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Abstract. As an alternative to removing the pressure field in regularity arguments for strong
solutions of the 3D periodic Navier-Stokes equations, we show that if the pressure field P
is assumed to be uniformly bounded for all ¢ in L'%%+¢ (¢ > (), then the Navier—Stokes
equations are regular. The method of proof uses a so-called ‘lattice theorem’ which gives a set
of differential inequalities for the quantities Hy E‘"DN u||% (m 2 1). As a parallel resuls,
this theorem also gives Sertin's L3+¢ regulariry result for the velocity field.
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1. Infroduction

The classical texts on the Navier-Stokes equations [1-7] have discussed the problem of
3D global regularity in great detail. Ladyzhenskaya’s result [1] conceming the regularity
of strong solutions; namely that the velocity field # must be assumed to be bounded in
L* to obtain tegularityt, followed by Serrin’s reduction [3] of this assumption to |#||3+¢.
remind us how small yet how large the gap is between what must be assumed and what
can be proved. In this type of work on strong solutions, it is conventional to remove the
pressure field P, usually using a nonlocal projection operator (see [5, 6]), which necessarily
forces any assumptions that must be made onto the velocity field. For the incompressible
Navier-Stokes equations, on periodic boundary conditions, on the domain = [0, 1]¢ with
v as viscosity and a zero momentum condition f;udx =0

w+ @ VIe=vAR—VP+f  diva=0 SR ),

the removal of the pressure field P from the problem tends to be preferred because u is
a dynamical variable. Because of the Boussinesq approximation, 7P obeys no independent
PDE of its own. Instead, 7 is slaved to u via a Poisson equation which can be obtained
simply by taking the divergencef of (1.1)

AP = —Zu,-‘juj‘,-. ' (1-2)

ij

1 We use the notation f;, x| dx = |u|I$ for the nomm in L°.
1 In (1.1} we take f to be a divergence-free C* forcing function.
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Indeed, it is the solution of this equation for P which adds to the aiready great difficulties
which are encountered in 3D computations of the Navier-Stokes equations, The pressure
field P does play a role, however, in partial regularity arguments for weak solutions. Papers
by Foias, Guillope and Temam [8], Struwe [9] and Caffareili, Kohn and Nirenberg [10] have
considered this.

This paper, however, is not concerned with regularity results for weak solutions [3—10]
but is concerned with how assumptions on the pressure field instead of the velocity field can
be used as an alternative in providing estimates for strong solutions. Removing the pressure
field and loading all assurnptions onto the velocity field has no great merit in itself because
Serrin’s |Ju||s4, assumption has no obvious physical interpretation. Purely as a maiter of”
taste, it is equally possible to reverse the process by making no assumptions at all on z
and then one can set about investigating the assumptions that need to be made on P which
would give 3D regularity. This exercise has some value if the assumption which needs to
be made on P tumns out not to be too severe: for instance, if it could be reduced to || Pf;
needing to be uniformly bounded for all time with s not too high. From physical arguments
(e.g. Bemouilli’s equation), one might expect s = 1 to be the sharp result. The main
theorem of this paper, which will be proved in section 4, will show that if ||P||; is assumed
to be uniformly bounded for all ¢ for s > 15/8, then the 3D incompressible Navier—Stokes
equations (1.1) are regular. While not guite sharp, this theorem means that we are ¢lose to
the sharp result and that values of s can be chosen for which s < 2. This can be achieved
through the use of the expression for AP from (1.2) in a Galiardo-Nirenberg inequality for
the pressure which re-introduces the Navier—Stokes velocity field back into the problem at
that point.

To prove this theorem, which is the main result of the paper, it is necessary to prove
a subsidiary result, called a lattice theorem, which is proved in section 3. This generalizes
the idea of what the authors have called a ladder theorem [11], first introduced in [12, 13]
for the complex Ginzburg—Landau equation. For clarity, this is explained briefly in the next
section. Both the ladder and lattice theorems also give the [u|l34.c regularity result, as they
should if they are sharp. '

2. Ladders and lattices

2.1. A summary of the ladder structure

In [11] it was shown how a ‘ladder’ could be constructed which generalizes the bootstrapping
idea [4, 5] through which the velocity field in one Sobolev space can be controlled using
the bounds on lower spaces. In this subsection we give a quick summary. Define a set of
quantities in 4 dimensions (d = 2, 3)

d

He=3 > > [ 1wt ar = 10w @
i=1 |n|=N

D7 is the usual notation for all derivatives of order n in d dimensions where 7z is a multi-

index such that n; +ny +--- +ng = 7| = N. Because divy = 0, it is also possible to
write (2.1) as

Hy = f curl® u[?dx 2.2)
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where curl” « means taking the curl of %, N times. In [11] the following pair of differential
inequalities were found

Lfv € —vHys1 + cHy | Dulloo -+ Hy*Fr? 2.3)
LHy € —vHyar + cHY P Hyp lulloo + HyFA? e

where Fy =Y ; DV f,-n?j. This result is not unlike that of Beale, Kato and Majda [14] for
the Euler equations and (2.3) reduces to their result when v = 0. To get control over the
Hy.1 we now need one further step to get a differential inequality where we can obtain a
set of absorbing balls. )

Theorem 1. Foreachd, Nz2landl1 s N

l+I/s

I

58 S —v=L + cHy || Dulloo + Hy"Fy* 23)
N—s

1 v BN Hylul

2 <5 witlee | pizpie 2.6)
N-—s

Proof of thearem I. We use (2.3) and (2.4) together with the following lemma:

Lemma I. If, on periodic boundary conditions, we define Hy = Y. f|D"u;[? then
vr,s, NeNwiths g N,

Hy < HYTFETTES. : @7

Proof of Lemma. Step 1. TFirstly, let Hy = Y [ |D"¢;|%. Now we show that -

Ay < B2 8, g (2.8)

. 1/2 1/2 '
By = f (D™ ) (D™ g < [ f Dy } [Z / (Dm-'qs,-)z] 29
using the Cauchy-Schwarz inequality.

Step 2. Secondly, we show that YM ¢ N,
Hy < Hy 0 g/ (2.10)

To achieve this, we know from (2.8) that (2.10) holds for M = 1. Assume (2.10) holds for
M. Then

HM+1 H.-E;isz < g;ﬁzHgfin)Hme) (2.11)
50
HM+1 H{M+l)/(M+2)H[/(M+2} (2-12)

Hence (2.10) is true VM &N by induction.
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Step 3. Thirdly, we show that VM, r e N

-~

HM \<~ I}gi;M-{—r)ﬁg/(M-ﬁ-r)- (2.13)

We know from (2.10) that (2.13) holds for r = 1. Assume (2.13) holds for r. Then

f?Mi < ﬁg_{_(ruw) ggfcMw) < ﬁgi(rﬂ-rﬂ) gér+l)/(M+r+l) (2.14)

where we have used (2.10), Hence (2.13) is true YM, r € N, by induction.l

Step 4. 'We know (2.13) holds with

Hn =Y [ 107P. @15)
Now suppose that originally ¢; = DVN~My;, then

Hy = Hy and Hy = Hy_u. (2.16)

Then (2.13) becomes,

MUMEK) 3 K /(M
‘I’M+p < lpMip-}-K ‘pp HM+K)

and so with M = 5 we have
Hy < Hyy HE
Thus we have proved theorem 1. a

2.2. Consequence of the ladder structure

To find absorbing balls for the Hy we must find some control over either the || Dul|. or
llz]lo terms and the next lowest rung of the ladder. To achieve this, the || Du||e term or
the [|e]|o term can be bounded above using a Gagliardo—Nirenberg inequality [15].

| Dull2, < cHyy Hy —® (2.18)
where @ = (d + 2}/I2(N - 1)] which implies that 2N > 4. Altematively
Nl < cHEHy' ™ (2.19)

where b = d/2N and and so again 2N > 4. In the first case, going back a step to (2.3),
we can peel off the Hy,| from the central term using a Young’s inequality to combine with

the —vHy.; term and then appeal to (2.7). Indeed, this is the slightly sharper of the two
alternatives:

2

H
o e H T 1+ RS (2.20)
-1

1. v
—Hy < —=(2—
Hy < 2( a)

where we have absorbed a term in Hj into the constant as it is bounded above. Because
we are restricted by 2N > d to ensure @ < 1 then, for d = 2 or 3, we must choose N 2 2.
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Consequently, absorbing balls exist for all Hy provided one has control over H,; for large
times. Returning to (2.2), we can see that the quantity My is

- Hy =flcurlu|2dx='f |ewi® dx (2.21)

which is the enstrophy. It is well known that when d = 2 this can be bounded above using
a maximum principle. No such bound is known when d = 3. Hence we have an attractor
[16] made up from C* functions for d = 2 but nothing more than an L? bound on the
velocity field when d = 3.

It is here where the ladder structure shows that control over H; is a sufﬁcwnt condition
for a ball for all the Hy but, as we have said earlier, this is by no means the weakest
result. One of the classical results of Navier-Stokes analysis (see references in [3-3]) is
that the assumption that the velocity field is uniformly bounded in L3*€ is sufficient to show
regularity. To achieve this from the ladder requires the following procedure. We not only
use the ladder where we step along in gradients but also-step up in L? to form a ‘lattice’
which is, in effect, a W"*?-space although we keep only highest derivatives. Consequently,
we define

Hym = 2 Z le"uziz"‘ = llD"'uilz,,, K (2.22)

i=1 |n|l=N

where m 2 1, for which we can prove the following theorem.

Theorem 2., For N > 1+ 3/2m and K > N + %(1 — 1/m) we have

—_ A {(1—-AB)/[m{(2—ABK)]
Tim [ Ditlloo < € Llim Ho,m] 2.23)
t—r 20 =00 .
where A =2mN/[2mK — 3§m —1)] and B = 2m + 3)/2mN with ABK <2.
Remark. The latter condition, ABK < 2, means that
3K 6 3
224
2K 6 2 { )

Consequently, the object which controls || Dui| and all the Hy is Hyappe (€ > 0) which
is Serrin’s result.
Proof. Firstly we use a Gagliardt}mNirenberg inequality to obtain (m > 1)

Hypn < cHEH,, (2.25)

where A =2mN/[2mK — 3(m— Diand K > N +32 5(1—1/m). Secondly, 1terate the ladder
(2.5) K times to get

_— 1K
TmHy, <c [u'l fim ||Du||°°] Tim Ho .. (2.26)
=00 =00 t=»0Q

In (2.26) we are taking the leading order term only: the forcing produces terms of lower
order. Thirdly, using another Gagliardo-Nirenberg inequality

1Du) < cHy Hy 7P 2.27)

where B = 2m+3) /ZmN s0 N > 14-3/2m. Putting (2.25), (2.26) and (2.27) together, we
can see that to get || Du||o controlled by Hy ,, for large ¢, we must have ABK < 2 which,
in tum, means that m > (3K 6)/(2K — 6), and so (2.23} holds only for m satlsfymg
(2.24). O
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3. The lattice structure

We can fully generalize the ladder theorem in the following way and at the same time obtain
control over lim,_, . H1 5 (a special case of the lattice theorem outlined) which is essential
for proving the consequent theorem for the pressure. This new generalized structure also
produces the ||z]|5..c result quite naturally (as we should expect).

3.1, The lattice theorem

Theorem3. Ford =3, N 2 1and 1 < m < 2, the HN,,,, satisfy the following pair of
diﬂ’ercntial inequalities,
i

—Hypm € —ve
2m

+l/m

et CN V™ WS Hy I Duld® (3.1)

N—=1,m
I H-l/'m

-i-u-HN.mg —pe -.._llm—+cvau-p)H :'.mq" ”(N 1}q (3_2)
mn N-lm

where p = 3{m(N — 1)+ 2}/8mN and g = N(1 — p).

Proof of theorem 3. From the incompressible Navier—Stokes equations and our definition
for Hy s

_.HN,,,—Z f(D" LD [—(u - VYu; + vAu; — Py + f]

i=1 |nj=N
=ha+TL+Tp+Tr (3.3)
3.1.1. Tke Laplacian term Ty. We see that using parts gives

=y DY [y = 22255 [l (@wn). 69

Consequently, if we define

B = Bn = (D"u)" (3.5)
S0

I Bnll} = Hy\m _ (3.6)
then we find that

(2m

T=—vZ2 Dipg 2. G
Now, note that if we perform mtegratlon by parts on Hy ;, and then use Cauchy’s inequality,

HE < Cm— 1) DB,|12 Z E f | D", |2m=1) Dy (3.8)
Using Holder’s inequality, it tums out that X

H3,, < Gm— DY DB RH " HY™ . (39)
Consequently,

1 H!-!-l/m ‘
~ DB < — .
IDBnlz € G TR Hﬁ/”i - (3.10)

which gives us the expression for the Laplacian term in theorem 3.
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3.1.2. The pressure term Tp.

ZZ[(DnuJan an(P NEe

\Tel = Hypn Ts" @.11)

where
RS N TN

Now we prove,

Lemma 2.
Q) —_Zul_}u}l (3.13)
(ii) AP, <cHY'  vrxl. - (3.14)
Proof of lemma. (i) Taking the divergence of the Navier-Stokes equations gives
AP =-V- (u Vu) = —3-(uju,-j) = —UjUji- {3.15)
(ii) Now simply take the rth-norm of both sides, and apply Cauchy’s inequality,
IAPE < f s "zl < s (3.16)
and hence the result. El

Remark. Note that we have assumed a divergence-free forcing function for clarity of
argument only—we do not need to make this assumption; theorern 3 would still be correct
(we simply get lower order terms in Hy p).

We can deal with the Ts-term as follows:

2
Z DV juy )| -
i

Using the Schwarz inequality and Leibnitz’s theorem:

" .
s<AYY f 1ZCE’"DZ(uz.f)D”‘I’Z(u;.i) : (3.18)
il _

ij N-1

T = (3.17)

Next, we define )
Aff} — Z[ |D£+liu,-|2[D‘"_1)_€+1"uj|2 (3.19)
N1

where i,j = 1,....,d; n = (n,n2,...,1n9), £ = (1,82, ...,¢£2) are multi-indices.
(n — 1) is also a multi-index (given in this form for notational purposes only) such that
[(r=1}=(r—1D1+---+(n— 1)y =N — 1. From the Leibnitz operation we must have
€ < (n— 1), Vi, '

Consequently,
Ts<d?) > crap. ’ : (3.20)
nj €
A Holder inequality gives
A5 < Iy |2 DI g2 (3.21)

where 1/p + 1/q = 1. There are two paths we can now follow:
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(i) The ||Du)|4 lattice. Consider the following set of Gagliardo-Nirenberg inequalities,

ND¥ Y]l < )l Dui 12| D)) ° (3.22)
[DE=D= iy, < cllD"u; (8| Dy lis ™ (3.23)
where 1/p+1/g = %, and we also require
1 L I N-1 1—-a L
—== ——— £ —Z ' 3.24
P d+a(r d’)+ 5 O\N-l\a<1 324
1 N-L-1 1 N—1\ 1—b N—-L-1 .
=l Sl ——" g . 3.25
g d +b(r d )+ 5 0< N-=1 sb<l (3:25)
Choose
1 1 -
A tylme . L vd (3.26)
ap r as -1
1 1 1-b N-L-1
—_— =g — = - Yd. .27
=7 o =b Fo1 o (3.27)
Hence .
0a<]l = 0L L<N-1 i (3.28)
0<bhb<l <= O0ELN~-L-1<N-1 {3.29)

where in fact equality also holds above by inspection. Sincea+b=1and 1/p+4-1/g = —é-
we see that we must have

1 1 1

= . 3.30

Ste=s (3.30)
Therefore,

A“-” < | D" ul?| Dul? (331)
and we get l

12

< CHsz VHypll Dulls. ] (3.32)

Since 1/r+1/s = , a convenient, a natural choice here i Iss=r= 4, which gives
Tp < cHyl3, B3l Dula. (3.33)
Now, note that we can write
I —

Hyon1 = 1BalSe, 0 and  Hypp = lBaly/y (3.34)
and we can perform the following two Gagliardo-Nirenberg inequalities:

IBmll 2zt < I DBy ll5 1 Bllz™ : (3.35)

1Bullrm < I DBall3NBals® .. (3.36)

where gy = 3(m — 1)/2(2m — 1) and a; = 3(r — Zm)/2r and where we must restrict
ourselves to | € m € 2 when r = 4, Combining these two inequalities in our expression
above for Tp, we find

<c[IDBLIE]" HYIDulls  1<m<2. (3.37)

If we now use a Young s inequality (mult:p]y and divide by v*/*) to peel off the || DBnll2
term in (3.37) and combine it with the Laplacian term, then we obtain the || Duls lattice.

213/8
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(ii) The ||u]l4 lattice. Instead of the Gaghardo—N"lrenberg mequalmes employed above, we
consider the following set

1D Vull, < ellD™al|2lus ) - (3.38)

DDy ) & D P (3.39)
where 1/p+1/q=-2-andr,32l,andwerequire

1 L+1 1 N\ 1-a L+1

- = -— < < 3.40

2 7 +a(r d)+ p 0g N La<l (3.40)

1 N-L 1 N 1—b N—1L

8T - < , 3.41

. 7 +b(r d)+ - 0 ~ <b<l (3.41)
If we choose

1,1z L1y (3.42)

ap r as N :

1 1 1-% N-—L

- =2 =—_= 7/ 4

bg r+ bs =b N d ('3 3
then,

0a<l < 0<L+1<N (3.44)

0gh<l & OKN—-L<N L (345)

where equality also holds here, by inspection. Smce we require 1/ p +1/g = %, this means
we must have

_ 2N+ 3.46)
SN —2(N — 1) :
Hence, since a + b=(N+1D/N we get
deHy 5 H ™ N DN, (347)

We can now see that when N = |, then we must have r = 4, independent of s, and further,
for general N, if we chooset s = 4 then r is again exactly equal to 4 (independent of N).
With this choice,

T: gdCH,{(/';m lH(N+l]/4N” ”iN—l)/N. (3.48)

Since from (3.34) we know that Hy,y/2 = || Bxl|[/f, we can use the inequalities (3.35) and
(3.36) to get . : i :

b < de [IDBl2] HyFHow V-0 L (349)

where § = 3[m(N — 1) + 2]/8mN. Consequently, an application of Young’s inequality
gives us the |ju]l; lattice. '

T Another choice would be r = 2(Zm — 1) or r = 2m and leave the parameter s free. In the latter case, convert
(3.10) into an inequality purely in terms of Hy,, and [lu||; and get a condition on s for an absorbing ball, This
condition turns out to be exactly 5 > 3, thereby reproducing the results of theorem 3.
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3.1.3. The nonlinear and forcing terms Ty, and Tr. Although it is possible to bound the
nonlinear term above as in [11], it is also possible to show that it has an upper bound
proportional to the pressure term.

T, = _ZZfloﬂu,-[zm—lmﬂ(uju,-,,-)! N3zl (3.50)
L N
Consequently, we can use Leibnitz’s theorem to obtain

T = -3 5 [ 10| T Crptu;p
ij N 20 .
where integration by parts reveals that the £ = @ term is zero. Cauchy’s inequality implies

1/2
T < HL{;_[[ZZZC;’f|Dfuj|2w"*fu,.,,.|2] X (3.51)

Lji N &0

It is now easy to see that we can deal with the nonlinear term by following a procedure
very similiar to that previously used for the pressure term. Note that £ # 0 allows us to
find the appropriate upper bound for the noniinear term. .

The forcing term can be bounded with a single application of Hoélder’s inequality, as
follows:

<)) f |72 D" £il < Hgn ™ I1D” f - (3.52)
i N }
Thus we have now proved both pasts of theorem 3. O

3.2. The |u||34e result from the lattice

Note that in (3.2) the bottom point of our lattice can be found by letting N = 1; the |lul|s
term vanishes and an absorbing ball occurs when 24 > 1. This implies that when N =1,
we must have m > 3/2 and s0 Hp 3z is the bottom point. For general N 2 1, we can
find an absorbing ball via the following Gagliardo—Nirenberg inequality,

lfulla  cHRL2" H-o0/2m - (3.53)

where @2 = 3(2 — m)/4Nm, and we have the restriction 1 € m < 2, so that we get for
N1,
Tl Hyom < (T | v gl ppa=nmcni-p 10 (3.54)
f—on N.m = o) N-1.m‘to.m .

where @ = [SNm +3m — 6] and 8 = [a(N — 1) — 6N + 4Nm].
Alternatively, from (3.1), || Du|l; can be controlled by
1 Datlla < cHpy 2™ B2 (3.55)

where @) = (m + 6)/4Nm and 1/N £ a1 < 1 means that for N = 2 we must restrict

ourselvesto 1 € m < 2, and

1~

Hy_tm < cHy VHY. (3.56)

" If we substitute (3.55) and (3.56) into the lattice (3.1) and look for the absorbing ball, we
find that

_ __ 1/(2m=3)
- - —4m2N 7pl2m(N-£1)=3] :
lim Hy » < clim [v 4m*N gyt ]

=+ 00 Nlm = C.’—’OO Hﬂ.m .

N22 m>3/2 (3.57)

It is also transparent from (3.57) that Hp 3.2+ is the bottom point of this lattice.
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4, Boundedness of [|P||;(s > 15/8) and regularity

We now come to the main theorem of the paper, the proof of which depends strongly on
theorem 3. :

Theorem 4. If [|P||; is assumed to be uniformly bounded for all ¢ for 5 > 15 /8, then the
3D incompressible Navier-Stokes equations (1.1} are regular.

Proof of theorem 4.  'We begin with the following.

Lemma 3. Providedm 22 and with (m — 1}/2m+1) <édgm—1,
1 H(zm-i'l)ﬁ )
5-Hom < jvcl.m""gztﬁ/B_ + ComHE (1Pllaaen) ™™ (4D
. 0,m—1
where
Bm=(1—a)im—1) Ym=m—a(m—1) 4.2)
and

a_i[l__L]
T2 m—-1E+D}"

Proof of lemma 3. Beginning with Ho,,, = [ |u[*™ and differentiating with respect to time
gives

(4.3)

1 . : .
- Hom < —v(@m —1) f [Du|uitm=D 4 f (VP! |, (4.4)
Now we take the last term, integrate by parts and use a Holder inequality
Tp = ‘ f (VP)uz'"-'\ <@m-1) f [P De] a2
1/2
< @m = DIPlaq4s 2], [ f | D |22 ”] (4.5)
where 8/(1 4 8) = (m — 1)/mn . Now write )
a/2m
l2tlizmy = 1™ |l32" < e ( f |Du|21u|=’-‘"*-”) Hy o (4.6)

where we have used a Gagliardo—Nirenberg inequality in 3D with ¢ = 3[n — 1}/25. Since
0 < a <1 we find that 1 € 5 < 3 which, in tumn, implies that § must lie in the range

m-—1

2m+1<sgm—1. | (47
We see now that the pressure term becomes ‘

- [m+a(m—1))/2m , .
Tp < c@m — DIPlaa+n ( f lDuizlulz‘”””) Hy o m=/am, (4.8)

We can peel off the [ |Du|?|u[>™~" term using a Young’s inequality and combine it with
the same term from the Laplacian and then use interpolation on this term itself (d = 3)
F 1/
—m® [ 1Dup e = - [ Ipamp < . — @9
0 m—1
We have now proved the lemma. O
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Now consider the following four steps:

A. We know that if ju uj = Hy is controlled for all # then this is 2 sufficient condition
for regularity [1]. This is also the conclusion that can be drawn from theorem 3 (3.2).
Note that this is also the conclusion of theorem 2. We also know that |]u]|§ = Hj is also
controlled for all 7. Next we appeal to lemma 3 using the value m = 2 to obtain

=— - (T5+D)/(55+2) rz ; (145 {55+2
My oo Moz < v 3FDAGHD (g, | Ho.1) M )(Er—»ooll?’ﬂzflm)[( 1/438+2)

4.10)

where § lies in the range 1/5 < § < 1. This is sufficient to give regularity if one assumes
that ||P||2¢14) is bounded for ali £.

B. In fact, we can do'better than this and weaken the condition on P even further. To
do this we use (1.2) in a Gagliardo—Nirenberg inequality to obtain

[Pllacs) < CIAPIEIPI® < cHIZIPILS - (4.11)

where 5 & 2(1 + 8) and is to be determined. The exponent b(s, §) is given by

2148y =5

b{S, 5) = 3(1_4-5)—(;:[-—6)

{4.12)

C. To perform the next step, we need to control H12 by Hpa. This is conveniently
furnished from theorem 3 (3.54) by choosing N = 1 and m = 2 to give

Te-sooH1.2 < €07 (00 H2) - .13)

Note that both sides match dimensionally so the constant is dimensionless.
_D. Using the results from B and C in A we easily find that limy_, . Ho,z is controlled
by limy oo, and [|P[]; provided

1> 125(s,8) (5—18-%) | . “.14)

which yields

78 + 608

> s “.15)

Since & lies in the range 1/5 < § € 1 we find that any choice of 5 which satisfies
s > 15/8 will do. Hence the assumption that [P}, is bounded for all ¢ is enough to
control Hoz = |lu]l# and hence give C* regularity. o
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