‖

2 µ0(du) = B0,
∫
H ‖∆u‖

2 µ0(du) ≤ B1,
∫
H e

σ‖∇u‖2 µ0(du) <∞.

e) The measure µ0 is ”genially infinite-dimensional”: if K ⊂ H and dimHK <∞, then

µ0(K) = 0.
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z µ0 (andDU(·)) is called the Eulerian limit (for (NSEν)). It describes the space-

periodic 2D turbulence since it describes solutions of (NSE) with ν � 1 and Re� 1.

z ”Universality of 2d turbulence”. I recall that

B0 =
∑

b2j , B1 =
∑

b2jλj

Fact: The measure µν , 1 ≥ ν � 0, satisfies infinitely-many explicit algebraical relations

which are independent from ν and depend only on B0 and B1.

z Measure µ0 is supported by Sobolev space H2: µ0(H2) = 1. It is plausible that

µ0(H2+ε) = 0 if ε > 0 (∗)

But I cannot prove that.

Task: a) Check if the Eulerian limits µ0 andDU(·) depend on the sequence νj → 0.

b) Study the measure µ0 and the distribution of the process U . E.g., prove (∗).
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§5. Anisotropic 3d turbulence in thin domains.

Consider 3d NSE in the thin domain (x1, x2, x3) ∈ T2 × (0, ε) with free boundary

conditions in the thin direction x3:

u3 |x3=0, ε = 0, ∂3u1,2 |x3=0, ε = 0.

Perturb it by a random force of the form

η(t, x) =
∑

bjβj(t)ej(x),

where now {ej(x), j ≥ 1}, are eigen-functions of the 3d Stokes operator, and βj(t) are

kick-processes (”discrete-time white processes”). These processes have bounded

integrals: ∫ t

0

βj(s) ds ≤ C ∀t, ∀ω,

which is a technical advantage.
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Theorem 5. The law of (u1, u2)(t, x1, x2, x3) converges, as ε→ 0, uniformly in time t,

to the law of a solution (v1, v2)(t, x1, x2) of randomly forced 2d NSE in T2, and we have

E 〈normalised energy of 3d flow〉 → E 〈energy of 2d flow〉 (∗)

(so ε−1
∫
|u3|2 dx→ 0).

It seems that (in non-trivial situations) (∗) does not hold for enstrophy, and that

ε−1
∫
|∇u3|2 dx does not converge to zero.

So randomly forced 2d NSE describe a class of anisotropic 3d turbulence.

For these results for randomly forced 3d NSE see

Chuyeshov and Kuksin, ARMA 188 (2008) and Physica D 237 (2008).

See [1] for discussion.

Cf. well known related results for deterministic 3d NSE in thin domains by G. Raugel,

G. Sell (and many people after them).
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These are the rigorous results on turbulence in 2d and 3d. They form tiny isles of rigorous

knowledge in the ocean of unknown.

Still, it is not any more true that

”Nothing can be proven in the theory of turbulence” (G. K. Batchelor, 1998).
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