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Notation mainly:

ou

E—l—u-Vu—kVp:uVZu,
V-u=0,
where
u(x,t) = i+ ju+ kw,
= éu;.

We have initial data ug(z) - without loss of generality we have mean zero. We
also have pressure where

p(z,t) = —A7'(V-(u-Vu)),
— A [(Dsuy) (D5us)] -

Fourier representation:

ux,t) = Y alk, t)e’®x,
k-0

where

IVatol = [ Juben
T3
= L*Y Jak,t)*.
k
Ivalp = [IvaP @

/ (Bruy) (O5u1) dx,
= Y K2l 1),
k

Galerkin:
PV(Hx )= > K Xf(k,1).

k<N



Then the Galerkin method applied to the Navier Stokes equation would be

%+PN( N.ovul) + vpN = vVl
v-uV =o.
where PN (ulV) = u?.
Note that
(PN?=pN, [PN,Vv]=0, PN=(PYM)"
This is a significant simplification. If we now use the Galerkin approximation

and dot u” with the Navier Stokes equation we obtain

1d

sl B [ PN @Y vu) dx = < v

We have global in time, smooth solutions.

Fact A: Given ug(z), |[Vug||3 = Eo < oo. This says that given a velocity, if the
enstrophy is finite then 37 > 0 and E(T) < oo s.t V¢t € (0,T) ||[Vu™ (-, 1)|% <
E(T) uniformly in N.

Fact B: Given ug with finite enstrophy (|[Vug|3 = Ep < o0) and any o > 0,
then 3 T'(a) > 0 and g(T(a)) < oo so that for t € (0,T(a)) [le!VIEVUN (-, 1)|3 <
G(T(«)) uniformly in N.

(V) (x) = > [Kla(k)ek>
k

then

amt (IV]u)(x Z Ik|a(k zkxea|V\t

and

le?V1tug-, )3 = 37 ke K agk, )2,
k

This kind of regularity is called a Gevrey regularity.

Fact C: (follows from fact A).
Je > 0 s.t given |Juglle x ||[Vugllz2 < Cv? then u*(-,t) € C* with uniform in N
norms Vt > 0.

Fact C’: If |||V|2up|ly = ||uHH% < C'v, then the enstrophy and all other

norms are bounded uniformly in N V¢ > 0.

Fact D: Analysis that leads to fact A ’cannot be improved’, i.e. all the es-
timates that go into proving fact A are saturated.



Here we will define
KV () = 3 [ 0)l3
as the natural kinetic energy and the enstrophy is defined as
B(t) = [|Vul |3 = [l«"]3-

Poincare:

. 472
EN@):L3§:HqﬂMkJﬂ2Z—ZgKN@)

k=0
Energy equation:
d
— KN = —vEN.
dt
Enstrophy equation:
d
%EN = =2Vl + 2/wN S(VulY) W,

= —2vAu|E + Q/uN S(val) - Au?.

Now we will curl the Navier Stokes on the Galerkin approximation, to get

dw™ N/ N N 2 N N

W—FP (u” - Vw™) =vVaw? - Vu'.
This is the vorticity equation generated by the Galerkin approximation. Also if
we take the Navier Stokes and dot it with —V?u’¥ then it will give us terms in
the enstrophy equation shown previously. From here we will drop the 'N’. So
the enstrophy equation becomes

dE
T —2v||Vul|Z + 2/u -u- Au.

Note: Regarding the term w? - Vu - w” - if we consider the symmetric part
of this then we know that the trace of the matrix must be zero as V-u = 0
(divergence-free). Thus the real part of the eigenvalues will be zero, some will
have A < 0 and some A > 0, which will tell us whether the vortex is stretching
or contracting.

Now we want to consider the nonlinear term, i.e.

‘/u-Vu~Vu2

this is due to Holder inequality.

< [lufI=Vull2[[Vull

1 1
Fact: |[ullo < [|[Vul|2[|V?ul|3 for three dimensions.



To show this we say
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This calculation tells us that at each point:

L\? 1.1 L\? .
< | = A2 2 = 3 2ull2.
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Now we dot the Navier Stokes equation with |V|u to get

d1

1 3
SalI9 ol + [(Viw - (a- V) = ]I Ful

w709 < fullo [Tl
Sobolev in 3D says that
I£llzs < clllVI® £l|z2
then we can use this to obtain
JICR RGO E Y EAENE
then
LNl + (v~ cll VIl 1191wl <o

Again, we will write out the enstrophy equation

a1

G3Ivul = v+ [u- (V- v

IN

~ (v=2lvitulz) | Aul.

3 2nd September 2011

We take the Navier Stokes equations

d
d—ltl+u'Vu+Vp:1/V2u+f(x),

V-u=0,

where f is some forcing term, in only terms of space. We now consider periodic
cells of length scale [ but in whole the length scale is L. Note that we should con-
sider velocity length scales that are not necessarily periodic. We have L/l = «
where « is an integer. Now let f(x) = F®({~'x) where

|®]|12([0,1]3) = 1. If f(x) is square integrable then the kinetic energy must
remain bounded.

If we take the average of the Navier Stokes equation we obtain

d1

Galuls = —vival+ [t &)

Suppose f € Lo, then by Poincare (periodic function):

/ f=0, / ug =0, / u=0.
(0,L)? (0,L)? (0,L)3



From using this and the Cauchy-Schwartz inequality we would get

d1 472

Sl < ~ vl + flls £,
d 472

lullo 2 lalls <~ 3 + ulalfl,

which will simplify to become

d 472
Sl < T vlulla + £l

By Gronwalls inequality:

a2y

—dxlvy (I—e 7)

a(, t)ll2 < [aoll2e™ 22" + [[fll2—f77—-
L2

Going back to equation (1), we can now take the time average. We get

1/T dt il||u||2 *I/l /T dt||Vu( t)||2+1/T dif(x) - u(x,t)
T Jo a2""") T, N f o

Note that by the fundamental theorem of calculus

1T (dl 1/1 1
_ dt —_— = 2 = — — . T 2 - 2
2 (i) = 3 (Gt 00— gl )

but as T' — oo, the term above will go to zero. This is because the energy is
conserved.

Given

<F> 1/Tdt1/ d3zx F(x,t)
T= 7 T3 s b))
T 0 L3 (07[/)3

This equation says that
9 1
<v|Vu|® >r=<f-u>r +0 7/
< F>= lim < F >,
T—o0
(we could always say it goes to the supremum limit). Now we define
€ =< V|Vu\2 >
which is the rate at which the force is converted to heat.

e = <v|Vul* >,
= <f-u>,
<P >2< |u)? >7 .

IN



Now let U =< |u|?> >2 which gives
< >i<|u>i=F < |9 >7 U

We want to get rid of the "F’. If we go back to the Navier Stokes equation and
dot it with f, where V - f = 0, then the time average of the time derivate will
vanish. But we should then multiply the Navier Stokes by (—A~!f), where

_A—Qf: Z eik X-Tl({l;l)
ko

But we need to do a precalculation:
fx)=Fo(l '2) = <[f?>=F<|®*>.

Then for scaling purposes we have

2

a F ,(1
V= o <IVOP > 2)

If we now dot the Navier Stokes with A~2f and take the average, we get

<(A2f) : ‘fl‘:> +{(AT*f) - (u-Vu)) = —v (A7) - (Au)) + (A7) - f).

From rearrangement and some manipulation we obtain
(A7) = v (A7) -u) — (VAT?f: (uu))
From equation (2) by by the Cauchy-Schwartz inequality we get:

FH(ATOP) < v (A1) +sup | VAU,
X

! l l l
Ak <|A—1 q>|2>2 U+ ||A_1f||l212(0,l)3||v_1f||£2(0’l)3U2,

IN

VFI? <|A*1't1>2|>% U+ PF <|A*1'<I>|2>% <|V*1’¢>\2>% U2,

Note that the amplitude of the force is bounded from below, i.e.

Z<|A71(I,|2>% U72<\A*1<I>|2>i <V<I>|2>%

F< - 7
T2 {|AT1e]?) ! ([A~1®[2)
Remember that

1

e < FU{(|®*)?,

vU?  bU?
< a— + —.

l l

il < %_'_b

U — Ul ’

a
= —+b
RejL ’



where a and b are purely shape functions in the form of

(o)
(|A-1]2)?
<V*1<I>|2>i <\<I>|2>%

(a-1e2)s

)







