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g(ﬁomml Motivation

© Quantum Computing
© Quantum Control, Control of Spin Systems
© Control of Numerical Algorithms

@ Constructive Controllability, Motion Planning in Robotics
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’"-:acmrol Time-optimal Factorization Problem

@ (G compact connected Lie group with Lie Algebra g
@ w:={Q, ... QN Q,..,Q} finite set of LA generators of g

@ Q: "slow, cost expensive” directions

(), : "fast, cheap” directions
@ Given X € G, define

Tiin (X) :inf{zw\ x=1T] etﬁ[@?}

finite

@ Is Tin < oo always? Compute Thyin!

© When does there exist a finite, time-optimal factorization?
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© G = GL(n) general linear group of invertible matrices
@ w:={Q, ... Q" Q, .., Q7} finite set of LA generators of gl(n)

@ Q: "hyperbolic Jacobi rotations”

().": "standard Jacobi directions”

@ Given X € G, define (k denotes the condition number)

Tonin(X) = inf { 3" e 9| | X = [ 7%}

finite

@ This factorization task with minimal total condition number!

@ Does there exists factorization with better condition numbers than
for X7
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'§Control Intermezzo: Lie Groups and Lie Algebras
General linear group of invertible n X n matrices

GL(n,R) := {X € R"*"| det X # 0}.

A matrix Lie group is any subgroup G C GL(n,R) that is also

a (locally closed) submanifold of R™*".
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'§Control Intermezzo: Lie Groups and Lie Algebras

(a) The real orthogonal group
O(n) ={X eR™" XX =1,}
(b) The special unitary group
SU(n):={X e C""| XX* =1,,detX =1}

(c) The Euclidean group

E(n) = {

The first two examples are compact groups, while the third is not.

R p
0 1

R € O(n),pER”}.
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'§Control Intermezzo: Lie Groups and Lie Algebras

A vector space V' with a bilinear operation [, | : V xV =V
satisfying

(I) [xvy] — _[yvx]
(i) [z, [y, 2]l + [z, [z, y]] + [y, [z, x]] = 0 (Jacobi Identity)

is called a Lie Algebra.
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'§Control Intermezzo: Lie Groups and Lie Algebras

@ Lie algebras are the tangent spaces of Lie groups.

@ Theorem. Let G C GL(n,R) be a matrix Lie group. Then the
tangent space g := 177G at the identity matrix is a Lie algebra with

commutator as the Lie bracket:

X,Y]= XY - YX.
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'§Control Intermezzo: Lie Groups and Lie Algebras

(a) The Lie algebra of O(n) is
o(n) ={Q e R™" Q" =-0}.
(b) The Lie algebra of SU(n) is
su(n) = {Q e C"" Q" = —Q, trQ) = 0}
(c) The Lie algebra of E(n) is

e(n) := {

Q) v
0 O

Q' :—Q,UER”}.
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Control on Lie Groups

G Lie Group with Lie Algebra g.

Bilinear control system on GG
() Xt = [ A+ D w04, | X(0), X(0)=1,
j=1

where A4, A4, ..., A, € g.
Reachable Set at time T" > 0

R(T)={Xr € G| Fuy,...,upm and s <T: X(s) = Xp}

Reachable Set
R = UTR(T)
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A Control Control on Lie Groups

@ Accessibility: The reachable set R(T") has an interior point
@ Local Controllability: The identity I € R(T') is an interior point

@ Controllability: For any X € G there exist controls
U1 (+), ooy Uy (+) and T > 0 s.t. the solution of (X) satisfies
X(0)=1,X(T) = Xp.
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A Control Control on Lie Groups

(Accessibility)
@ Definition (System Lie Algebra)
L := smallest Lie subalgebra of g, containing A4, ..., A,,, Ag

Generators: (|A, B] = AB — BA)
Ad) A17 e Am7 [Ad7 AZ]) [A’w A]]a [Ad7 [A’La A]H)

@ Theorem. (X)) is accessible if and only if the system Lie algebra is
L=g.
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A Control Control on Lie Groups

@ Theorem (Lian et al. 1994) Suppose

(i) For some constant controls w1, ..., U,

(Seonst) X = (Ag+ > ujA)X
J

is weakly positively Poisson stable.
(ii)) The system Lie algebra L satisfies £ = g.

Then the bilinear control system is controllable.

Accessability + Poisson Stability = Controllability

Edinburgh 04, Helmke — p.16/51



& Dynamics

E
%
%

A Control Control on Lie Groups
(Poisson Stability)

Flow of (3Xconst): @: G X R — G; (z,t) — ®(z2,1)

© (X onst) is Weakly Positively Poisson Stable if for all z € G, any
neighborhood B(z) of z and all T' > 0, there exists ¢t > T such that
O(U,,t) N B(z) # 0.

Examples: a swing (no damping), satellite attitude, ball rolling in a bowl.
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A Control Control on Lie Groups

@ Theorem (Jurdjevic-Sussmann) Assume:

(i) There exist constant controls such that Ag + » _; u;A; liesin a
compact subalgebra € of g.

(ii) The system Lie algebra L satisfies £ = g.

Then the system (X)) is controllable.
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'iacm Control on Lie Groups

@ Corollary
Let G be a compact connected Lie group. Then (X) is controllable
if and only if

L=g.

Edinburgh 04, Helmke — p.19/51



Time-Optimal Control on Lie Groups

AT _°

Edinburgh 04, Helmke — p.20/51



& Dynamics

"’Qcml Time-Optimal Control on Lie Groups

@ Let G be a compact Lie Group with Lie algebra g; K C G a
compact connected Lie subgroup with LA £ . Consider the bilinear
control system on G

(x) X= (Ad n f:ujAj)X, X(0) =1

with Ay € g, A4, ..., A, € L.
@ Assumption:

e Y is controllable, i.e. g =LA generated by Ay, A1, ..., A,

e £t = LA generated by A4, ..., A,,
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"Qcml Time-Optimal Control on Lie Groups

Given: Initial state Xy = I, Final state Xr € G

Problem 1.Find controls u1(+), ..., u;,(+) s.t. the corresponding
solution X (t) of (%) satisfies

X(0) =X, X(T)=Xp forsome T >0

@ Problem 2.If problem 1 has at least one solution, then find a
time-optimal one, i.e. one with minimal T = T,,+(XF).

@ Problem 1 is always solvable, provided (X)) is controllable!
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Time-Optimal Control on Lie Groups

Ay is called the drift term, A4, ..., A,, the fast directions

Fact 1. If A; = 0 and (X) controllable, then can control to X in
arbitrarily small time: Ty, (X ) = 0, always!

Fact 2. The presence of drift term A, # 0 is responsible for
Topt > 0.

ldea: Factor out fast directions!
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f"'--acmol Time-Optimal Control on Lie Groups

© Consider the quotient space
G/K :={Kg|geG}

of left co-sets Kg, K = exp(®) Lie Group generated by fast
controls.

@ G/K is a smooth manifold
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"’Qcml Time-Optimal Control on Lie Groups

(NMR)

@ For the NMR Schrédinger Equation on G = SU(2V)
| 2N
X=-i|Hg+> uwH; | X, X(0)=1I
j=1

t := LA generated by iH1,...,iHoy
K := exp(€) compact, connected Lie subgroup of SU(2V),
generated by exp(itH,;),t € R,j =1,...,2N.

One verifiess K = SU(2) ® ... ® SU(2)
eFor N=1: K=5SU(2)=G
eFor N=2: K =SU(2)®SU(2) ~SO(4) Cc SU(4)
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"“gcml Time-Optimal Control on Lie Groups

© The quotient system of
(¥) X = (Ad + ZujAj)X, X(0)=1, X(T)=Xg
j=1

is the control system on G/K
(X/K)  P=Adyw(Aa)P, P(0)=K, P(T)=KXp

Ad,(Ay) = gAgg~t, g € K. The control functions for (3X/K) are
arbitrary Li _functions t — U(t) € K.

loc
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"’Qcml Time-Optimal Control on Lie Groups

@ Theorem (Equivalence Principle).

(X) is controllable on G iff (3/K) is controllable on G/K.
Moreover, the optimal times on G and G/ K coincide.

G
Topt

(Xp) =T, (KXF)

opt

Proof: PhD thesis by Khaneja

© The optimal time TO(I;){K has an interpretation within

Sub-Riemannian Geometry.
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""Qmm Time-Optimal Control on Lie Groups

@ Let M be a Riemannian manifold, £ C T'M a constant dimensional
subbundle that satisfies the Hérmander Condition
For any p € M, the LA of the sections of E evaluated in p
is equal to T, M (controllability cond.)

@ For any two points x,y € M, the Sub-Riemannian distance is

iz, y) = inf{/o lalldt | a(0) = 2,a(1) = 4, 4(1) € Fug }-

@ Example: M = G/K,E, :=span{kAqsk™' | ke K}P, Pe M
satisfies the Hérmander Cond. (Equivalence principle)

@ NMR: M = SU(2Y)/SU(2) ® ... ® SU(2) Sub-Riemannian space
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"’Qcml Time-Optimal Control on Lie Groups

@ Theorem.
To M (KXp) = d(K, KXF)
Sub-Riemannian distance

@ Remark. The Sub-Riemannian distance d(z,y) is greater than or
equal the Riemannian distance on G/K:

d(x,y) > geodesic distance between x,y

@ There is one case where these distances are equal: Riemannian
symmetric spaces.
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?‘acmol Time-Optimal Control on Lie Groups

@ Theorem. If G/K is a Riemannian Symmetric Space, then

Topt (XF) = length of a geodesic in G/K that connects K with K X

@ Main Advantage: Riemannian distances (i.e. lengths of geodesics)
are much easier to compute than Sub-Riemannian distances.
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"’=§COM Time-Optimal Control on Lie Groups

@ Theorem. The homogenous space G/K is a Riemannian symmetric
space, provided (g, ) is a Cartan-pair, i.e. g is semisimple and

g=Ftop, p:==t"

satisfies
eegce [ep/Cp, [pplCE
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@ SU(n)/SO(n) is a Riemannian Symmetric Space

® SU4)/SU(2) ® SU(2) is a Riemannian Symmetric Space (good!
2-Spin Case)

® SUR)/SU(2)®SU(2)® SU(2) is NOT a Riemannian Symmetric
Space (bad!)
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"‘{gcml Time-optimal Factorization

Let G be a connected, compact Lie group with Lie algebra g.

Let K C G be a connected compact subgroup with Lie algebra €.

Let A € g be a drift term s.t. (A, &), = g.

Consider the discrete control System:
(Bq) Xpg1 = Kne"*L,X,, Xo=1 K,,L,€K,t, >0.

For X € G let T4 (X) :=

inf { i tn
n=1

3 (K, Lnstn) = [ Kne'2 L, = X}.
n=1
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'iac:omrol Time-optimal Factorization

@ Is (X4) controllable, i.e. does T

(X) < o0 hold for all X € G7

@ Determine the “minimal” time T . (X) for X € G.

opt
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(multiple drifts)
@ G compact connected Lie group with LA g

@ w:={Q, ... QN Q.. Q} finite set of LA generators of ¢

@ Q;: "slow, cost expensive” directions
(). : "fast, cheap” directions

@ Given X € @, define

Thoin(X) =i { O[] | X = ] 7%

finite
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'iac:omrol Time-optimal Factorization

@ Is T,in < oo always? Compute Thyin!

© When does there exist a finite, time-optimal factorization?
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"‘*Qcomml Time-optimal Factorization

(Euler Angles)

© 50(3), w={Qf, 9},

0 0 -1 0 -1 0
QF =10 0 0,0 :=
1 0 O 0

© CEuler Angles:
— _|_ —
X =l ef2ti oty g [ 7]

© We will show: Euler Angles are time-optimal and

Tin = |92| c [O,Tl‘]
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'iac:omrol Time-optimal Factorization

(Euler Angles)

@ SOB3),w=1{07,97} Qf =Q
© Then Euler angles are i.g. NOT time-optimal:

Tin < 01+ 605+ 065! (Mittenhuber)
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"‘jacmol Time-optimal Factorization

@ Let G be a connected, compact Lie group with Lie algebra g.
@ Llett:=(Ay,....,4,), K :=expt.
@ Let A € g be a drift term such that (A, €); = g.

@ Theorem.
(a) The discrete control system (3;) on G is controllable and thus
Tgipt(X) < 00
(b) For any X € G the minimal times T\, (X) = T, (X) coincide,

where T, (X)) is the minimal time for the control problem

X = (A + iujAj)X, X(0)=1,X(T) = X
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""Qcomml Time-optimal Factorization

@ Problem: l.g. time optimal factorizations are infinite
Under what conditions on the drift term A are they finite?

@ Definition [Haselgrove, Nielsen, Osborne|: A drift term A is called
lazy, if there exists € > 0 such that

Topi(e2) < t for all t € (0, ¢). (xx)

If A is not lazy, we call it fast.
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'iac:omrol Time-optimal Factorization

@ Theorem. If A is lazy, there are no finite, time optimal
factorizations for any element X € G — K.
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"‘*Qcomml Time-optimal Factorization

@ Conjecture 1: There exists a finite, time optimal factorization for
all X € G iff A is fast.

@ Conjecture2: A fast <« [AAL]=0.

@ Remark: Conjecture 2 implies Conjecture 1.
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Let (g, &) be a Cartan pair. Let A+ be the
orthogonal projection of A onto p and let a be a maximal abelian
subalgebra of p that contains A+. Then:

@ Each X € GG has a decomposition of the form
X =UXV with U,V € K and X € expa.
@ The minimal time is given by

Topt (X) = min {t >0 ‘ (t - conv W(AL)) Nexp *(X) # (Z)},

where X = UXV is an arbitrary factorization of the above type and
W(A2L) denotes the Weyl orbit of A+,
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géémtwl Computation of Optimal Time

Convex hull of the Weyl Or- Convex hull of the Weyl Or-
bit of a "symmetric’ drift bit of an arbitrary A.
term A
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S Control Computation of Optimal Time

@ G :=50(3) and g :=s0(3),

—1 0 —1
Ql = O O O ,QQ =

@ A= OéQl + 692, t .= <QQ>

Euler Angles: X = e%1%22e02801603%2 g, ¢ [~ 7]
| @ Topt(X) = 04_1‘92‘,
@ Afast «— [(3=0.
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3 Control Computation of minimal time

(NMR cont'd)

© NMR-Schrodinger equation on SU(4)

4
X = —27ri(Hd + ZuH) X(0) =1,

1=1

where Hy =0, ®Q0,, Hi ;=12 ® 0y, Hy :=1a®0,, H3 := 0, Iy,
and Hy := o0, ® Is.

@ K =SU(2) ®SU2).

© A=-2riH;and a:=i(0, ® 04,0, ® 0y,0, R 05).
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'iac:omrol Computation of minimal time

(NMR cont'd)

Theorem. For all X =UXV € SU(4) and U,V € K, and X € exp a fixed

It holds

3
¢ T(X) — mm{ Z |tn‘|et127ri(aa;®ax)et227ri(ay®0y)et327ri(0z®0z) _ Z}

n=1

@ T(X)<

N[O

Edinburgh 04, Helmke — p.48/51



& Dynamics

E
%
%

- Control

Computation of minimal time

(NMR cont’d)

Let X (¢t,u) = U(ut, ..., ug)S(t1, t2, t3)V (uz, ..., u12),

—i27ru1H1 —i27ru2H2 —i27ru3H1 —127TU4H36—127T’U,5H4 —127TU6H3

€ € € €

U(uy,...,ug) =e

—i27‘(‘U7H1 —i27ru8H2 —i27‘(‘U9H1 —i27T’LL10H3e—i27TU11H4 —i27‘(‘U12H3

€ €

€ €

V(u7, . .,’U,12) = ¢

Y — et127ri(aw®aw)et227ri(ay®ay)et327ri(az®(7z)

To compute the minimal time T'(X), we combine simulated annealing

with gradient methods to solve the nonlinear optimization problem:
min  f(¢, u) := [t1] + [t2] + [t3],
subject to g¢g(t,u) :=4 — Retr(XnX(¢t,u)) =0

where t = [t1, o, t3],u = [u1, U, ..., u1a] € [—1,1]12
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3 Control Computation of Time-optimal Pulse Sequences

Consists of two sub-problems:

@ Given T > 0, solve

min  g(¢, u),
t,u
subject to  f(t,u) < T,
t > 0.

@ Let V(T) be the global optimal value of g(¢,u), associated with a
given 1" > 0.
Minimize T
subject to V(T') =0,
T > 0.
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'iac:omrol Computation of Time-optimal Pulse Sequences
1 0 0 0
=00 10
Xp=e 4
01 0 0
00 0 1

T(Xr) = 1.499996
t = [0.499993 | 0.500017 | 0.499986]
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