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James Clerk Maxwell (1831-1879)
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Maxwell and Control

Maxwell’s (1857) essay on Saturn’s rings contained the
first use of the characteristic polynomial to assess
stability. This later led to his use of the same method
In designing a speed governor — a physical feedback

control device — In a problem of accurate electrical
measurements.

Maxwell studied the problem of Saturn’s rings under
Newtonian attraction. Coherence of a ring of
artificial earth satellites can be achieved by synthetic
Interactions (realized via feedback control laws).
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Maxwell and Control

It Is extraordinary that, as we are gathered here to
discuss geometric integration and control, the
spacecraft Cassini-Huygens is taking the closest look
ever at Saturn’s rings (and shepherd moons), a
triumph of action at a distance via precise control.
New data on bending waves, density waves and
spokes In the ring system may lead to further
theoretical work on the problem of Saturn’s rings.
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Maxwell and Gyroscopic Interaction

Maxwell’s equations for the electromagnetic field are
complemented by the equation of Lorentz for the force on a
charged particle in an electromagnetic field.

Force law

F =q(E 4+ v X B

In a region where the electric field vanishes, the particle
motion iIs governed by a purely gyroscopic Lagrangian
given in terms of the magnetic vector potential. Gyroscopic
forces leave the kinetic energy invariant.
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Our subject

This talk is about the exploitation of purely
gyroscopic interactions to achieve coherent patterns
In the motion of particles. We do this in the language
most natural to the problem, the language of moving
frames. The next few slides constitute a brief review
of some aspects of moving frames.
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Frenet-Serret Frame

Regular Curve

S ¥(S) T
o /

"

y"#0

and

Frenet-Serret
equations 7 = TO)

T'(s) = Kk(S)N(s)
N'(s) = —«(sS)T(s) +7(S)B(S)
B'(s) = —7(S)N(S)
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Natural Frenet or
Relatively Parallel Adapted Frame

Regular Curve

S (S)
CZ

Equations for relatively parallel adapted
frame

y'(s) = T(s)

T’(S) = kl(S)Ml(S) +k2(S)M2(S)

Mi(s) = —k(s)T(s)

Ma(s) = —K(s)T(s)

@N@ R. L. Bishop, Amer. Math. Month. (1975), 82(3):246-251
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Control System on SE(3)

IR

where g = [TNB] or [TM,M,]
0 -x 0 0 —k, -k,
and E = |x 0 —¢| oOr kk 0 O
0 ¢ 0 k, 0 0
1
and e = |0
0
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Inversion

x(s) = |

7"(s)| (FS)
7'(8)-(7"(s)xy"(s))
(x(8))’

k(s) = 7"(s)-M,(0)- [k (0)y"(s)-7'(o) do
=1, ’ (RPAF)

k() = k() +K(s) 0'(s) =1

(where 0= arg (k)

- N

Boston University--Harvard University--University of Illinois--University of Maryland

The Center for Communicatineg Networked Contnol Ssreteras



Normal (k-plane) Development of

. N
‘ .Y,
N

Frame interaction
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Isokinetic Motion

F = q(E + vxB)

v = X
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Outline

Motivation: Flying in spatial patterns (formations)
Model: Interaction laws for unit-speed particles
* Formations as shape equilibria
« Convergence to specific formations
- Analysis for two particles (vehicles)
- Simulations for n vehicles
e Interaction with surfaces - obstacle-avoidance and boundary-

following
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Planar Model (Natural Frenet Frames)

f‘l — Xl
Unit speed X1 =Yl
assumption Y1 =—XUp
X .
: 2 = X2
X .
' Xp = YUy
Y2 ==XoU;
[ J
[ J
[ J
=X,
Xn = Ynln
Yn =—XpUp

Uy, U,,..., U, are curvature
(i.e., steering) control inputs.

Specifying u,, u,,..., U, as feedback functions of (r, X, y,),

> I —| (M2 Xo1 ¥2),-r (Mo X Y,) defines a control law.
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3-D Model (Natural Frenet Frames)

Y,

, Unit speed

2 assumption

X5
Zy
D, Xl
Iy Y1
\ r,

rn

- N
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The natural curvatures (u,,v,),
(u,,Vv,),...,(u.,v,) are controls.

- =X

X, =Y +2,V
Y =X

2, ==XV

r, =X,

Xz =Y,U, +2,V,

Y, =—X,U,
Z, =—X,V,
rn = Xn

Xn - ynun + va

n

yn = _Xnun

Z,=-X\V

n

Relatively parallel adapted frames in the sense of
R. L. Bishop, Amer. Math. Month. (1975), 82(3):246-251
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Characterization of Equilibrium Shapes

Proposition (Justh, Krishnaprasad): Suppose the controls u,, u,, ..., U, are invariant
under rigid motions in the plane. For equilibrium shapes (i.e. relative equilibria of the

unreduced dynamics), u, = u,= ... = u., and there are only two possibilities:
(@) u;=u,=...=u, = 0:all vehicles head in the same direction (with arbitrary relative
positions), or
(b) u;=u,=...=u, = 0: all vehicles move on the same circular orbit (with arbitrary
chordal distances between them).
(b) U
(a) 941 93/ \

glI g5I o, f

o]

o]
CNG .
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3-D Equilibrium Shapes

 The control laws are assumed to be invariant under rigid motions in three-
dimensional space.

 Shape variables capture relative distances and angles between vehicles.

 Shape equilibria correspond to steady-state formations.

91/‘ g, ..
. /' “““““ Py
Os / f oG

............ - R ‘
/ 9> e N

i o

rectilinear formation circling formation helical formation
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Pair Equilibria

/ / / e

Rectilinear formation  Collinear formation Circling formation
(motion perpendicular (separation equals the
to the baseline) diameter of the orbit)
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Planar Control Law for 2 particles

I"1=X1 f‘2=X2 r:rz—rl
X1 =Yq1Up Xy =YoUy
Y1 =—-X1U Yo =—XoUy

U Z—U(—l::l‘xljt—l:l‘hj— f(r |)£—|:|‘Y1j+ﬂxz "Y1

u, Z—U(l:l‘xzj(l::l'hj— f(r |)£|:|‘Y2)+ﬂX1'Y2

n
>-->0
e

f(/rl)

—
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Change of variables

Dot products can be expressed as sines and cosines in the
new variables:

r : r
— Xy =SIN¢y — Y, =COS ¢y
[T ||
' X, =SIN ¢ ' Y5> =CO0S¢
TR 2 T Y2~ 2
|| ]

Xy -Y1 =SIn(g, — @)
X1 Yo =SIn(¢ — )

System after change of variables:
L =SIng, —sin g

¢ =—nsing cosg, + T (p)cosd, + usin(g, — @)

— +(1/ p)(cos¢p, —cos¢)

Py =—115IN P COS ¢y — T (0) COS Py + p1SiN(hy — )
+(1/ p)(cosg@, —cos¢)
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Lyapunov Function

A Lyapunov function is
Vair =—In(Cos(#, —¢1) +1) +h(p)
where f (p) = dh/dp.

* The derivative of V ;. with respect to time
along trajectories of the system is
avpair ; avpair

V. = PAr gy ¢ _|_8Vpair :
pair ,5¢1 0, 2 op

<0.

 This Lyapunov function is the key to proving
— a convergence result for the two-particle
system.
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Convergence result

* Our Lyapunov function must be “radially unbounded,” meaning V,;, — oo as
o — 0and as p— . (Some minor technical assumptions are also needed.)

Proposition (Justh, Krishnaprasad): For any initial condition satisfying
|#, - ¢,| # mand p > 0, the system converges to the set of equilibria, which has
the form

p.2.5). vo>0  Uilp-2.-2) vo> 0§ L{(p.00)|f (pe) =0}

Proof: Uses LaSalle’s Invariance Principle.

« Examples of (relative) equilibria: _~

ONE g i

two-vehicle law
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Intuition

Steering control equation for vehicle #2:

u, Z—U(l:l‘xzj(l::l'h]— f(r |)£|:|‘Y2]+ﬂX1'Y2

" / N

Align each vehicle Steer toward or away from Align with the
perpendicular to the baseline the other vehicle to maintain other vehicle’s
between the vehicles. appropriate separation. heading.
* Biological analogy (swarming, schooling): /

- Decreasing responsiveness at large separation distances. 4 !

- Switch from attraction to repulsion based on /
separation distance or density. ,

- Mechanism for alignment of headings. / r

D. Grinbaum, “Schooling as a strategy for taxis in a noisy environment,” in Animal Groups in
hree Dimensions, J.K. Parrish and W.M. Hamner, eds., Cambridge University Press, 1997.

—a]

Boston University--Harvard University--University of Illinois--University of Maryland

The Center for Communicatine Netwoiked Contnol Ssreteras



Key ideas for two-vehicle problem

 Unit-speed motion with steering control.

- Gyroscopic forces preserve kinetic energy of each particle.

- In mechanics, gyroscopic forces are associated with vector potentials.
 Shape variables: relative distances and angles.
 Lyapunov function = convergence result for the shape dynamics.
 Equilibria of the shape dynamics = relative equilibria of the vehicle dynamics.
« Particle re-labeling symmetry.
* Lie group formulation:

- The dynamics of each particle can be expressed as a left-invariant system
evolving on SE(2), the group of rigid motions in the plane.

- G=SE(2) is a symmetry group for the dynamics: the control law is invariant under
rigid motions of the entire formation.

_Vpair
@N@ evolving on shape space = (GxG)/G = G.

Is also invariant under G.  Therefore, we can consider the reduced system

Boston University--Harvard University--University of Illinois--University of Maryland
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Gyroscopic Forces and Vector Potentials

Kinetic energy Scalar potential

Consider the Lagrangian: / / // \
L =2% -Mx+y(x) - %x—x-Kx, Vector potential
CeR" M =MT >0 K=KT (linear-in-velocity

Euler-Lagrange equations: term)

T
d oL oL d . oy .
— = MXx+ v(x))—| —=— | X+ KX

dt ox Ox
T
:l\/lj('+(a—y])'(—(8—yj X + KX
OX OX

= MX+Q (X)X + KX
=0,

oy (oy)' T
) Q(x)=(a—xj—(—j — Q(x) =-QT (x).

OX

Not@_bg@gian with linear-in-velocity term = skew term in the dynamics,
but-thefgfpwerse-enfy holds IT Q(x) can be expressed as in (*) Tor some y(x).
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The

Gyroscopically interacting particles

For a single particle:

r = position, v=r, a=r,
m = mass =1,

H = kinetic energy = v 2
0 -u |

ma=F&r= r.
u 0 |

Note: F is a gyroscopic force
(Recall Lorentz force law for a
charged particle in a magnetic field)

Note that u may be a complicated
function of time, and may involve

feedback.

—

>

H =0,
~ [+2H cos 6
I = ,
- \W2H sin g
¢ = u.

Restrict to the
level-set of H
given by H=1/2.

; _ );/u Frenet-Serret
y = —xu equations

For multiple particles, the kinetic energy of each particle is conserved, and the
N particles interact via gyroscopic forces.

Center for Communicatine Netwoiked Control Svstems
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Shape space for n particles

Frenet-Serret
Equations

erXj

Xj=Yju;

]=12,..n.

Shape variables
capture relative
positions and
orientations.

d;, 95, -, 0, € G = SE(2),
the group of rigid motions

Group variables

____________________

ey .

In the plane.

:gj

~ Dynamics
0 0 1
0 0 0|+
0 0 0 |

0
1
0

-1
0
0

Configuration space

n copies
N

—

S=GxGx- xG

0

gisj £jese(2), j=12,..,n

Shape variables

Assume the controls u,, u,, ..., U, are
functions of shape variables only.

Shape space
n—1 copies

NG gj:gl_lgj’ ]=2..n

The Center for Communicatineg Networked Contnol Ssreteras
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~

R=GxGx---xG
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The

Two-particle law: Lie group setting

* Dynamics on configuration space S=GxG, where G=SE(2):

Xq yli r [ cos 61 —sin 6 rn
gy=|____ i _|=|sine, coso;i |, O1=0151=01(Ag+ Aly).
0 0! 1 0 0 1
- oL T v>§11~’§2€5(9(2)
X2 Yoif cos 6, —sin 6, Ry .
g, = . |=|sino, coso,! |, g2 = 0282 = 92(Ag + AgUp).
o oi1] | o o i1 (0 0 1] (0 -1 0]

« Shape variable: g = g7 g, Ag =10 0 0|, Ay=/1 0 0|

0 0 0 0 0 0
e Dynamics on shape space R=G: g = g¢,

§=¢6-9760 =6~ Ad L& e se(2).
 Controls as functions of the shape variable g:

uy(g) = —n(gwgzsj+ f(r)(g?)+ ugz, 9 =195l r=+0%+05%,

r

13,23 23 ) ) ‘V v (q)
Uzwg rg + f(r)] £— +,ug21, g 1:[9'1]_ pair pair

Boston University--Harvard University--University of Illinois--University of Maryland
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Lyapunov Function

V :—In(1+x2-x1)+ h(jr,-r, )

Penalize heading-direction T
misalignment Penalize inter-vehicle distances
which are too large or small
h(p)

* \V depends only on shape variables.

f (o) * ldea: show that for suitable choice of
| f / control law, dVv/dt < 0.

L —

* For two vehicles, global convergence
results are obtained (Justh and
Krishnaprasad, TR 2002, CDC 2003,
SCL 2004, CDC 2004)
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Generalization to 3-D Law

Natural curvatures
for vehicle #1:

Natural curvatures
for vehicle #2:

The Center for Communicatineg Networked Contnol Ssreteras

(r
:—77 _—
T

<=1l

i

)

f(|r|)[i-y1

18

j"‘ﬂxz 'Yu

j( 1j+f(|r|)(L-le+,uX2-Zl
T |

n(r X (r y f(|r|)[r Vo |+ 4%y
= T2 T Y2 | T Y2 1°Y2
|| s T
r r r
=N X (_'Zz —f(||’|)(—°22 T HX 2,
(Irl s 7|
Baseline Collision Heading
alignment avoidance alignment

Boston University--Harvard University--University of Illinois--University of Maryland



Lie Group Setting

Frenet-Serret Group variables Dynamics
Equations - - i 1T o - ]
r—qx Xj yi!T, 0 0 1 0 -1 0
.J J gj _ : gj = gJ 0O 0 Of+]|1 0 0 Uj
Xp=yiy | 77T N
0o 0 1 0 0 O 0O 0 O
.= —X:U: | _ L - - _
¥J e | T =gf; £jese(2), j=12,..,n
1=12,...nllg g, ..0, €G=SEQ), Configuration space
the group of rigid motions o moop’es
In the plane. S=GxGx:-xG
Assume the controls u,, u,, ..., U, are
Shape variables functions of shape variables only.
capture relative .
vehicle positions Shape variables Shape space
and orientations.| | 5. _ .7 1q. -2 n _ h-lcopies
Ji= 8% 9 J= el R=GxGx--xG

- N
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Lie Group Setting (3-D Trajectories)

» Represent each vehicle trajectory as a function on the Lie group SE(3) of rigid motions:

X z r X z r
gl: 1 yl 1 1 ’ gz — 2 yZ 2 2 eSE(B)

0 0O 0 1 0 0 0 1

« Define the shape variable:

_X1'X2 X oY, X2, (rz_rl)'xl—
Yi Xy Yi¥Y2 Y12, (rz_rl)'yl
2, Xy Zy°Y, Z,°Z, (rz _rl)'zl

0 0 0 1

o Left-invariant systems on SE(3):

d, = 0,6 = 9, (A + AU, + Ayvy), & € se(3)
d, = 0,5, = 9,(A + AU, + Ayv,), &, € se(3)
d=9¢=9(s _Adg-léjl) = 9g(<, _g_lglg)’ ¢ e se(3)

9g=9,9,=

0 0 0 1 0 -1 0 0 0 0 -1 0
0 0 0 O 1 0 0 0 0 0 0 0
A, = DA = A, =
0 0 0 0 0 0 0 0 1 0 0 0
» N 0 0 0 0] 0 0 0 0 0 0 0 0
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Formation Control for n vehicles

Generalization of the two-vehicle formation control law to n vehicles:

I’j :Xj
Xj=Yjuj
yj=-Xjuj

1 ri — Iy
Uj :HZ F(rj —na XY . Xk Yi) = T —n |)(|r1_r|yJJ
K+ j Tk

j=12,...,n

At present, it is conjectured (based on simulation results) that such control
laws stabilize certain formations. However, analytical work is ongoing.

- N
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Rectilinear Control Law Simulation
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A=
7 Simulations with 10 vehicles //,
(for different random initial //
conditions).

Rectilinear Control Law Simulations

Leader-following behavior: the red
vehicle follows a prescribed path
(dashed line).

On-the-fly modification of
the separation parameter.

\

Normalized Separation Parameter vs. Time

-

time

UL
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Circling Control Law Simulation





Circling Control Law

i ]

. »-_":"‘/Simulations M\th 10 vehicles (for
“_ ) different random initial conditions).

™

|;'I || \ '\_\'.\ .

“Beacon-circling” behavior: the vehicles respond

to a beacon, as well as to each other.

' Normalized Separation Parameter vs. Time

On-the-fly
modification of the
separation parameter.

UNY

time
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3-D Simulations

Rectilinear Law:

1 ik Vi ik
=2 N X Yy = D) Y | AXCY
: nk¢j|: [lrjkl JJLlrjkl JJ . |rjk| J <7
1 Fi Fi Vi
u ==y X o= fqr, ey
J nkij{ (lrjkl J][lrjkl JJ a | J

e

o ik ik
o TH XY "Xy Y
— "\ | i | | T | |

h '|I

DA n
.'/ / a.; l}.;-"ll Where er — rJ - rk, /,l > 2 > O,

- < _ flry=a|l-| = , a>0
T I
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Obstacle Avoidance

* Idea: control inputs for the moving vehicle are determined by the trajectory of
the closest point on the obstacle surface.

* Goals: boundary following and non-collision.

F. Zhang, E.W. Justh, and P.S. Krishnaprasad, CDC 2004.
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Boundary-Following Simulation

100 8

80.].

60|
40

20
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Performance Criteria

e Faithful following of waypoint- o Sufficient separation between
3 vehicles (to avoid collisions)

Intervehicle distances

.fﬁ\

* Minimize steering: |
for UAVS, turning e
requires considerably

Steering “Energy”

more energy than . ] ” ti_rnf P
straight, level flight. 0 [/ =N — i
Maneuverability is "

also limited. ' - time

Boston University--Harvard University--University of Illinois--University of Maryland
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Toward Practical Missions

b
=
A
r,.
Y = v
*_,-r"’
o -
200
0 300
200 .
=200 1M

Boston University--Harvard University--University of Illinois--University of Maryland

The Center for Communicatineg Networked Contnol Ssreteras





The

Center for Communicatine Netwoiked Control Svstems

Convergence Result for n > 2

» \WWe consider rectilinear relative equilibria, and the Lyapunov
function

V = Zn: > [— In(1+ cos(0; —Hk))+ h(lr; —ry |)]

J=1k< ]

» Convergence Result (Justh, Krishnaprasad): There exists a sublevel
set QQ of V and a control law (depending only on shape variables) such
that V <0 on Q.

 With this Lyapunov function, we cannot prove global convergence for
n>?2.

* Although we obtain an explicit formula for the controls u;, J=1,...,n,
there Is no guarantee that this particular choice of controls will result in
convergence to a particular desired equilibrium shape in Q.

UNY
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Continuum Model

* Vector field (in polar coordinates):

dr/dt cosd
=|sin@ |
do/dt u

 Continuity equation (Liouville equation):

ap —[a(u'o)+[cosﬂ-vrp].

6t 69 Sin 9
e Conservation of matter:

| plt,r,0)drdo =1, vt

 Energy functional:

 This continuum formulation
only involves two scalar fields:
the density po(t,r,6) and the
steering control u(t,r, ).

» However, the underlying space
Is 3-dimensional (for planar
formations).

* Incorporating time and/or
spatial derivatives in the
equation for u yields a coupled
system of PDEs for p and u.

V. () :%jG J. I+ cos(0—8) )+ h( r = F )] p(t.¥.0) p(t, F. @) drd adTd .

UNY
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