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Abstr id  As an allemative to removing the pressure field in regularity arguments for slmng 
solutions of the 3D periodic NavierStokes equations, we show that if the pressure field P 
is assumed to .be uniformly bounded For all t in L’5n+r (e > 0). then the NavierStokes 
equations m,regular. The method of prwf uses a so-called ‘laftice theorem’ which gives a set 
of differential inequalities for the quantities HN,* =,IlDN&! (m 2 1). As a parallel result. 
this theorem also gives Serrin’s L3+f regulariry result for the velocity field. 

AMS classification scheme numbers: 35Q10. 76D05,60E15 

1. Introduction 

The classical texts on the Navier-Stokes equations [1-7] have discussed the problem of 
3D global regularity in great detail. Ladyzhenskaya’s result [l] concerning the regularity 
of strong solutions; namely that the velocity field U must be assumed to be bounded in 
L4 to obtain regularity+, followed by Semn’s reduction [31 of this assumption to I I u I I ~ + ~ ,  
remind us how small yet how large the gap is between what must be assumed and what 
can be proved. In this type of work on strong solutions, it is conventional to remove the 
pressure field P, usually using a nonlocal projection operator (see [S, 6]) ,  which necessarily 
forces any assumptions that must be made onto the velocity field. For the incompressible 
NavierStokes equations, on periodic boundary conditions, on the domain Q = [0, I I d  with 
U as viscosity and a zero momentum condition Jn U dx = 0 

u , + ( u ~ V ) u = v A u - V P +  f divu=O (1.1) 

the removal of the pressure field P from the problem tends to be preferred because U is 
a dynamical variable. Because of the Boussinesq approximation, P obeys no independent 
PDE of its own. Instead, P is slaved to U via a Poisson equation which can be obtained 
simply by taking the divergence$ of (1.1) 

(1.2) 

t We use the notation Jn l ~ / ~ d r  
$ In (1.1) we Iake f io be a divergence-free Cm Forcing funcrion. 
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Ilull: for the norm in Ls. 
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Indeed, it is the solution of this equation for P which adds to the already great difficulties 
which are encountered in 3D computations of the Navier-Stokes equations. The pressure 
field 7' does play a role, however, in partial regularity arguments for weak solutions. Papers 
by Foias, Guillope and Temam [SI, Shuwe [9] and Caffmlli, Kohn and Nirenberg [lo] have 
considered this. 

This paper, however, is not concerned with regularity results for weak solutions [&lo] 
but is concerned with how assumptions on the pressure field instead of the velocity field can 
be used as an alternative in providing estimates for strong solutions. Removing the pressure 
field and loading all assumptions onto the velocity field has no great merit in itself because 
Senin's I I U ~ I ~ + ~  assumption has no obvious physical interpretation. Purely as a matter of'  
taste, it is equally possible to reverse the process by making no assumptions at all on U 
and then one can set about investigating the assumptions that need to be made on P which 
would give 3D regularity. This exercise has some value if the assumption which needs to 
be made on P turns out not to be too severe: for instance, if i t  could be reduced to llPlls 
needing to be uniformly bounded for all time with s not too high. From physical arguments 
(e.g. Bemouilli's equation), one might expect s = 1 to be the sharp result The main 
theorem of this paper, which will be proved in section 4, will show that if llPlls is assumed 
to be uniformly bounded for all t for s > 1518, then the 3D incompressible Navier-Stokes 
equations (1.1) are regular. While not quite sharp, this theorem means that we are close to 
the sharp result and that values of s can be chosen for which s < 2. This can be achieved 
through the use of the expression for A P  from (1.2) in a GaliarhNirenberg inequality for 
the pressure which re-introduces the NavierStokes velocity field back into the problem at 
that point. 

To prove this theorem, which is the main result of the paper, it is necessary to prove 
a subsidiary result, called a lattice theorem, which is proved in section 3. This generalizes 
the idea of what the authors have called a ladder theorem [I  11, first introduced in [12,13] 
for the complex Ginzburg-Landau equation. For clarity, this is explained briefly in the next 
section. Both the ladder and lattice theorems also give the regularity result, as they 
should if they are sharp. 

2. Ladders and lattices 

2.1. A summ~ry of the ladder structure 

In [I 11 it was shown how a 'ladder' could be constructed which generalizes the bootstrapping 
idea [4,5] through which the velocity field in one Sobolev space can be controlled using 
the bounds on lower spaces. In this subsection we give a quick summary. Define a set of 
quantities in d dimensions '(d = 2,3) 

D" is the usual notation for all derivatives of order n in d dimensions where n is a multi- 
index such that nl + n2 +. . . + n d  = In1 = N .  Because div U = 0, it is also possible to 
write (2.1) as 
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where curlN U means taking the curl of U, N times. In [l l]  the following pair of differential 
inequalities were found 

i f i ~  6 -VH,v+i + C H N I I D U ~ [ ~  +Hk"FL" 

i f i ~  < -uHN+~ +CHk'zHk$l ' l lUl lm 4- H N  I / Z F 1 / 2  N 

(2.3) 

(2.4) 
. .  

where FN = xi IIDNfiII$ This result is not,unlike that of Beale, Kat0 and Majda [I41 for 
the Euler equations and (2.3) reduces their result when U = 0. To get control over the 
H N + ~  we now need one further step to get a differential inequality where we can obtain a 
set of absorbing balls. 

Theorem 1. For each d, N 1 and 1 6 s 6 N 

Proof of theorem I .  We use (2.3) and (2.4) together with the following lemma. 

Lemma 1. If, on periodic boundary conditions, we define HN = xfID"ui12 then 
V r , s ,  N E N  with s 6 N, 

(2.7) slr+s Hr/r+s HN 6 H N + ,  N-s . 

Proof oflemma. Step 1. Firstly, let fiM = f lDm&[z. Now we show that 

(2.8) 
- I/Z fi1/2 

f i M < H ~ + i  M - I  

using the Cauchy-Schwan inequality 

Step 2. Secondly, we show that V M  E N, 
fi < - M / ( M + l l f i l / ( M + l )  

M -. HM+I 0 (2.10) 

To achieve this, we know from (2.8) that (2.10) holds for M = 1. Assume (2.10) holds for 
M. Then 

- 
(2.11) - l / Z  - l / Z  -112 I j M / Z ( M t L ) f i l / Z ( M + I )  

H M + l  6 HM+ZHM HM+Z M t l  0 

PM+I 6 H M + ~  HO 

so 
, 

(2.12) - (M+l) / lM+Z) - I/IM+Z) 

Hence (2.10) is @e V M ~ E  N by induction. 
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Step 3. 

M V Bartuccelli et a1 

Thirdly, we show that VM, r E Pd 

2 M < X H M h  - M / ( M + r ) p u + r )  0 (2.13) 

We h o w  from (2.10) that (2.13) holds for r = 1. Assume (2.13) holds for r. Then 

(2.14) g < - M / ( M + r ) @ / ( M + r )  - M / ( M + r + l )  -(r+l)/(M+P+l) 
M X H M + ,  0 GHM+r+l Ho 

where we have used (2.10). Hence (2.13) is true VM, r E M, by induction. 

Step 4.  We know (2.13) holds with 

Now suppose that originally @i = D N - M ~ I ,  then 
- 

~ M = H N  and H o = H N - M .  

Then (2.13) becomes, 

(2.15) 

(2.16) 

and so with M = s we have 

Thus we have proved theorem 1. 0 

2 2 .  Consequence of the ladder structure 

To find absorbing balls for the HN we must find some control over either the llDullm or 
llullm terms and the next lowest rung of the ladder. To achieve this, the IIDuII, term or 
the llullm term can be bounded above using a Gagliardc+Nirenberg inequality [U]. 

IlDUll& < c H ~ + I  H"-C7' 0 (2.18) 

where a = (d + 2)/[2(N + l)] which implies that 2N > d. Altematively 

(2.19) b (I-b) l l ~ l l ~  < cHNHO 

where b = d/2N and and so again 2N =- d. In the first case, going back a step to (2.3). 
we can peel off the HN+I from the central term using a Young's inequality to combine with 
the -UHN+I term and then appeal to (2.7). Indeed, this is the slightly sharper of the two 
altematives: 

where we have absorbed a Term in HO into the constant as it is bounded above. Because 
we are restricted by 2N > d to ensure a e 1 then, ford = 2 or 3, we must choose N > 2. 
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Consequently, absorbing balls exist for all H N  provided one has control over HI  for large 
times. Retuming to (U), we can see that the quantity HI  is . .  

H I  = IcurluI2dr =' I o ~ ~ ~ d x  (2.21) 
, ,  J J 

which is the enstrophy. It is well known that when d = 2 this can be bounded above using 
a maximum principle. No such bound is known when d = 3. Hence we have an attractor 
[I61 made up from Cm functions for d = 2 but nothing more than an Lz bound on the 
velocity field when d = 3. 

It is here where the ladder shucture shows that control over H I  is a sufficient condition 
for a ball for all the H N  but, as we have said earlier, this is by no means the weakest 
result. One of the classical results of NavierStokes analysis (see references in c3-51) is 
that the assumption that the velocity field'is uniformly bounded in L3+( is sufficient to show 
regularity. To achieve this from the ladder requires the following procedure. We not only 
use the ladder where we step along in gradients but also.step up in L p  to form a 'lattice' 
which is, in effect, a WN,P-space although we keep only highest derivatives. Consequently, 
we define 

where m 2 1, for which we can prove the following theorem. 

Theorem 2. For N > 1 + 3/2m and K z N +$(I - l / m )  we have i .  

where A = 2 " / [ 2 m K  - 3(m - l)] and B = (2m + 3)/2mN with ABK -= 2. 

Remark. The latter condition, AB K < 2, means that 
3 K - 6  3 
2 K - 6  2 

m > -  > -. 

(2.22) 

(2.23) 

Consequently, the object which controls llDullm and all the HN is H0.3,~- (E > 0), which 
is Semn's result. 

Proof. Firstly we use a Gagliardo-Nirenberg inequality to obtain (m > 1) 

HN,m < CH,i?TH&A (2.25) 

whereA = 2 m N / [ 2 m K - 3 ( m - I ) J a n d K  z N + j ( l - l / m ) .  Secondly,iteratetheladder 
(2.5) K times to get 

- K- 
lim H K J  < c U 'limIIDullm] lim H0.l. (2.26) 

In (2.26) we are taking the leading order term only: the forcing produces terms of lower 
order. Thirdly, using another Gagliardo-Nirenberg inequality 

llDz~ll% < cH/,,,,H&,~ (2.27) 

where B = (2m+3)/2mN so N z 1+3/2m. Putting (2.25), (2.26) and (2.27) together, we 
can see. that to get llDullm controlled by H o , ~  for large t, we must have ABK < 2 which, 
in tum, means that m > (3K - 6) / (2K  - 6), and so (2.23) holds only for m satisfying 

I-hW [ - r-tm r-tm 

(2.24). 0 
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3. The lattice structure 

We can fully generalize the ladder theorem in the following way and at the same time obtain 
control over K,+@Hl , z  (a special case of the lattice theorem outlined) which is essential 
for proving the consequent theorem for the pressure. This new generalized structure also 
produces the Ilulls+r result quite naturally (as we should expect). 

3.1. The lattice theorem 

Theorem 3. For d = 3, N 2 1 and 1 < m < 2, the H N , ~  satisfy the following pair of 
differential inequalities, 

M V Burtucceiii et ai 

(3.2) 

where p = 3[m(N - 1) +21/8mN and q = N(1- p ) .  

Proof of theorem 3. From the incompressible NavierStokes equations and our definition 
for H N , ~ ,  

= T m  +,TL + Tp + TF. 
3.1.1. The Laplacian term T,. We see that using parts gives 

(3.3) 

Consequently, if we define 
( “ ) - E  -(D” - m - 

so 
IIBmII: = H N , m  

then we find that 
(2m - 1) 

m2 TL = -U IIDB~II:. 

(3.5) 

(3.6) 

(3.7) 

Now, note that if we perform integration by parts on HN.,,, and then use Cauchy’s inequality, 

Using Holder’s inequality, it @ms out that 

Consequently, 
H;,m < (h - ~ ) z l l D ~ m l l ~ H ~ ~ ~ l m H ~ ~ ~ , m ~  (3.9) 

(3.10) 

which gives us the expression for the Laplacian term in theorem 3. 



Solutions of the NavierStokes equations 85 

3.1.2. The pressure term T p .  

(3.11) 

where 

Ts = C c j ( D " P , i ) '  = c j ( D n V P ) z ~ =  ~ j ( D i n - l ) A P ) ) a .  (3.12) 
i N  N N-1 

Now we prove, 

Lemma 2. 
A P  = - q j u j , ;  

i , j  

(3.13) 

(ii) [[APII, < cH:,f Vr 2 1. (3.14) 
Proof oflemma. (i) Taking the divergence of the Navier-Stokes equations gives 

(3.15) AP = -v. (U. VU) = -ai(ujui , j )  = - u ~ , ~ u ~ , ~ .  

IlAPll: < g/ l ~ i , j I r b j , i l r  < HIJ 

(ii) Now simply take the rth-norm of both sides, and apply Cauchy's inequality, 

(3.16) 

and hence the result. 0 

Remark. Note that we have assumed a divergence-free forcing function for clarity of 
argument only-we do not need to make this assumption; theorem 3 would still be correct 
(we simply get lower order terms in H N , ~ ) .  

We can deal with the Ts-term as follows: 

Using the Schwarz inequality and Leibnitz's theorem: 

Next, we define 

(3.17) 

(3.18) 

(3.19) 

where i, j = 1,. .;, d; n = ( n l ,  n2. . . . ,nd). e = (el, &, . . . , td) are multi-indices. 
(n - 1) is also a multi-index (given in this forin for notational purposes only) such that 
I(n - 1)1 = (n - 1)1 +.. . + (n - l)d = N - 1. From the Leibnitz operation we mUSt have 
ti < (n - 1)i. Vi. 

Consequently, 
Ts < d ' x x C f A ! Y .  (3.20) 

1.j 1 

A Holder inequality gives 
AI?; < ~ ~ D e + l i u i ~ ~ ~ ~ ~ ~ ( n ~ l ~ - e + l ~  ujllq (3.21) 

where I / p  + l/q = i. There are two paths we can now follow: 
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(i) The IIDull4 Innice. Consider the following set of Gagliardo-Nirenberg inequalities, 

M V Burtuccelli et a1 

I l ~ ' + ' ' ~ i l l p  6 cllD"ui IF II Duillf-' (3.22) 

llD("-l)-t+l! ujllq G C I I ~ " ~ j I I ~ I I ~ ~ j l l ~ - b  (3.23) 

where l /p + l/q = :, and we also require 

S a x 1  O<- 1 L  
p d f U ( ; - T ) + T  N - 1  

1 N - 1  1 - U  L _ = _  (3.24) 

(3.25) N - L - I  
4 b c I .  n - i  d + b (: - 7) + I-b S 06 

1 N - L - 1  
9 
- =  

choose 
1 1 1 - a  L 

up r as N - 1  
+- =+a=- Vd _ = _  

Vd. 
1 1 I - b  N - L - 1  

_ = -  +- + b =  
bq r bs N - 1  

(3.26) 

(3.27) 

Hence 
O G a t l  e O < L < N - l  (3.28) 

O < b < l  e 0 < N - L - l < N - 1  (3.29) 

where in fact equality also holds above by inspection. Since a -I- b = 1 and l /p + I/q = 4 
we see that we must have 

1 1 1  
-+;='i. r 

(3.30) 

(3.31) 

TP 4 cHN.2m-1 112 ,v,,/zllDulls. (3.32) 

Since l / r  + 11s = i, a convenient. a natural choice here is s = r = 4 ,  which gives 

TP < cff~!&-;ff$JlDuIl+ (3.33) 

HN.%-I I f 2  2 I IBmll;(~-l,  (2m-')1m and E 11BmI1$ (3.34) 

IlBmIl i ( 2 m - n  4 cllD Bm II:,llBm Ilk-' 

Now, note that we can write 

and we can perfom the following two Gagliardo-Nirenberg inequalities: 
(3.35) 

ll& llr/,n < Cl lDBml l?  II B m  II:-" ., . (3.36) 
where a, = 3(m - 1)/2(2m - 1) and 4 = 3(r - 2m)/2r and where we'must restrict 
ourselves to 1 < m < 2 when r = 4. Combining these two inequalities in our expression 
above for Tp, we find 

(3.37) 

If we now use a Young's inequality (multiply and divide by u3I8) to peel off the llDBmllz 
term in (3.37) and combine it with the Laplacian tem, then we obtain the IIDull4 lattice. 

3/8 5/8 TP 6 c[llDBmll:] HN,,,IID~I14 1 < m 4 2. 
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Instead of the Gagliardo-Niienberg inequalities employed above, we (iiJ The 11~114 lattice. 
consider the following set 

IIDe+''~lIlp 6 C l l D " u i  l l ~ l l ~ i l l ~ ~ a  (3.38) 

)I D"-"-e+l, UjIIp < cIID"ujIIfIIujII:-b (3.39) 

where I / p  + l /q  = and r, s 2 1, and we require 

N - L  
0 6, 7 < b < 1 .  (3.41) 

1 N - L  
4 d  
-=- 

If we choose 

L + l  , Vd - - ,  f- * a = -  
ap r as N 
1 1 1 - a  

Vd 
1 1 1 - b  N - L  a b = -  +- N 
- = _  
bq r bs 

(3.42) 

(3.43) 

then, 

O < a < l  O < L + l < N  ,(3.W 

0 S b . c . l  - O < N . - L < N  (3.45) 

where equality also holds here, by inspection. Since we require I / p  + l / q  = f .  this means 
we must have 

2s(N + 1) r =  
S N  -2(N - 1)' 

(3.46)' 

Hence, since a + b = ( N  + 1 ) / N  we get 

Tp 4 d c H N , b - i  1/2 H " + l ) l r N I I u I I ~ N - l ) I N ,  N . r j 2  (3.47) 

We can now see that when N = 1, then we must have r = 4,  independent of s, and further, 
for general N ,  if we chooset s = 4 then r is again exactly equal to 4 (independent of N ) .  
With this choice, 

TP 6 dCH,!&, H " + I I / ~ N  N , Z  I I ~ ~ ~ Y - I ) / N .  '(3.48) 

~ ~ B , , ~ ~ ~ ~ ~ ,  we can use the inequalities (3.35) and Since from (3.34) we know that H N , ~ ~  

(3.36) to get 

TP 6 d~[ l lD&" l~ ]~  H N , m  I-!%!F l ( U ( l r - I ) / N  (3.49) 

where j5 = 3[m(N - 1) + 21/8mN. Consequently, an application of Young's inequality 
gives us the IIu114 lattice. 

t Another choice would be r = 2(2m - 1) or r = 2m and leave the paramem s free. In the latter case. convert 
(3.10) into an inequality purely in terms of H N . ~  and 1 1 ~ 1 1 ~  and get a condition on s for an absorbing ba!.I. This 
condition tums out to be exactly s > 3, thereby reproducing khe results of theorem 3. 
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3.1.3. The nonlinear and forcing terms TNL and TF. Although it is possible to bound the 
nonlinear term above as in [ll], it is also possible to show that it has an upper bound 
proportional to the pressure term. 

M V Bartuccelli et al 

(3.50) 

Consequently, we can use Leibnitz’s theorem to obtain 

where integration by parts reveals that the E = 0 term is zero. Cauchy’s inequality implies 

It is now easy to see that we can deal with the nonlinear term by following a procedure 
very similiar to that previously used for the pressure term. Note that e # 0 allows us to 
find the appropriate upper bound for the nonlinear term. 

The forcing term can be bounded with a single application of Holder’s inequality, as 
follows: 

(3.52) 

Thus we have now proved both parts of theorem 3. 0 

3.2. The IIullj- resultfrom the lattice 
Note that in (3.2) the bottom point of our lattice can be found by letting N = 1; the IIu114 

term vanishes and an absorbing ball occurs when 2q > 1. This implies that when N = 1, 
we must have m > 312 and so H 0 . 3 / ~ ~  is the bottom point. For general N > 1, we can 
find an absorbing ball via the following Gagliardc-Nirenberg inequality, 

(3.53) adz* I1  =d/k IIu114 < c H N , ,  H0.l 
where az = 3(2 - m)/4Nm,  and we have the restriction 1 < m 6 2, so that we get for 
N 2 1, 

(3.54) 

where CY = [5Nm + 3m - 61 and ,9 = [a(N - 1) - 6N + 4NmI. 
Alternatively, from (3.1). IIDul14 can be controlled by 

(3.55) o~/UnHll-ot)/Zm IlD~ll4 6 c H N , ~  O,m 

where a1 = (m + 6)/4Nm and 1 / N  < a1 < 1 means that for N = 2 we must restrict 
ourselves to 1 < m < 2, and 

(3.56) 
If we substitute (3.55) and (3.56) int5 the lattice (3.1) and look for the absorbing ball, we 
find that 

I - +  I / N  H N - I . ~  < CHN,,,, Ho,,,, . 

It is also transparent from (3.57) that HO.3/2+r is the bottom point of this lattice. 
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4. Boundedness of ll'F1ls(s > 15/8) and regularity 

We now come to the main theorem of the paper, the proof of which depends strongly on 
theorem 3. 

Theorem 4 .  If ll'Flls is assumed to be uniformly bounded for all t f o r s  
3D incompressible Navier-Stokes equations (1.1) are regular. 

Proof oftheorem 4. We begin with the following. 

Lemma 3. . Provided m 

15/8, then the 

2 and with (m - 1)/(2m + 1) < 6 < m - I, 

where 

pm = (1 - a ) ( m  - 1) y,,, = m - a(m - 1)  

and 

Proof oflemma 3. Beginning with Ho,, = l lulk and differentiating with respect to time 
gives 

(4.4) J 1 .  -Horn < -u(2m - 1) 
2m ,' 

[ D u / ~ ~ u ~ ~ ( " ' - "  + 
Now we take the last term, integrate by parts and use a Holder inequality 

T~ = I J p ~ ) u k - l J  < (2m - 1) pIpul lu lz(m-1) 1 
where 6/(1+ 6) = (m - l ) / m q  . Now write 

(4.5) 

where we have used a GagliardeNirenberg inequality in 3D with a = 3[q  - 1]/2q. Since 
0 < a < 1 we find that 1 < q < 3 which, in tum, implies that 6 must lie in the range 

m - 1  
- < 8 < m - l .  2" 1 (4.7) 

We see now that the pressure term becomes 

We can peel off the l IDUI~IU[~("-" term using a Young's inequality and combine it with 
the same term from the Laplacian and then use interpolation on this term itself (d = 3) 

We have now proved the lemma 0 
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Now consider the following four steps: 
A. We know that if ~~u~~~ = H0.2 is controlled for all t then this is a sufficient condition 

for regularity [I]. This is also the conclusion that can be drawn from theorem 3 (3.2). 
Note that this is also the conclusion of theorem 2. We also know that 1 1 ~ 1 1 ~  = H0.l is also 
controlled for all t. Next we appeal to lemma 3 using the value m = 2 to obtain 

M V Bartuccelli et a1 

where 6 lies in the range 1/5 e 6 < 1. This is sufficient to give regularity if one assumes 
that IIPllzcl+s, is bounded for all t. 

B. In fact, we can do' better than this and weaken the condition on 7J even further. To 
do this we use (1.2) in a GagliardwNirenberg inequality to obtain 

IIPllZ(l+S) 6 CIIAPIIiIIPIIi-b < CH:,fIIPII:-b (4.1 1) 

where s < 2(1 + 6) and is to be determined. The exponent b(s, 6) & given by 

2(1+ 8 )  - s 
(1 + 6)(s + 6) ' 

b(s, 6) = 3 (4.12) 

C. To perform the next step, we need to control H1.z by H0.2. This is conveniently 
furnished from theorem 3 (3.54) by choosing N = 1 and m = 2 to give 

- 
limt+ooHl.z < cu-16 p,+w~O,$. (4.13) 

Note that both sides match dimensionally so the constant is dimensionless. 

by &,mH~~l and llPlls provided 
D. Using the results from B and C in A we easily find that i&i,+,Ho,z is controlled 

1 > 12b(s, 6) (-) 1+6 
5 6 + 2  

which yields 

78 + 606 
41+58.  

S >  

(4.14) 

(4.15) 

Since 6 lies in the range 1/5 e 6 < 1 we find that any choice of s which satisfies 
s > 1S/8 will do. Hence the assumption that llPllr is bounded for all t is enough to 
control H0.2 Ilullj and hence give COD regularity. 
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