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James Clerk Maxwell (1831-1879)
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Maxwell and Control

Maxwell’s (1857) essay on Saturn’s rings contained the 
first use of the characteristic polynomial to assess 
stability. This later led to his use of the same method 
in designing a speed governor – a physical feedback 
control device – in a problem of accurate electrical 
measurements.
Maxwell studied the problem of Saturn’s rings under 
Newtonian attraction. Coherence of a ring of 
artificial earth satellites can be achieved by synthetic
interactions (realized via feedback control laws).
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Maxwell and Control

It is extraordinary that, as we are gathered here to 
discuss geometric integration and control, the 
spacecraft Cassini-Huygens is taking the closest look 
ever at Saturn’s rings (and shepherd moons), a 
triumph of action at a distance via precise control. 
New data on bending waves, density waves and 
spokes in the ring system may lead to further 
theoretical work on the problem of Saturn’s rings.
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Maxwell and Gyroscopic Interaction
Maxwell’s equations for the electromagnetic field are 
complemented by the equation of Lorentz for the force on a 
charged particle in an electromagnetic field. 

In a region where the electric field vanishes, the particle 
motion is governed by a purely gyroscopic Lagrangian
given in terms of the magnetic vector potential. Gyroscopic 
forces leave the kinetic energy invariant.
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Our subject

This talk is about the exploitation of purely 
gyroscopic interactions to achieve coherent patterns 
in the motion of particles. We do this in the language 
most natural to the problem, the language of moving 
frames. The next few slides constitute a brief review 
of some aspects of moving frames.



Boston University--Harvard University--University of Illinois--University of Maryland

Frenet-Serret Frame 
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Control System on SE(3)
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Inversion
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γNormal (k-plane) Development of

x

Frame interaction
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Isokinetic Motion
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Outline

Motivation: Flying in spatial patterns (formations)

Model: Interaction laws for unit-speed particles

• Formations as shape equilibria

• Convergence to specific formations 

- Analysis for two particles (vehicles)

- Simulations for n vehicles

• Interaction with surfaces - obstacle-avoidance and boundary-

following
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Red Arrows
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Planar Model (Natural Frenet Frames)
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3-D Model (Natural Frenet Frames)

The natural curvatures (u1,v1), 
(u2,v2),...,(un,vn) are controls.
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Characterization of Equilibrium Shapes
Proposition (Justh, Krishnaprasad): Suppose the controls u1, u2, …, un are invariant 
under rigid motions in the plane.  For equilibrium shapes (i.e. relative equilibria of the 
unreduced dynamics), u1 = u2 = ... = un, and there are only two possibilities:

(a) u1 = u2 = ... = un = 0: all vehicles head in the same direction (with arbitrary relative 
positions), or

(b) u1 = u2 = ... = un ≠ 0: all vehicles move on the same circular orbit (with arbitrary
chordal distances between them).  
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3-D Equilibrium Shapes

• The control laws are assumed to be invariant under rigid motions in three-
dimensional space. 

• Shape variables capture relative distances and angles between vehicles.  

• Shape equilibria correspond to steady-state formations.

circling formation
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Pair Equilibria

Collinear formation Circling formation 
(separation equals the 
diameter of the orbit)

Rectilinear formation 
(motion perpendicular 
to the baseline)
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Planar Control Law for 2 particles
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Change of variables
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Lyapunov Function

ρ = |r| φ1

φ2
)()1)ln(cos( 12 ρφφ hVpair ++−−=

• A Lyapunov function is

where f (ρ) = dh/dρ.

• The derivative of Vpair with respect to time 
along trajectories of the system is

• This Lyapunov function is the key to proving 
a convergence result for the two-particle 
system.
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Convergence result

• Our Lyapunov function must be “radially unbounded,” meaning Vpair→∞ as 
ρ → 0 and as ρ → ∞.  (Some minor technical assumptions are also needed.)

Proposition (Justh, Krishnaprasad): For any initial condition satisfying 
|φ2 - φ1| ≠ π and ρ > 0, the system converges to the set of equilibria, which has 
the form

Proof: Uses LaSalle’s Invariance Principle.  

• Examples of (relative) equilibria:

( ){ } ( ){ } ( ){ }0)(0,0,0,,,0,,, 2222 =∪>∀−−∪>∀ ee f ρρρρρρ ππππ
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Intuition
Steering control equation for vehicle #2:
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Align with the 
other vehicle’s 
heading.

Steer toward or away from 
the other vehicle to maintain 
appropriate separation.

Align each vehicle 
perpendicular to the baseline 
between the vehicles.

D. Grünbaum, “Schooling as a strategy for taxis in a noisy environment,” in Animal Groups in 
Three Dimensions, J.K. Parrish and W.M. Hamner, eds., Cambridge University Press, 1997.

• Biological analogy (swarming, schooling):
- Decreasing responsiveness at large separation distances. 
- Switch from attraction to repulsion based on   
separation distance or density.

- Mechanism for alignment of headings.
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Key ideas for two-vehicle problem
• Unit-speed motion with steering control. 

- Gyroscopic forces preserve kinetic energy of each particle.

- In mechanics, gyroscopic forces are associated with vector potentials.

• Shape variables: relative distances and angles.

• Lyapunov function ⇒ convergence result for the shape dynamics.

• Equilibria of the shape dynamics = relative equilibria of the vehicle dynamics.

• Particle re-labeling symmetry.

• Lie group formulation:

- The dynamics of each particle can be expressed as a left-invariant system 
evolving on SE(2), the group of rigid motions in the plane.

- G=SE(2) is a symmetry group for the dynamics: the control law is invariant under 
rigid motions of the entire formation.

-Vpair is also invariant under G.      Therefore, we can consider the reduced system 

evolving on shape space = (G×G)/G = G.
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Gyroscopic Forces and Vector Potentials
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Note: Lagrangian with linear-in-velocity term ⇒ skew term in the dynamics, 
but the converse only holds if Q(x) can be expressed as in (∗)  for some y(x).
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Gyroscopically interacting particles

For a single particle:
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For multiple particles, the kinetic energy of each particle is conserved, and the
particles interact via gyroscopic forces.
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Shape space for n particles
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g1, g2, ..., gn ∈ G = SE(2), 
the group of rigid motions 
in the plane.  
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capture relative
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orientations.

Shape variables
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Two-particle law: Lie group setting
• Dynamics on configuration space S=G×G, where G=SE(2):
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Lyapunov Function
( )2 1 2 1ln 1 (| |)V h= − + ⋅ + −x x r r

Penalize heading-direction 
misalignment Penalize inter-vehicle distances 

which are too large or small

or

)(ρh

ρ

)(ρf

• V depends only on shape variables.

• Idea: show that for suitable choice of 
control law, dV/dt 0.

• For two vehicles, global convergence 
results are obtained (Justh and 
Krishnaprasad, TR 2002, CDC 2003, 
SCL 2004, CDC 2004)
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Generalization to 3-D Law
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Lie Group Setting
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g1, g2, ..., gn ∈ G = SE(2), 
the group of rigid motions 
in the plane.  
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capture relative
vehicle positions 
and orientations.

Assume the controls u1, u2, ..., un are 
functions of shape variables only.
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Lie Group Setting (3-D Trajectories)
• Represent each vehicle trajectory as a function on the Lie group SE(3) of rigid motions:

• Define the shape variable:

• Left-invariant systems on SE(3):
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Formation Control for n vehicles
Generalization of the two-vehicle formation control law to n vehicles:
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At present, it is conjectured (based on simulation results) that such control 
laws stabilize certain formations.  However, analytical work is ongoing.



Boston University--Harvard University--University of Illinois--University of Maryland

Rectilinear Control Law Simulation
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Rectilinear Control Law Simulations

Simulations with 10 vehicles 
(for different random initial 
conditions). 

Leader-following behavior: the red 
vehicle follows a prescribed path 
(dashed line). 

Normalized Separation Parameter vs. Time
3

ro

1
time

On-the-fly modification of 
the separation parameter.
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Circling Control Law Simulation




Boston University--Harvard University--University of Illinois--University of Maryland

Circling Control Law

Normalized Separation Parameter vs. Time
On-the-fly 
modification of the 
separation parameter.

3
ro

1
time

Simulations with 10 vehicles (for 
different random initial conditions). 

“Beacon-circling” behavior: the vehicles respond 
to a beacon, as well as to each other. 
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3-D Simulations
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Obstacle Avoidance
• Idea: control inputs for the moving vehicle are determined by the trajectory of 
the closest point on the obstacle surface.

• Goals: boundary following and non-collision.

x1

y1

r1

y2

r2

x2

x1
z1

y1

r1

r2

x2

z2

y2

F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.
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Boundary-Following Simulation
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Performance Criteria

Waypoints

time

Steering controlsumax

-umax

0

Steering “Energy”

time

time

Intervehicle distances

• Faithful following of waypoint-
specified trajectories

• Sufficient separation between 
vehicles (to avoid collisions)

• Minimize steering: 
for UAVs, turning 
requires considerably 
more energy than 
straight, level flight.  
Maneuverability is 
also limited.
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Toward Practical Missions
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Convergence Result for n > 2

• Convergence Result (Justh, Krishnaprasad): There exists a sublevel 
set Ω of V and a control law (depending only on shape variables) such 
that           on Ω.

• With this Lyapunov function, we cannot prove global convergence for 
n > 2.

• Although we obtain an explicit formula for the controls uj, j=1,...,n, 
there is no guarantee that this particular choice of controls will result in 
convergence to a particular desired equilibrium shape in Ω.

0≤V�

( )[ ]∑∑
= <

−+−+−=
n

j jk
kjkj hV

1
|)(|)cos(1ln rrθθ

• We consider rectilinear relative equilibria, and the Lyapunov
function
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Continuum Model

• Continuity equation (Liouville equation):
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• Vector field (in polar coordinates):
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• Conservation of matter:
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• Energy functional:
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• This continuum formulation 
only involves two scalar fields: 
the density ρ(t,r,θ) and the 
steering control u(t,r,θ).

• However, the underlying space 
is 3-dimensional (for planar 
formations). 

• Incorporating time and/or 
spatial derivatives in the 
equation for u yields a coupled 
system of PDEs for ρ and u.
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