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The Goal

To consider the Magnus series expansion for
numerically solving the non-linear ODE

dx

dt
= f(x,t), x(0) = x0 ∈ Rd

The Magnus expansion and other geometric
numerical integrators have been successfully
used to solve the following eqs. separately

dx

dt
= A(t)x

dx

dt
= f(x)

Different versions of the ME have proved
highly efficient in a number of problems:
– Quantum Mechanics
– Highly oscillatory problems
– Eigenvalue problems
– etc.

Is it possible to use Magnus for the non-
autonomous non-linear problem? (Zanna)

Is it possible to combine both of them for
numerically solving the problem?
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Standard Procedure: to consider t = xt on

the vector-field and to solve the autonomous

equation

dy

dt
= F(y) ⇔ d

dt

{
x
xt

}
=

{
f(x, xt)

1

}

using an standard algorithm

Problems:

(i) In general, many evaluations of f(x,t) at

different times, t1, . . . , ts. The algorithm can

be expensive.

(ii) If the t-dependent functions in f(x,t) and

the x-dependent functions in f(x,t) evolve at

different time-scales ⇒ it seems convenient

to treat them differently.

(iii) Some times, the structure of the vector-

field f(x,t) is simpler than the structure of

F(y), allowing to use more efficient algorithms

Solution? To use explicit or implicit RK meth-

ods with Gaussian or Lobatto quadrature points.

This solves (i) but not (ii) and (iii)
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Expected Advantages on using Magnus

(i) Efficient treatment of the explicit time-

dependent functions on the vector-field f(x,t)

in the following cases:

* cost(f(x,t1)+f(x,t2)) À cost(f(x1,t)+f(x2,t))

i.e. ẋ = f0(t) + f1(t)x + f2(t)x
2 + f3(t)x

3

Given t1, . . . , ts with ti = t0 + cih, and ci

the quadrature points at order n ⇒ with

f(x,t1), . . . , f(x,ts) allows methods of order n

(ii) The t-dependent functions in f(x,t) and

the x-dependent functions in f(x,t) are treat-

ed separately.

(iii) It is of particular interest for those prob-

lems where efficient integrators for the au-

tonomous vector-field f(x,τ) are known (with

τ a constant).

(iv) The geometric properties are preserved.
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Magnus expansion for linear systems

dx

dt
= A(t)x ⇒ x(h) = eΩ(h)x0,

where Ω =
∑∞

k=1 Ωk with

Ω1 =

∫ h

0
A(t)dt

Ω2 =
1

2

∫ h

0
dt1

∫ t1

0
dt2[At1, At2]

Ω3 =
1

6

∫ h

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

{
[At1, At2, At3] + [At3, At2, At1]

}

Ω4 =
1

12

∫ h

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

{
[At1, At4, At3, At2]

+[At2, At3, At4, At1] + [At1, At2, At3, At4]− [At4, At3, At2, At1]
}

...

where Ati
≡ A(ti), [A1, A2, A3] ≡ [A1, [A2, A3]] , etc.

This expansion is of great interest. However,

for building efficient integrators it is conve-

nient to write the truncated Magnus series in

a more appropriate way
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To take profit of the time-symmetry, let us

consider the Taylor expansion of A(t) around

t1/2 = t0 + h/2,

A(t) =
∞∑

i=0

ai

(
t− t1/2

)i
, ai =

1

i!

diA(t)

dti

∣∣∣∣
t=t1/2

then, taking bi ≡ ai−1hi, i = 1,2,3

Ω = b1 −
1

12
[b1, b2] +O(h5)

Ω = b1 +
1

12
b3 −

1

12
[b1, b2] +

1

240
[b2, b3]

+
1

360
[b1, [b1, b3]]−

1

240
[b2, [b1, b2]]

+
1

720
[b1, [b1, [b1, b2]]] +O(h7)

{b1, b2, b3} generators of a graded free Lie al-

gebra with grades 1,2,3 (Munthe-Kaas & Owren).

[bi, bj, bk] ≡ [bi, [bj, bk]], of order O(hi+j+k).

It is easier to work with.

The time-symmetry is clear
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In practice, it seems convenient to consider

A1 = A(t1), . . . , As = A(ts)

at some quadrature points with

A(0) =
s∑

j=1

βjAj =

∫ h

0
A(t)dt +O(hn+1),

Then ∃ constants β
(i)
j such that

A(i) =
s∑

j=1

β(i)
j Aj =

1

hi

∫ h

0

(
t− h

2

)i

A(t)dt +O(hn+1),

i = 0,1,2 (Iserles & Nørsett; B, Casas & Ros )

Up to order 6: eΩ
[n]

= eΩ + O(hn+1)

Ω[2] = A(0)

Ω[4] = A(0) + [A(1),A(0)]

Q = [A(1),3
2
A(0) − 6A(2)]

Ω[6] = A(0) + Q + [A(0),[A(0),
1

2
A(2) − 1

60
Q]] +

3

5
[A(1),Q]
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This is valid for any n-th order quadrature.

We can also use different quadrature formu-

las for each component, Ai,j(t).

Examples: Gaussian Quadratures

Fourth order Consider Ai = A(cih), i = 1,2

with c1,2 = 1
2 ∓

√
3

6 . Then

A(0) =
h

2
(A1 + A2) ≈

∫ h

0
A(t)dt

A(1) =

√
3h

12
(A2 −A1) ≈ 1

h

∫ h

0

(
t− h

2

)
A(t)dt

Sixth order Consider Ai = A(cih), i = 1,2,3

with c1,3 = 1
2 ∓

√
3

20 , c2 = 1/2. Then

A(0) =
h

18
(5A1 + 8A2 + 5A3) ≈

∫ h

0
A(t)dt

A(1) =

√
15h

36
(A3 −A1) ≈ 1

h

∫ h

0

(
t− h

2

)
A(t)dt

A(2) =
h

24
(A1 + A3) ≈ 1

h

∫ h

0

(
t− h

2

)2

A(t)dt
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This is equivalent to:

1. Consider the equation: x′ = f(x, t)= A(t)x

2. Frozen the x coordinates of the vector-
field, f(x, t)

3. Take the Magnus time-average ⇒
fΩ(x)= Ω(h)x (autonomous vector-field)

4. Consider the equation: y′ = fΩ(y)= Ω(h)y

5. Evaluate the 1-flow: y(1) = eΩ ' x(h)

Question: Is it possible to follow these steps
in a simple way for the non-linear problem?
Answer: YES, but only for the steps 1 to 4.
In general, due to the complexity of fΩ, step
5 requires the evaluation of a very complicat-
ed map
Solution: To approximate the complicate map
by a composition of simpler maps
⇒ Composition Magnus Integrators
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Non-linear autonomous system

ẋ = f(x) (1)

with solution x(t) = Φt
f(x0). Let us consider

the Lie operador

Lf =
n∑

i=1

fi
∂

∂xi
.

Eq. (1) can be written as

ẋ = Lf(x)x ⇒ d

dt
Φt

f(x0) = LfΦ
t
f(x0)

and in terms of the evolution operator

d

dt
Φt

f = Φt
fLf(x0)

We have rewritten eq. (1) as a (infinite di-

mensional) linear eq. with formal solution:

Φt
f = exp(tLf)

Sol. dif. eq. ≡ Lie Transformation

ẋ = f(x) ⇔ x(t) = exp(tLf(y))(y)
∣∣∣∣
y=x0
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Non-autonomous System

dx

dt
= f(x,t)

with solution x(t) = Φt
f(x0). The evolution

operator satisfy the eq.

d

dt
Φt

f = Φt
fLf(x0,t)

It is possible to make use of the Magnus ex-
pansion and to write the solution as

Φt
f = exp(LfΩ(x0,t)), with fΩ =

∑

i

fΩi

where

fΩ1 (x0, t) =
∫ t

0
f(x0, s)ds

fΩ2 (x0, t) = −1

2

∫ t

0
ds1

∫ s1

0
ds2(f(x0, s1), f(x0, s2))

being h = (f , g) the Lie bracket

hi = (f , g)i = Lfgi−Lgfi =
n∑

j=1

(
fj

∂gi

∂xj
− gj

∂fi

∂xj

)
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The formal solution at t = h is given by

x(h) = exp(LfΩ(y,h))(y)
∣∣∣∣
y=x0

,

the 1-flow solution of the autonomous DE

ẋ = fΩ(x, h), x(0) = x0

f (i) =
s∑

j=1

β(i)
j fj =

1

hi

∫ h

0

(
t− h

2

)i

f(x, t)dt +O(hn+1),

i = 0,1,2

Up to order 6: exp
(
LfΩ[n]

)
= exp

(
LfΩ

)
+O(hn+1)

fΩ[2] = f (0)

fΩ[4] = f (0) − (f (1),f (0))

Q = −(f (1),3
2
f (0) − 6f (2))

fΩ[6] = f (0) + Q + (f (0),(f (0),
1

2
f (2) − 1

60
Q)) +

3

5
(f (1),Q)
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The vector-field containing Lie brackets are,

in general, very complicate and their maps

are computationally expensive.

Solution: To approximate this map by a com-

position of simpler maps

This is closely related to the commutator-

free methods (Celledoni & Owren)

Which simpler maps can be used?

A map is the 1-flow solution of a differential

equation.

Which differential equations can be exactly

or efficiently computed?

This dependes on the particular problem.
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Given the quadrature points, t1, . . . , ts, we con-

sider the following cases:

(i) Suppose the autonomous equation can be

efficiently solved up to t = h

ẋ = α1f(x, t1) + · · ·+ αsf(x, ts)

i.e. suppose it is easy to approximate the map

x(h) = exp
(
hα1Lf(x,t1)

+· · ·+hαsLf(x,ts)

)
(x0)

(ii) Given f = fA + fB, suppose we can solve

ẋ = α1fA(x, t1) + · · ·+ αsfA(x, ts)
ẋ = β1fB(x, t1) + · · ·+ βsfB(x, ts)

i.e. suppose we can approximate the maps

x(h) = exp
(
hα1LfA(x,t1)

+ · · ·+ hαsLfA(x,ts)

)
(x0)

x(h) = exp
(
hβ1LfB(x,t1)

+ · · ·+ hβsLfB(x,ts)

)
(x0)
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Problem to solve

exp(Ω) = exp
(
b1 − 1

12
[b1, b2]

)
+O(h5)

=
m∏

i=1

exp
(
αi,1b1 + αi,2b2

)
+O(h5)

exp(Ω) = exp
(
b1 +

1

12
b3 − 1

12
[b1, b2] +

1

240
[b2, b3]

+
1

360
[b1, [b1, b3]]− 1

240
[b2, [b1, b2]]

+
1

720
[b1, [b1, [b1, b2]]]

)
+O(h7)

=
m∏

i=1

exp
(
αi,1b1 + αi,2b2 + αi,3b3

)
+O(h7)

The coefficients αi,j have to solve a system

of non-linear equations.

Time-symmetry. It can be preserved with

αm+1−i,1 = αi,1
αm+1−i,2 = −αi,2
αm+1−i,3 = αi,3
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Order Conditions

Given the time-symmetric composition

eα1,1b1+α1,2b2+α1,3b3 eα2,1b1+α2,2b2+α2,3b3 · · ·
· · · eα2,1b1−α2,2b2+α2,3b3 eα1,1b1−α1,2b2+α1,3b3

and a general (time-symmetric) element

C(β(k)) = β
(k)
1 b1 + β

(k)
2 b3 + β

(k)
3 [1,2] + β

(k)
4 [2,3]

+ β
(k)
5 [1,1,3] + β

(k)
6 [2,1,2] + β

(k)
7 [1,1,1,2]

the order conditions can be easily obtained

from the recursive relation

exb1+yb2+zb3 eC(β(k)) exb1−yb2+zb3 = eC(β(k+1)(x,y,z))

Next, we must solve the equations

(β(m)
1 , β

(m)
2 , β

(m)
3 , β

(m)
4 , β

(m)
5 , β

(m)
6 , β

(m)
7 )

=
(
1,

1

12
, − 1

12
,

1

240
,

1

360
, − 1

240
,

1

720

)

Finally, we write the solution in terms of

A(0), A(1), A(2)
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Example: Fourth-order composition methods

(B & Moan)

Linear problem

eΩ ' exp
(
b1 +

1

12
[b2, b1]

)

' exp
(
A(0) + [A(1), A(0)]

)

' exp
(
1

2
A(0) + 2A(1)

)
exp

(
1

2
A(0) − 2A(1)

)

' exp
(
A(1)

)
exp

(
A(0)

)
exp

(
−A(1)

)

Non-linear problem

exp(LfΩ) ' exp
(
Lf(0)−(f(1),f(0))

)

' exp
(
L1

2f(0)−2f(1)

)
exp

(
L1

2f(0)+2f(1)

)

' exp
(
−Lf(1)

)
exp

(
Lf(0)

)
exp

(
Lf(1)

)
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ẋ = f(x, t)

x2(1) = exp
(
L1

2f(0)−2f(1)

)
exp

(
L1

2f(0)+2f(1)

)
(x0)

ẋ1 =
1

2
f(0)(x1)− 2f(1)(x1), x1(0) = x0,

ẋ2 =
1

2
f(0)(x2) + 2f(1)(x2), x2(0) = x1(1)

x2(1) = x(h) + O(h5)

x3(1) = exp
(
−Lf(1)

)
exp

(
Lf(0)

)
exp

(
Lf(1)

)
(x0)

ẋ1 = −f(1)(x1), x1(0) = x0,

ẋ2 = f(0)(x2), x2(0) = x1(1),

ẋ3 = f(1)(x3), x3(0) = x2(1)

x3(1) = x(h) + O(h5)
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Illustrative Example:

ẋ = f0(t) + f1(t)x + f2(t)x
2 + f3(t)x

3

Evaluate the constants

f
(0)
i '

∫ h

0
fi(t)dt, f

(1)
i ' 1

h

∫ h

0

(
t− h

2

)
fi(t)dt,

i = 0, . . . ,3 (using a fourth-order quadrature)

ai =
1

2
f
(0)
i − 2f

(1)
i , bi =

1

2
f
(0)
i + 2f

(1)
i

Finally, we must solve the autonomous eqs.

ẋ1 = a0 + a1x1 + a2x2
1 + a3x3

1, x1(0) = x0

ẋ2 = b0 + b1x2 + b2x2
2 + b3x3

2, x2(0) = x1(1)

Solution from the method

x2(1) = x(h) + O(h5)

18



Optimization

It is possible to improve the accuracy follow-

ing different procedures

Suppose the constant part of the vector-field,

b1, is the dominant term, then

Ω = b1 −
1

12
[b1, b2] + · · ·+ cj[

j b1
′s︷ ︸︸ ︷

b1, ..., b1, b2] + · · ·

+
1

12
b3 −

1

80
[b1, b4] +

1

240
[b2, b3] + · · ·

where the coefficients ck are given by

∑

k≥0

ckxk =
1− x

2 − x
ex−1

x
= g(x).

The dominating error term is then

E
j
1 = cj[b1, ..., b1, b2] + cj+1[b1, ...., b1, b1, b2] + · · ·

We can use additional exponentials to cancel

the lowest order terms of E
j
1 or to remove its

first singularities
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Separable Problem:

ẋ = C(t)x + D(t)x

with [C(t), D(t)] = 0. Then, we can consider
the graded free Lie algebra generated by

{c1, d1, c2, d2, c3, d3} with bi = ci+di, i = 1,2,3

and [ci, cj] = [di, dj] = 0.

Ω = c1 + d1 +
1

12
c3 +

1

12
d3− 1

12
[c1, d2]− 1

12
[d1, c2]

+
1

240
[c2, d3] +

1

240
[d2, c3]

+
1

360

(
[c1, c1, d3] + [c1, d1, c3] + [d1, c1, d3] + [d1, d1, c3]

)

− 1

240

(
[c2, c1, d2] + [c2, d1, c2] + [d2, c1, d2] + [d2, d1, c2]

)

+
1

720

(
[c1, c1, c1, d2] + [c1, c1, d1, c2] + [c1, d1, c1, d2]

+[c1, d1, d1, c2] + [d1, c1, c1, d2] + [d1, c1, d1, c2]
+[d1, d1, c1, d2] + [d1, d1, d1, c2]

)
+O(h7).

exp
(
Ω

)
can be approximated by

m∏

i=1

exp
(
αi,1c1 + αi,2c2 + αi,3c3

)
exp

(
βi,1d1 + βi,2d2 + βi,3d3

)

Fourth-order: easy
Sixth-order: very complicate
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For the particular case

ẋ = Cx + D(t)x

the problem simplifies

Ω = c1 + d1 +
1

12
d3− 1

12
[c1, d2] +

1

360

(
[c1, c1, d3] + [d1, c1, d3]

)

− 1

240

(
[d2, c1, d2]

)
+

1

720

(
[c1, c1, c1, d2] + [c1, d1, c1, d2]

+[d1, c1, c1, d2] + [d1, d1, c1, d2]
)

+O(h7).

and sixth-order methods can be obtained.
Other cases can also be considered.

On the other hand, for the autonomous case

ẋ = Cx + Dx

many efficient splitting methods are known

eC+D =
m∏

i=1

eαiC eβiD

Then, for our composition
m∏

i=1

exp
(
αi,1c1 + αi,2c2 + αi,3c3

)
exp

(
βi,1d1 + βi,2d2 + βi,3d3

)

we can take αi,1 = αi, βi,1 = βi which solve
many (the most complicate) order conditions
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Hamiltonian Systems

This is just a particular, but very important,
case. Let us consider H(q,p, t) : R2l×R→ R,
where q, p ∈ Rl, the Hamilton eqs. are

dq

dt
=

∂H

∂p
;

dp

dt
= −∂H

∂q

or, equivalently

d

dt

{
q
p

}
=

(
0 I
−I 0

) 



∂H
∂q
∂H
∂p





If we denote x = (q,p), it corresponds to the

particular case f = −J
∂H

∂x

Lie bracket ⇒ Poisson bracket

The Hamiltonian

H = T (p, t) + V (q, t)

appears in many problem: is time-dependent
+ separable

The Poisson brackets destroy the separability
⇒ Use of composition Magnus integrators
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NUMERICAL EXAMPLES:

HAMILTONIAN SYSTEMS

Perturbed oscillator by a plane wave

H =
1

2
(p2 + q2) + ε (cos(q)g1(t) + sin(q)g2(t))

with

g1(t) =
k∑

i=1

cos(wkt), g2(t) =
k∑

i=1

sin(wit)





q0 = 0 p0 = 11,2075
ωi = iω0 ω0 = 1/10
k = 10 ε = 0,25− 1,25

We are interested in the Poincaré section and

consider different methods. We start with a

large time-step, h and repeat the computa-

tions reducing h until we get the correct pic-

ture. For this time-step we measure the com-

putational cost
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−5 0 5
11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

12

12.1

12.2

q

p

(a)

ε=0.25

−10 −5 0 5 10
9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

q

p

(b)

ε=1.25

ε = 0,25 ε = 1,25
CPU N CPU N

2EXq 4.00 38 7.70 74
3EXq 4.90 58 10.6 121

S∗ 8.50 38 15.6 71
SRKN 10.7 48 14.8 68
RK4 12.0 152 26.5 331

Given the time step h = 2π/N we show the minimum

value of N such that δ < 10−3. For these values we

calculated the CPU time in seconds.
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The Duffing Problem

q̈ = A(t)q̇−∇qV (q, t)

or, equivalently

Ṁ = A(t)M

d

dt

{
q
p

}
=

(
0 M

−M−1 0

) {
∇qV (q, t)

p

}

The one-dimensional equation

q̈ = εq̇ + q − q3 + δ cos(wt)

can be obtained from the Hamiltonian

H = e−εtp
2

2
+ eεt

(
q4

4
− q2

2
− δcos(ωt)q

)

which is separable in two time-dependent parts,

being both of them solvable. The evaluation

of the time-dependent functions is the most

computational costly part
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



q0 = 1,75 p0 = 0
ε = 1

10000 δ = 1
1000

ω = 1
2

1 1.5 2 2.5 3 3.5
−7

−6

−5

−4

−3

−2

−1

0

LOG(T)

LO
G

(E
R

R
O

R
)

RY

RK4

FLA

2EX

Errors in positions for different splitting meth-
ods and the two-exponential CMI. Time step
chosen such that all methods require the same
computational cost.
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The Schrödinger Equation

i
∂

∂t
u(x, t) =

(
− 1

2µ

∂2

∂x2
+ V (x, t)

)
u(x, t)

Spatial semidiscretisation

u(x, t) −→ u(t) =





u(x0, t)
u(x1, t)

...
u(xN , t)





.

Then, we have to solve

iut = H(t)u

with H ∈ CN×N hermitic (usually real and
symmetric). If we consider

u = q + ip

then
d

dt

{
q
p

}
=

(
0 H(t)

−H(t) 0

) {
q
p

}

V (x, t) = D(1− e−αx)2 + xf(t)

i) f(t) = G cos(wt) Laser field
ii) f(t) = Gw

cosh2(F
√

wt)
Collision with an atom
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Conclusions

The time and the coordinates in the vector-

field f(x, t) play different roles on the evo-

lution of the system for many problems

⇒ it is convenient to treat them differ-

ently

We have generalized the Magnus integra-

tors for linear systems to be used in non-

linear problems

Composition Magnus integrators can be

used in tandem with other geometric in-

tegrators (of different order). An impor-

tant case being the splitting methods for

separable systems. The final methods are

still Geometric Integrators

Additional stages can be considered for

optimization purposes
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Work in Progress

To analyze the efficiency of fourth-order

methods optimized following different cri-

terions

To build different sixth-order composition

Magnus integrators and to analyze their

performances

To consider particular cases, like the sep-

arable problem, and to build efficient com-

position methods for them

To look for interesting problems where

these methods can be of interest (polyno-

mial vector-fields, linear non-homogeneous

systems, Riccati equation, separable Hamil-

tonian systems, some oscillatory problems,

etc.)
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