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Bounds on the bulk rate of energy dissipation in body-force-driven steady-state
turbulence are derived directly from the incompressible Navier–Stokes equations. We
consider flows in three spatial dimensions in the absence of boundaries and derive
rigorous a priori estimates for the time-averaged energy dissipation rate per unit mass,
ε, without making any further assumptions on the flows or turbulent fluctuations. We
prove

ε 6 c1ν
U2

`2
+ c2

U3

`
,

where ν is the kinematic viscosity,U is the root-mean-square (space and time averaged)
velocity, and ` is the longest length scale in the applied forcing function. The prefactors
c1 and c2 depend only on the functional shape of the body force and not on its
magnitude or any other length scales in the force, the domain or the flow. We also
derive a new lower bound on ε in terms of the magnitude of the driving force F . For
large Grashof number Gr = F`3/ν2, we find

c3

νF`

λ2
6 ε,

where λ =
√
νU2/ε is the Taylor microscale in the flow and the coefficient c3 depends

only on the shape of the body force. This estimate is seen to be sharp for particular
forcing functions producing steady flows with λ/` ∼ O(1) as Gr → ∞. We interpret
both the upper and lower bounds on ε in terms of the conventional scaling theory of
turbulence – where they are seen to be saturated – and discuss them in the context of
experiments and direct numerical simulations.

1. Introduction
The classical scaling theory of turbulence, as articulated in the first half of the

twentieth century by Richardson, Taylor, Kolmogorov, etc., is based on the concept
of the energy cascade. Energy is input on relatively large length scales determined
by the initial data, the flow domain and boundary conditions, and/or the body
forces driving the system. High Reynolds number turbulence obtains when the energy
dissipation mechanism is ineffective on the length scales of the energy input, the so-
called ‘outer scale’ of the flow. The nonlinear interaction – realized physically through
the phenomenon of vortex stretching – transfers energy down to small length scales
where viscosity dominates and the kinetic energy is dissipated into heat. For a modern
review, see the book by Frisch (1995).

In this paper we focus on turbulence in a steadily driven unit-density incompressible
Newtonian fluid in the absence of boundaries, in the long time limit. Then the initial



290 C. R. Doering and C. Foias

data are ostensibly irrelevant and the energy flux balance is between the input at
relatively large scale ` (a unit of length), defined by the forcing function, and a
relatively small length scale where the viscosity ν (with units length2/time) effectively
dissipates the energy. In the simplest theoretical treatment, the flow is characterized
by a single dominant velocity scale U (length/time) so the dimensionless Reynolds
number is

Re = U`/ν. (1)

Laminar flows may be characterized by a rate of strain on the order of U/`
and stresses ∼ νU/`, and thus an energy dissipation rate per unit mass (units
length2/time3)

εlam ∼ ν(U/`)2 = (U3/`)Re−1. (2)

On the other hand, the rate of energy dissipation in turbulent flow corresponds
to the rate of transfer of energy from large to small scales. Because the large-scale
transfer mechanism is supposedly independent of the dissipation mechanism, the rate
must be be proportional to the relatively large-scale eddy turn-over frequency ∼ U/`.
Hence turbulent energy dissipation should be proportional to this rate times the
kinetic energy per unit mass, i.e.

εturb ∼ (U/`)U2 = U3/`. (3)

Now consider an experiment in which the Reynolds number is ramped up from
low to high values by, say, holding everything fixed except the viscosity which is
decreased from large to small values. For the (thought) experiment in which the
viscosity decreases without limit, the non-vanishing residual turbulent dissipation εturb
indicates the presence of a broad ‘inertial’ range of length scales across which the
kinetic energy flux flows. The expectation in this scenario is then that as Re varies
from less than 1 towards ∞, the flow will cross over from a laminar state characterized
by εlam to a turbulent one with overall dissipation εturb independent of the viscosity, i.e.

ε ≈ U3

`

( c1

Re
+ c2

)
(4)

for some viscosity-independent constants c1 and c2.
Beyond the elementary dimensional analysis used in writing down (4), a great many

unspoken assumptions have in fact been additionally implemented. For instance by
restricting consideration solely to the length scale in the driving force, `, we neglect
the role of other large scales such as the domain size L (for a box of fluid of volume
L3 in three spatial dimensions), and other various familiar small scales (as we will
define and use them in this paper):

the Taylor microscale λ = (νU2/ε)1/2,
the Kolmogorov dissipation scale η = (ν3/ε)1/4,
or even other lengths like ν/U = Re−1`.

Moreover, the assumption of a single – yet to be quantitatively identified – velocity
scale neglects the role of an emergent spectrum of velocities such as those that can
be constructed (via dimensional analysis) by combining the magnitude of the forcing
function, F (units length/time2), with the various length scales in the domain, the
forcing, or other Reynolds-number-dependent velocities generated in the flow itself.
Finally, the form of the assumed scaling in (4) leaves open the possibility that the
viscosity-independent constants c1 and c2 are not absolute constants; they may still
depend on ratios of length scales (for example on the aspect ratio α = L/`) and/or
details of the functional form or shape of the body force. In the spirit of ‘universality’,
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currently fashionable in the physics literature concerning homogeneous turbulence,
one might further expect that all the quantities in (4) are unambigously and uniquely
defined independent of details of the driving force, and remain well behaved in the
infinite volume limit α→∞.

In this paper we examine the prediction of these heuristic considerations from
an elementary albeit rigorous mathematical point of view, using only properties of
the (weak) solutions of the Navier–Stokes equations of motion. We derive an upper
bound on the bulk time-averaged energy dissipation rate of the form of (4), giving
precise definitions to all the quantities involved. When U is the root-mean-square
(space and time averaged) velocity and ` is the longest length scale in the applied
body force (identified precisely in § 2), we find that the fundamental prediction is
indeed valid as an upper limit on ε with c1 and c2 depending only on the shape of
the body forcing function (also defined precisely below), independent of the overall
system size L and all other parameters. Thus the estimate indeed retains its form in
the limit α→ ∞ and some of the expectations outlined above are in fact realized by
the bound.

Rigorous asymptotic Re → ∞ dissipation rate bounds of the form ε 6 CU3/`,
where C is a viscosity and domain-volume-independent constant, were derived for a
number of boundary-driven flows during the 1990s. The residual dissipation bound
like this appeared for a shear layer – turbulent Taylor–Couette flow – where ` was
the layer thickness and U was the overall velocity drop across the layer (Doering &
Constantin 1992). That analysis, based on a mathematical device already introduced
by Hopf (1941), is closely related to energy stability theory for stationary flows
(Joseph 1976; Straughan 1992). Those results were extended to time-varying shear
layers (Marchioro 1994) and more general domains (Wang 1997), and a variational
method for optimizing the prefactor was introduced by Doering & Constantin (1994)
and Constantin & Doering (1995a) and implemented (in part computationally) by
Nicodemus, Grossmann & Holthaus (1998). A similar bound was recently derived
for a shear layer with fluid injection and suction at the boundaries (Doering, Spiegel
& Worthing 2000), a situation that is especially interesting because there is an exact
solution that realizes the scaling of ε in the vanishing viscosity limit, establishing the
sharpness of the result. This Hopf-inspired approach has also been applied to pressure-
driven flows (Constantin & Doering 1995b), convection in the Boussinesq equations
(Doering & Constantin 1996), and infinite Prandtl number (Constantin & Doering
1999) and porous medium convection (Doering & Constantin 1998). An earlier
variational approach to the derivation of rigorous dissipation bounds given some
mild statistical hypotheses, developed in the 1960s and 1970s by Howard (1972) and
Busse (1978), has recently been shown to be intimately related (Kerswell 1998, 2001).

The first such rigorous limit on bulk dissipation for body-force-driven turbulence
displaying a finite residual dissipation bound of the form U3/` in the vanishing
viscosity limit was derived by Foias (1997). But that estimate did not have all the
features of the form in (4); in particular the effective prefactor c2 depended explicitly
on α = L/` in that formulation. To a great extent the analysis here is to be considered
a refinement of the approach by Foias (1997); we are now able to derive estimates
which survive the infinite volume limit.

In a flow driven by a fixed body force the velocity scale U, and thus the Reynolds
number, is not directly controllable. Rather, it is the amplitude of the force F and its
dimensionless counterpart, the Grashof number

Gr = F`3/ν2 (5)



292 C. R. Doering and C. Foias

that may be specified a priori. While it has been observed that the rate of energy
dissipation in turbulent flows tends towards the upper bounds at fixed Reynolds
number, the opposite is the case at fixed (high) Grashof numbers. Then the estimate
relevant for turbulent dissipation is a lower bound; consider, for example, a pressure-
driven shear flow (Constantin & Doering 1995b) as compared to boundary-driven
shear turbulence (Doering & Constantin 1994). In this paper we will show that as
Gr →∞,

ε > c3

νF`

λ2
, (6)

where c3 depends only on the shape of the forcing function and λ is the Taylor
microscale. We are not aware of as straightforward a physical argument as that
described above for what the ‘proper’ scaling should be when ν → 0 and it is F
rather than U that is held fixed. But it might be expected based on a cascade
intuition – and indeed this is what is observed in numerical simulations (Borue &
Orszag 1996; Childress, Kerswell & Gilbert 2001; Schumacher & Eckhardt 2000) –
that the turbulent dissipation becomes independent of ν in the vanishing viscosity
limit. The lower estimate in (6) is consistent with this if λ/` = O(Gr−1/2) in the
vanishing viscosity limit. This, in turn, requires that λ vanish at least as fast as ν1/2,
which is both the conventional turbulence theory prediction and a rigorous lower
bound on λ at fixed U (see further discussion about this in the conclusion of the
paper). Hence an interesting conspiracy of saturated estimates is necessary for the
lower bound in (6) to be considered as realized for turbulent flows.

To our knowledge the first such rigorous lower bounds of the form in (6) were
presented by Foias, Manley & Temam (1993). But those results did not distinguish
between L and ` or involve the Taylor microscale. Other lower estimates with
this Grashof number scaling – again without the Taylor microscale dependence – are
derived by Childress et al. (2001) in the context of a specific form (shape) of the body-
forcing function. The results derived in this paper may be considered developments
and extensions of those analyses.

The rest of this paper is organized as follows: Next, in § 2, we present definitions
and the setting for the analysis. Then in § 3 we prove the central results of these
considerations: Theorem 1, a rigorous version of the relationship in (4), and Theo-
rem 2, the lower bound leading to (6). In the concluding § 4 we discuss these results in
view of analytical results and both real and computational experiments. Elementary
considerations produce, respectively, complementary lower and upper bounds, and
exact (steady laminar) solutions establish the sharpness of the scalings in the estimates
at large Gr and both small Gr and small Re. Direct numerical simulations provide a
test of the quality of the estimates in the context of turbulent flows at high Re, and
although there is no exact physical realization of the mathematical model that we
analyse here, some of the results may be loosely interpreted in terms of homogeneous
grid-generated turbulence in wind tunnels. In both cases we find that (even without
direct correspondences between some quantities in the model and the theorem versus
those in the turbulent simulations and experiments) the overall picture is consistent
in general, and even in some particular details – notably the non-universal character
of the constants in the scaling relations – with a saturation of the bounds by turbulent
flows.

For the readers’ convenience and in order to make the paper self-contained, we
have included a brief appendix with a review of the elementary inequalities used to
derive the results.
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2. Set-up, notation and definitions
We consider the Navier–Stokes equations for the velocity vector field u(x, t) and

pressure field p(x, t) for an incompressible Newtonian fluid:

∂u

∂t
+ u · ∇u+ ∇p = ν∆u+ f(x), ∇ · u = 0, (7)

in a periodic box of side length L, i.e. with x ∈ Td, the d-dimensional torus of volume
Ld. (The analysis holds for d = 2 and 3, but we will focus on the applications in
d = 3.) The applied body force f(x) is, without loss of generality, divergence free:

∇ · f = 0. (8)

We restrict attention to time-independent applied forces in this paper, but the analysis
could be extended to a wide variety of time-dependent forces. The initial data for the
velocity field are u(x, 0) = u0(x), and without loss of generality we restrict attention
to mean-zero body forces and initial conditions so the velocity remains mean-zero for
all t > 0, ∫

Td

u(x, t) ddx = 0. (9)

We will frequently utilize the Fourier decomposition of the spatially dependent
variables, using the conventions

u(x, t) =
∑
k

eik·xûk(t) (10)

for k = (2π/L)n where n = (n1, . . . , nd) with integer ni and k = |k| 6= 0. The Fourier
coefficients are

ûk(t) =
1

Ld

∫
Td

e−ik·xu(x, t) ddx (11)

so the divergence-free conditions in (7) and (8) are equivalent to the constraints

k · ûk(t) = 0, k · f̂k = 0. (12)

The L2 norms of derivatives of vector-valued functions will be denoted, for example,
by

‖∇Nf‖2 = Ld
∑
k

k2N |f̂k|2. (13)

This notation also holds for negative values of N, as defined by the term on the
right-hand side above (remembering that k 6= 0 in the sum).

For sufficiently regular body forces and initial data in d = 3, there are square-
integrable weak solutions to these Navier–Stokes equations for all t > 0. This is
Leray’s 1933 existence result (Constantin & Foias 1988; Doering & Gibbon 1995).
For clarity of presentation in this paper, we will manipulate the Navier–Stokes
equations and solutions formally, keeping in mind that all of our results may indeed
be justified in the strictest mathematical sense given appropriate attention to technical
issues. For example, we will write the kinetic energy evolution by dotting u into the
Navier–Stokes equation and integrating over Td to obtain

1

2

d

dt
‖u(·, t)‖2 = −ν‖∇u(·, t)‖2 +

∫
Td

f(x) · u(x, t) ddx, (14)

although this is only known to hold as an inequality for the weak solutions.
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Additionally, we will consider time-averaged quantities using the notation

〈F(·)〉 = Lim
t→∞

1

t

∫ t

0

F(t′) dt′ (15)

where Lim indicates a generalized limit that exists for the weak ‘statistical’ solutions
of the Navier–Stokes equations (Foias 1972, 1973; Foias & Prodi 1976); for modern
developments see the book by Foias et al. (2001). As far as the formal calculations
are concerned, the 〈·〉 operation is the familar long-time averaging procedure.

Now Poincare’s inequality, ‖ũ(·, t)‖ 6 (L/2π)‖∇ũ(·, t)‖, together with the Cauchy–
Schwarz and Gronwall inequalities in (14) imply that the kinetic energy is uniformly
bounded in time according to

1
2
‖u(·, t)‖2 6 1

2
‖u0‖2 exp(−4π2νt/L2) +

L2

8π2ν2
‖∇−1f‖2(1− exp(−4π2νt/L2)). (16)

Hence the time average of the time derivative in (14) vanishes resulting in the formal
power balance

ε ≡ 1

Ld
〈ν‖∇u‖2〉 =

〈
1

Ld

∫
Td

f(x) · u(x, ·) ddx

〉
(17)

where we have introduced the definition of the long-time-averaged energy dissipation
rate per until mass, ε. The root-mean-square (r.m.s.) velocity is defined by

U =

√〈
1

Ld
‖u‖2

〉
. (18)

Finally, we consider the detailed structure of the body-force functions we will use
in the analysis here. Let Id denote the unit d-torus ([0, 1]d with periodic boundary
conditions) and Φ(y) be a normalized, mean-zero, divergence-free vector field on Id;

1 =

∫
Id
|∇−1

y Φ(y)|2 ddy, (19)

0 =

∫
Id
Φ(y) ddy, (20)

0 =
∂Φ1

∂y1

+ · · ·+ ∂Φd

∂yd
. (21)

Now let ` = L/α for some integer α (the aspect ratio) and consider the mean-zero
divergence-free body-force functions f(x) on Td defined by

f(x) = FΦ(`−1x). (22)

See figure 1 for a graphic illustration for the set-up. We will refer to F as the amplitude
of the applied force, to ` as the (longest) length scale in the force, and to Φ(y) for
y ∈ Id as the shape of the force.

The L2 norms of derivatives of f on Td are

‖∇Nf‖2 = CN`
−2NF2Ld, (23)

where the coefficients CN depend only on the shape of the force according to

CN ≡
∑
n

|2πn|2N |Φ̂n|2. (24)
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L

L

F

F

Figure 1. The flow domain is the periodic box of size Ld (with d = 3 or d = 2 as illustrated here)
while the applied body force is periodic on an independent scale `. The aspect ratio is an integer
α = L/` > 1.

Here n = (n1, . . . , nd) with integers ni, |n| 6= 0 and Φ̂n are the Fourier coefficients

Φ̂n =

∫
Id

e−i2πn·yΦ(y) ddy. (25)

Note that C−1 = 1 and the definition (23) makes sense for N sufficiently small or
sufficiently negative, if not for all N.

We will also utilize some sup-norms of the shape function. For values of M where
the right-hand side is finite, we define

DM ≡ sup
y∈Id
|∇y∆−My Φ(y)|, EM ≡ sup

y∈Id
|∆−My Φ(y)| (26)

so that

‖∇∆−Mf‖∞ = DMF`
2M−1, ‖∆−Mf‖∞ = EMF`

2M. (27)

The coefficients DM and EM , like the constants CN , depend only on the shape of
the force function. Moreover, no matter what the spatial dimension d is or how
slowly the coefficients |Φ̂n| decay as |n| → ∞, there is always an M < ∞ for which
M >M implies DM and EM are finite. For instance if it happens to be the case that
Φ ∈ L2(Id), then M = (d+ 2)/4 certainly works.

3. Energy dissipation rate estimates
In this section we will derive the basic relationships used to establish the funda-

mental results, and then prove the key theorems providing the estimates of ε in terms
of ν, U, F and `.

Recall first the defining balance for ε in (17), using (22) to write

ε = F

〈
1

Ld

∫
Td

Φ(`−1x) · u(x, ·) ddx

〉
. (28)
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Then, for integer M (M is arbitrary for Galerkin approximations but take M > 1
2

for the weak solutions), multiply the Navier–Stokes equations by (−∆)−Mf, integrate
over Td and integrate by parts as appropriate to obtain

d

dt

∫
Td

u · ((−∆)−Mf) ddx = −ν
∫
Td

u · ((−∆)−M+1f) ddx

+

∫
Td

u · (∇(−∆)−Mf) · u ddx+ ‖∇−Mf‖2. (29)

Now take the time average, noting that the time average of the time derivative
vanishes, and divide by Ld to deduce

C−M`2MF2 = F

〈
1

Ld

∫
Td

[
νu · ((−∆)−M+1Φ)− u · (∇(−∆)−MΦ) · u] ddx

〉
. (30)

In this equation Φ means Φ(`−1x). Combining (28) and (30), we have established

Lemma 1. The energy dissipation rate per unit mass is given in terms of averages of
the velocity field, the length scale in the body force, and the shape function by

ε =
1

`2MC−M

〈
1

Ld

∫
Td

Φ · u ddx

〉
×
〈

1

Ld

∫
Td

[
νu · ((−∆)−M+1Φ) + u · (−∇(−∆)−MΦ) · u] ddx

〉
. (31)

The relation (31) already posseses the proper homogeneity with respect to the
system size L and the length scale in the force, `. What remains is to make the
scalings explicit.

First, note that the Cauchy–Schwarz inequality implies that〈
1

Ld

∫
Td

Φ · u ddx

〉
6

√
1

Ld
‖Φ‖2 ×

√
1

Ld
〈‖u‖2〉 =

√
C0U. (32)

In the final step above we used the definition (18) and the fact that, according to (24),

1

Ld
‖Φ‖2 = C0. (33)

Next, use Cauchy–Schwarz inequality together with (23) to see that〈
1

Ld

∫
Td

νu · ((−∆)−M+1Φ) ddx

〉
6 νU

1

Ld/2
‖∇2−2MΦ‖

= νU`2M−2
√
C2−2M. (34)

Finally, recalling (26), choosing M sufficiently large, and utilizing Hölder’s inequality
we have 〈

1

Ld

∫
Td

u · (−∇(−∆)−MΦ) · u ddx

〉
6 DM `

2M−1U2. (35)

Combining the identity from Lemma 1 with the estimates in (32), (34) and (35),

ε 6

√
C0U

`2MC−M
× (νU`2M−2

√
C2−2M + DMU

2`2M−1)

=

√
C0C2−2M

C−M
ν
U2

`2
+

√
C0DM

C−M
U3

`
. (36)
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We have thus proven one of the central results of this paper which we summarize
as

Theorem 1. Suppose y ∈ Id = [0, 1]d with periodic boundary conditions and Φ(y) ∈
L2(Id) is a divergence-free vector field with mean zero and ∇−1Φ(y) ≡ ∇∆−1Φ(y) has
norm 1 in L2(Id). Let L = α` for some integer α and x ∈ Td = [0, L]d with periodic
boundary conditions, and u(x, t) be a mean-zero solution of the Navier–Stokes equations

∂tu+ u · ∇u+ ∇p = ν∆u+ f(x), ∇ · u = 0, (37)

with body force f(x) given by

f(x) = FΦ(`−1x). (38)

Then the time-averaged energy dissipation rate per unit mass,

ε ≡ Lim
t→∞

1

t

∫ t

0

ν
1

Ld
‖∇u(·, t′)‖2

L2(Td) dt′, (39)

satisfies

ε 6 aMν
U2

`2
+ bM

U3

`
, (40)

where the space–time-averaged root-mean-square velocity U is defined by

U2 ≡ Lim
t→∞

1

t

∫ t

0

1

Ld
‖u(·, t′)‖2

L2(Td) dt′, (41)

and the coefficients aM and bM – uniform in the parameters ν, F , `, L and α – are

aM =
‖Φ‖L2(Id)‖∆1−M

y Φ‖L2(Id)
‖∇−My Φ‖2

L2(Id)
, (42)

bM =
‖Φ‖L2(Id) supy∈Id |∇y∆−My Φ(y)|

‖∇−My Φ‖2
L2(Id)

. (43)

Now we turn to the derivation of lower bounds on ε in terms of the viscosity and
the parameters of the applied force. There are two nearly parallel approaches we will
take, one of which yields a precise estimate for low values of Gr, and the other which
is potentially more effective in the limit of turbulence at high Gr (these remarks will
be elaborated in the discussion in the next section).

Return to (30), integrate by parts once each of the terms on the right-hand side,
and estimate them with the help of the Cauchy–Schwarz and Hölder inequalities:

C−M`2MF2 = F

〈
1

Ld

∫
Td

[
ν∇u :

(∇∆−MΦ
)

+ u · ∇u · (∆−MΦ)] ddx

〉
6
√
C1−2M F`2M−1ν1/2ε1/2 + EMF`

2MU
(ε
ν

)1/2

. (44)

Then replace the U on the right-hand side with
√
ελ2/ν, directly from the definition

of the Taylor microscale λ. A little algebra, utilizing the definition of the Grashof
number Gr = F`3/ν2, subsequently yields

C−MGr−1/2 6
√
C1−2MGr

−3/4
( ε

F3/2`1/2

)1/2

+ EM
λ

`

ε

F3/2`1/2
. (45)
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Solving for ε/(F3/2`1/2), we see that

ε

F3/2`1/2
>
`

λ
Gr−1/2

(
C−M
EM

+
C1−2M

2E2
M

`

λ
Gr−1

[
1−

√
1 +

4C−MEM
C1−2M

λ

`
Gr

])
. (46)

This may be transformed into a more explicit bound without any reference to the
Taylor microscale by noting that Poincare’s inquality implies λ 6 L/2π so `/λ > 2π/α.
Note also that as Gr → 0, this estimate simplifies to

ε >
C2−M
C1−2M

F2`2

ν
(47)

independent of the Taylor microscale λ and/or the aspect ratio α.
A slightly different bound is obtained by returning again to (30) and invoking the

estimates in (34) and (35) to deduce an explicit lower bound on U:

C−MF 6
√
C2−2M`

−2νU + DM`
−1U2. (48)

Dividing through by F , rearranging and solving for U/
√
F`, we find

U√
F`
>

√
C2−2M

4D2
MGr

+
C−M
DM

−
√

C2−2M

4D2
MGr

. (49)

This may be re-expressed as a lower limit on ε simply by squaring and substituting
ελ2/ν for U2:

ελ2

νF`
>
C−M
DM

+
C2−2M

2D2
M

Gr−1

[
1−

√
1 +

4C−MDM
C2−2M

Gr

]
. (50)

From this result it is then straightforward to see that as Gr →∞,

ε >
C−M
DM

νF`

λ2
(51)

which is (6) as expected.
We collect these results into

Theorem 2. Suppose y ∈ Id = [0, 1]d with periodic boundary conditions and Φ(y) is
a divergence-free vector field with mean-zero and ∇−1Φ(y) has norm 1 in L2(Id). Let
L = α` for some integer α and x ∈ Td = [0, L]d with periodic boundary conditions, and
u(x, t) be a mean-zero solution of the Navier–Stokes equations

∂tu+ u · ∇u+ ∇p = ν∆u+ f(x), ∇ · u = 0, (52)

with body force f(x) given by

f(x) = FΦ(`−1x). (53)

Then the long-time-averaged energy dissipation rate per unit mass, ε satisfies both

ε > cM
νF

`

`

λ

(
1 +

dM

2Gr

`

λ

[
1−

√
1 +

4Gr

dM

λ

`

])
(54)

and

ε > eM
νF

`

`2

λ2

(
1 +

fM

2Gr

[
1−

√
1 +

4Gr

fM

])
, (55)
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where Gr is the Grashof number

Gr ≡ F`3

ν2
, (56)

λ is the Taylor microscale defined by

λ2 =
νU2

ε
, (57)

and the coefficients cM , dM , eM and fM – uniform in the parameters ν, F , `, L and α – are

cM =
‖∇−My Φ‖2

L2(Id)
supy∈Id |∆−My Φ(y)| , (58)

dM =
‖∇y∆−My Φ‖2

L2(Id)
supy∈Id |∆−My Φ(y)| × ‖∇−My Φ‖2

L2(Id)
, (59)

eM =
‖∇−My Φ‖2

L2(Id)
supy∈Id |∇∆−My Φ(y)| , (60)

fM =
‖∆−M+1

y Φ‖2
L2(Id)

supy∈Id |∇∆−My Φ(y)| × ‖∇−My Φ‖2
L2(Id)

. (61)

For general shape functions with merely square-integrable ∇−1Φ(y), M > 1
2

at least. For
smoother shape functions M may be smaller, even negative.

4. Discussion
Several remarks are in order concerning the estimates for ε in Theorem 1, which

we rewrite here in terms of the Reynolds number Re = U`/ν and the dimensionless
dissipation ratio

β ≡ ε`

U3
6
(aM
Re

+ bM

)
. (62)

Figure 2 is an illustration of the upper bound in this form. Theorem 1 proves that the
dissipation ratio remains uniformly bounded in both the infinite Reynolds number
and the infinite volume limits as anticipated by heuristic scaling arguments outlined
in the introduction. The bound on the asymptotic Re → ∞ value of the dissipation
ratio, bM = O(1), depends only on the shape Φ(y) of the driving force. For a given
body-force shape function, the parameter M may in principle be adjusted in a Re-
dependent manner to minimize the right-hand side of (62). This small amount of
freedom in the choice of M appears to lead at most to a quantitative improvement
of the bound. Hence to simplify notation in the remainder of this section, we will
for the most part drop the indices on shape-dependent constants (a, b, c, C , C ′,
etc.).

Often in applications the Taylor–Reynolds number Rλ = Uλ/ν based on the Taylor
microscale is used to indicate the intensity of the turbulence. The wavenumber
associated with this scale, λ−1, is the standard deviation of the Fourier power spectrum
of the flow field. Hence when there is a broad range of length scales in a turbulent
flow, λ is an intermediate scale in the so-called inertial range. We may restate the
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101

100

100 102 104 106

Re(b/a)
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b

Figure 2. Illustration of the bound on the dissipation factor β = ε`/U3 as a function of the
Reynolds number Re = U`/ν. The scale factors a and b depend only on the shape of the applied
body force. This kind of functional relationship, as well as a dependence of scale factors on the
details of the forcing, is realized by turbulent flows (see in particular Sreenivasan’s (1998) summary
of data from direct numerical simulations).

result of Theorem 1 in terms of Rλ by bounding the Taylor microscale from below:

λ =

(
νU2

ε

)1/2

> `
(
Re
( a

Re
+ b
))−1/2

. (63)

Hence

Rλ >

√
Re

((a/Re) + b)
(64)

and the Taylor–Reynolds number grows at least as fast as Re1/2 as Re→∞, whether
the flow is turbulent or not. The classical theory of turbulence predicts that precisely
this bound’s scaling, Rλ ∼ Re1/2, is realized at high Reynolds number.

The upper bound on dissipation ratio β estimate in (62) is actually observed at high
Reynolds number in a wide variety of experimental and computational studies. This is
generally understood in terms of the cascade picture of turbulent dynamics mentioned
in the introduction: the energy dissipation rate tends to become independent of
the viscosity in high-Reynolds-number turbulence. Conveniently, Sreenivasan has
collected a number of measurements of β from wind tunnels (Sreenivasan 1984) and
direct numerical simulations (Sreenivasan 1998), providing plots of the dissipation
factor β analogous to that in figure 2. The data indicate that for Rλ in excess of
between 50 and 100, corresponding to Re in the thousands and beyond, β is a
constant of order 1. Measured asymptotic values of β range from system to system
between about 0.5 and 3 depending on the details of the form of the body forcing
(in simulations) or the grid structure (in the wind tunnels), corresponding nicely with
the body-force shape dependence of the constants anticipated by the analysis in this
paper.
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The bound on the dissipation ratio in (62) may be recast as an upper bound on
β in terms of Rλ, as the data are often plotted (Sreenivasan 1984, 1998). To see this,
note that by the definitions of β, Re, λ and Rλ we have the simple identity Re = βR2

λ .
Then substitute βR2

λ for Re in (62) and solve for β to see that

β 6
b

2

(
1 +

√
1 +

4a

b2

1

R2
λ

)
. (65)

For decreasing values of Rλ, necessarily corresponding to decreasing values of Re,
β increases in all experiments and simulations, consistent with the crossover from
turbulent dissipation (β ∼ Re0 or ∼R0

λ) to laminar scaling (β ∼ Re−1 or ∼ R−1
λ ).

Indeed, the low-Reynolds-number scalings in (62) and (65) are sharp as seen by
an application of Poincare’s inequality (‖∇u‖2 > (4π2/L2)‖u‖2 =⇒ β > (4π2/α2Re)).
Hence we have the limits, uniform in Re for all values of the Reynolds number,

4π2

α2Re
6 β 6

( a

Re
+ b
)
. (66)

In terms of Rλ, we have thus proven

2π

αRλ
6 β 6

b

2

(
1 +

√
1 +

4a

b2

1

R2
λ

)
. (67)

The only significant difference between the upper and lower bounds in both (66) and
(67) as the Reynolds numbers→ 0 is in the aspect ratio dependence of the prefactors.

Now we turn to point out precisely what the bounds on ε in (66) and (67) do
not tell us: for a given applied body force they yield no a priori information on the
magnitude or structure of the resulting flow field or dissipation rate. Consider again
the experimental scenario described in the introduction where all the system variables
are held fixed except the viscosity, which is lowered without limit in search of high-
Reynolds-number turbulence. As we have formulated the problem, the parameters
under our control are L, ν, F , ` and the body-force shape function Φ(y). The estimates
for ε in (66) are expressed in terms of ` and ν, controlled quantities, and the r.m.s.
velocity U, a derived quantity. In (67) they are expressed in terms of λ, another
derived quantity. But we do not know how to realize a specific value of U (or ε)
or how to guarantee a particular Re or Rλ for these flows; as we have designed the
experiment the Grashof number is the proper control parameter, not the Reynolds
number.

The results of Theorem 2 are just the type of lower estimate on ε that provide a
partial answer to the question of how large a ‘response’ is to be expected from a given
applied force. The appropriate dimensionless expression for ε that is independent of
ν at a priori specified F (the analogue of the dissipation factor β at a given value of
U) is

γ ≡ ε/√F3`, (68)

and the bounds in Theorem 2 may be rephrased as a lower bounds on γ:

γ > cGr−1/2 `

λ

(
1 +

d

2Gr

`

λ

[
1−

√
1 +

4Gr

d

λ

`

])
(69)
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and

γ > c′Gr−1/2 `
2

λ2

(
1 +

d′

2Gr

[
1−

√
1 +

4Gr

d′

])
. (70)

Let us begin by examining these estimates in the limit Gr → 0. In order to clarify
their contents, note that the function ψ(x) = (1/x)(1 + (1/2x)[1−√1 + 4x]) decreases
monotonically from 1 to O(1/x) as x varies from 0 to +∞. Then use λ 6 L/2π ⇒
`/λ > 2π/α to see that the Gr → 0 limits of these are, respectively,

γ >
c

d
Gr1/2 =

C2−M
C1−2M

Gr1/2 (71)

and

γ >
c′

d′
Gr1/2 `

2

λ2
. (72)

Not unexpectedly, we can also estimate γ from above in terms of Gr. Indeed, for
any divergence-free vector field constrained by the balance in (17),〈

ν‖∇u‖2
〉

=

〈∫
Td

f · u ddx

〉
, (73)

the dissipation rate obeys〈
ν‖∇u‖2

〉
6 ν‖∇U St‖2 ≡ LdεStokes, (74)

where U St(x) is the solution of the Stokes equation

−ν∆U St + ∇P = f, ∇ ·U St = 0. (75)

Thus

ε 6 εStokes =
F2`2

ν

∑
n6=0

|Φ̂n|2
4π2n2

= C−1

F2`2

ν
⇒ γ 6 C−1Gr

1/2. (76)

Therefore, recalling that C−1 ≡ 1 and using M = 1 in (71), we see that the upper
bound in (76) and lower bound in (69) actually converge at low Gr:

lim
Gr→0

γ = Gr1/2 ⇐⇒ lim
Gr→0

ε =
F2`2

ν
. (77)

Combined with the upper bound in (76), the alternative lower bound in (72) implies
simply that as Gr → 0,

λ > C`⇐⇒ β 6 C
1

Re
(78)

(where C =
√
eM/fM).

When the Grashof number is fixed, the energy dissipation rate is maximized by a
Stokes flow. This is distinct from the dissipation rate’s minimization by such a laminar
flow at fixed Reynolds number; the low-Re limiting Stokes flow realizes the lower
bound in (66), modulo the aspect ratio factor. For some simple shapes of the applied
force the extremizing Stokes flow may be an exact – albeit possibly unstable – solution
of the Navier–Stokes equations at arbitrary Grashof [or Reynolds] number, so the
upper bound in (76) [or lower bound in (66)] may actually be sharp at all values of
Gr [Re].

The lower bounds on γ in (69) and (70) are also saturated by steady laminar flows
at high values of Gr (Foias et al. 1993). To see this, choose any divergence-free velocity
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field v(x) periodic on the length scale ` that is not a solution of the homogeneous
Euler equations (i.e. such that v · ∇v is not a gradient). Then define divergence-free
f(x) by f = v ·∇v+∇p−ν∆v so that the resulting r.m.s. velocity scale U and the force
magnitude F are related according to F ∼ U2/` as ν → 0, corresponding precisely to
(48) as Gr → ∞. For such flows λ = O(`) uniformly in Gr, so γ ∼ Gr−1/2 consistent
with the lower limits in (69) and (70) at high Gr. Note that this latter example does
not saturate the upper bound on ε in Theorem 1 or (66) or (67); that particular limit
seems to require truly turbulent flows to be realized.

On the other hand, direct numerical simulations of turbulent body-forced flows
(Borue & Orszag 1996; Childress et al. 2001; Schumacher & Eckhardt 2000) indicate
that γ ∼ Gr0 as Gr →∞. This is the expectation in accord with fundamental exper-
imental ‘law’ of turbulence that the energy dissipation rate becomes independent of
viscosity as ν → 0, all other parameters held fixed (Frisch 1995). This observed γ ∼ Gr0

might also be conjectured to be the scaling in the ‘best’ lower bound, for while tur-
bulence tends to saturate the upper bound on ε at fixed Re it should correspondingly
lean toward the lower limit at fixed Gr.

Indeed, the Grashof number may be considered a measure of the applied force
(non-dimensionalized by ν and `) and the Reynolds number a measure of the ve-
locity in the flow (also non-dimensionalized by ν and `). Disregarding details of
the spatial correlations between the shape of the force function and the struc-
ture of the mean flow field, the product Gr × Re is a measure of the dissipated
power ε (non-dimensionalized by ν and `). Laminar flows subject only to molec-
ular friction forces are expected to maximize Re at fixed Gr; equivalently they
should minimize Gr at fixed Re. The enhanced dissipation associated with turbu-
lence means that turbulent flows should reduce (minimize?) Re at fixed Gr, relative
to laminar flows at the same value of Gr. Equivalently turbulence should increase
(maximize?) Gr at fixed Re. These considerations imply just what was asserted: tur-
bulence may be expected to tend toward the minimum of ε × (`4/ν3) ∼ Gr × Re
at fixed Gr, equivalent to the observed tendency toward the maximum of ε at
given Re.

The apparent Gr−1/2 scaling of the lower bound on γ in (69) and (70) at high Gr is
reconciled with the observed turbulent Gr0 scaling when the additional dependence
on the Taylor microscale in (72) is accounted for. Recalling the defining relations for
λ and β, λ2 = νU2/ε and β = ε`/U3, it is easy to see that `2/λ2 = γ1/3Gr1/2β2/3. The
high-Gr limit of the lower bound on γ in (70) is then seen to be equivalent to the
simple relationships

γ > Cβ ⇐⇒ Re > C1/3Gr1/2 (79)

(where now C = (C−M/DM)3/2).
Turbulent flows are characterized by the appearance of a non-zero residual dissipa-

tion as Re→∞ (however we note that the appearance of such a residual dissipation
as ν → 0 does not imply turbulence (Doering et al. 2000)). From (79) above we see
that Gr → ∞ ensures that Re → ∞. Although we cannot ensure a priori that any
particular applied body force shape function will produce turbulence as Gr → ∞, if
it does in the sense that β saturates to its O(1) upper bound as the Reynolds number
subsequently diverges, then the lower bounds on γ in (70) and (79) are precisely
the observed Gr0 scaling. Another way to express this is as follows: if the Taylor
microscale achieves its ‘turbulent’ value at high Gr, i.e. if λ ∼ O(ν1/2) as ν → 0, then
the lower bound on γ is proportional to ν0 implying the appearance of a residual
dissipation in the vanishing viscosity limit.
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To summarize, in this paper we have derived upper and lower bounds on the
time-averaged energy dissipation rate in solutions of the Navier–Stokes equations
with an applied body force in the absence of boundaries. The bounds require
no assumptions on statistical correlations in the solutions, and are expressed in
terms of either the magnitude of the resulting ‘outer’ velocity scale (or Re, or
Rλ) or the magnitude of the driving body force (or Gr). Based on considera-
tions of exact steady laminar solutions in the low-Gr and -Re and high-Gr limits,
and experiments and direct numerical simulations of turbulent flows at high Gr
and Re, we expect that these estimates cannot generally be improved – modulo
prefactors and perhaps the aspect ratio dependence of the lower bounds in (66)
and (67). Steady laminar Stokes-like flows tend to saturate the bounds on one
side, while turbulence tends to saturate the scalings of the limits on the other
side.

We thank J. Otero for a critical reading of the manuscript. C. R. D. acknowledges
many helpful discussions with R. R. Kerswell. This work was supported in part by
research awards from the US National Science Foundation.

Appendix. Basic inequalities
Poincare’s inequality: Suppose f(x) is a mean-zero, periodic function on the d-

dimensional torus [0, L]d. Then

‖f‖ 6 L

2π
‖∇f‖. (A 1)

Proof. Write

f(x) =
∑
k

eik·xf̂k(t) (A 2)

for k = (2π/L)n where n = (n1, . . . , nd) with integer ni and k = |k| > 2π/L, and
consider the L2 norm of f and ∇f in terms of their Fourier coefficients to see that

‖∇Nf‖2 = Ld
∑
k

|f̂k|2 6 Ld
∑
k

L2k2

4π2
|f̂k|2 =

L2

4π2
‖∇f‖2. (A 3)

Cauchy–Schwarz inequality: Suppose f(x) and g(x) are square-integrable functions.
Then ∣∣∣∣∫ fg

∣∣∣∣2 6 ∫ |f|2 ∫ |g|2. (A 4)

Proof. (We establish it for real scalar functions; proofs for complex and/or vector-
valued functions proceed similarly.) Assume g 6= 0, otherwise the assertion is obvious.
Let t be a real parameter. Then since (f − tg)2 > 0,

0 6

∫
(f − tg)2 =

∫
f2 − 2t

∫
fg + t2

∫
g2. (A 5)

To establish the result, minimize the right-hand side over t with the choice t =∫
fg/

∫
g2.
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Gronwall’s inequality: Suppose there are real-valued functions g(t) and h(t) so that
f(t) and its derivative df/dt satisfy

df

dt
6 g(t)f(t) + h(t). (A 6)

Then for t > 0,

f(t) 6 f(0) exp

(∫ t

0

g(s) ds

)
+

∫ t

0

exp

(∫ t

r

g(s) ds

)
h(r) dr. (A 7)

Proof. Multiply (A 6) by the positive (to preserve the inequality) integrating factor
exp(− ∫ t

0
g(s) ds) and rewrite as

d

dt

(
f(t) exp

(
−
∫ t

0

g(s) ds

))
6 h(t) exp

(
−
∫ t

0

g(s) ds

)
. (A 8)

Then integrate from 0 to t (preserving the inequality), multiply through by the positive
factor exp(+

∫ t
0
g(s) ds), and rearrange to establish the result.

Hölder’s inequality: We use just one simple version of Hölder’s inequality, and for
simplicity here prove it just for real scalar functions. Suppose f(x) is integrable and
g(x) is bounded. Then ∣∣∣∣∫ fg

∣∣∣∣ 6 sup
x′
|g(x′)|

∫
|f|. (A 9)

Proof. Pointwise,

±f(x)g(x) 6 sup
x′
|g(x′)||f(x)|. (A 10)

Integration over x preserves the inequality.
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