Numerical techniques for approximating the solution of matrix ODE on the general linear group

Nicoletta Del Buono

Outline

* The matrix ODE we deal with
* Theoretical results
* Examples
* Numerical tools:
$>$ Substituting approach
$>$ Solution via Riccati equation
$>$ SVD approach
* Rectangular Case
* Numerical examples

The differential system

Consider the matrix differential equation

$$
\begin{aligned}
& \dot{Y}(t)=Y(t)^{-T} F\left(Y(t), Y(t)^{-T}\right) \\
& Y(0)=Y_{0} \in G L(n)
\end{aligned}
$$

* F is a continuous matrix function, globally Lipschitz on a subdomain of $G L(n)$
* the solution $Y(t)$ exists and is unique in a neighborhood $]-\tau \tau[$ of the origin 0

The structure of $\mathbf{G L}(\mathbf{n})$

* Two maximal connected and disjoint open subsets comprising $G L(n)$

Variety of Singular $n \times n$ matrices

Theoretical results

* The existence of the solution $Y(t)$ for all \boldsymbol{t} is not guaranteed a priori and the presence of a finite escape time behavior is not precluded.
* The value of the escape point depends on the function F
$>$ If the escape point $\boldsymbol{\tau}$ is finite then $Y(t)$ approaches a singular matrix as $\boldsymbol{t} \rightarrow \boldsymbol{\tau}$
$>$ if $\boldsymbol{\tau}<\infty$ then $Y(t)$ exists for all $\boldsymbol{\tau}>0$

Theoretical results

* Example: \boldsymbol{F} constant function with $\operatorname{trace}(F)=0$

$$
\begin{gathered}
\dot{Y}=Y^{-T}\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \quad Y(0)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
\text { solution }
\end{gathered}
$$

$$
Y(t)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\sqrt{1+t} & -\sqrt{1+t} \\
\sqrt{1-t} & \sqrt{1-t}
\end{array}\right]
$$

Theoretical results

* Relationship between the singular values of the solution $Y(t)$, the initial condition $Y(0)$ and the symmetric matrix function:

$$
E(t)=\int_{0}^{t}\left[F^{T}\left(Y(s), Y^{-T}(s)\right)+F\left(Y(s), Y^{-T}(s)\right)\right] d s
$$

Systems with structure

* If the matrix function \boldsymbol{F} maps all matrices into the Lie algebra of skew-symmetric matrices $\boldsymbol{Y}(\boldsymbol{t})$ belongs to the orthogonal manifold (whenever $Y(0)$ is orthogonal)
* If $\boldsymbol{\operatorname { d i a g }}(\boldsymbol{F})=0$ for all nonsingular matrices
$\longmapsto \boldsymbol{\operatorname { d i a g }}\left(Y(t)^{\mathrm{T}} Y(t)\right)=\boldsymbol{\operatorname { d i a g }}\left(Y(0)^{\mathrm{T}} Y(0)\right)$

Examples

* Control Theory

$>$ Optimal system assignment via Output Feedback Control
$>$ Balanced Matrix Factorizations
$>$ Balanced realizations (Isodynamical flows)

* Multivariate Data Analysis
$>$ Weighted Oblique Procrustes problem
* Inverse Eigenvalue Problem
>Pole placement or eigenvalue assignment problem via output feedback
> Prescribed Entries Inverse Eigenvalue Problem

Examples in Control Theory

Output Feedback Control of linear system

$>$ Consider the linear dynamical system defined by the triple $(A, B, C) \in \mathrm{P}^{n \times n} \times \mathrm{P}^{n \times m} \times \mathrm{P}^{p \times n}$

$$
\begin{aligned}
& x(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

$>$ The process of "feeding back" the output or the state variables in a dynamical system configuration through the input channels
$>$ Output Feedback: $u(t)$ is replaced by $u(t)=K y(t)+v(t)$
$K \in \mathrm{P}^{m \times p}$ feedback gain matrix

Examples in Control Theory

Output Feedback Control of linear system

$>$ The feedback system is

$$
\begin{aligned}
& x(t)=(A+B K C) x(t)+B v(t) \\
& y(t)=C x(t)
\end{aligned}
$$

Optimal system assignment
$>$ Given a target system described by the triple $(F, G, H) \in \mathrm{P}^{n \times n} \times \mathrm{P}^{n \times m} \times \mathrm{P}^{p \times n}$ find an optimal feedback transformation of (A, B, C) which results the best approximation of (F, G, H).

Examples in Control Theory

* The set $G L(n) \times P^{m \times p}$ of feedback transformation is a Lie group under the operation

$$
\left(T_{1}, K_{1}\right) \circ\left(T_{2}, K_{2}\right)=\left(T_{1} T_{2}, K_{l}+K_{2}\right)
$$

* We can consider action on the output feedback group and orbits, particularly:

$$
\Phi(A, B, C)=\left\{\left(T(A+B K C) T^{-1}, T B, C T^{-1} \mid(T, K) \in G L(n) \times \mathrm{P}^{m \times p}\right\}\right.
$$

* The distance function

$$
\Phi=\left\|T(A+B K C) T^{-1}-F\right\|^{2}+\|T B-G\|^{2}+\left\|C T^{-1}-H\right\|^{2}
$$

Examples in Control Theory

* The gradient flow of this distance function with respect to a specific Riemannian metric on $\Phi(A, B, C)$ can be written as:

$$
\begin{aligned}
& \dot{T}=T^{-T} f\left(T, T^{-T}, K\right) \\
& \dot{K}=-B^{T} T^{T}\left(T(A+B K C) T^{-1}-F\right) T^{-T} C^{T}
\end{aligned}
$$

Examples in Control Theory

* Balanced matrix factorizations
$>$ General matrix factorization problem:
Given a matrix $H \in P^{k \times l}$ find two $X \in P^{k \times n}$ and $Y \in P^{n \times l}$ such that $H=X Y$
$>$ balanced factorization $X^{T} X=Y Y^{T}$
$>$ diagonal balanced factorization $X^{T} X=Y Y^{T}=D$
* Balanced and diagonal balanced factorization can be characterized as critical points of cost functions defined on the orbit

$$
\mathrm{O}(X, Y)=\left\{\left(X T^{-1}, T Y\right) \in \mathrm{P}^{k \times n} \times \mathrm{P}^{n \times 1} \mid T \in G L(n)\right\}
$$

Examples in Control Theory

* The cost functions are respectively:

$$
\begin{array}{|ll|}
\hline \Phi: \mathrm{O}(X, Y) \rightarrow \mathrm{P} & \Phi\left(X T^{-1}, T Y\right)=\left\|X T^{-1}\right\|^{2}+\|T Y\|^{2} \\
\Phi_{N}: \mathrm{O}(X, Y) \rightarrow \mathrm{P} & \Phi_{N}\left(X T^{-1}, T Y\right)=\operatorname{tr}\left(N T^{-T} X^{T} X T^{-1}+N T Y Y^{T} T^{T}\right) .
\end{array}
$$

* Applying a gradient flow techniques differential systems on $G L(n)$ can be constructed:

$$
\begin{array}{lrl}
\xrightarrow{\text { balanced }} \dot{T} & =T^{-T}\left(X^{T} X\left(T^{T} T\right)^{-1}-T^{T} T Y Y^{T}\right) & \\
\dot{T} & =T^{-T}\left(X^{T} X T^{-1} N T^{-T}-T^{T} N T Y Y^{T}\right) & \\
\hline
\end{array}
$$

diagonal

Examples in Control Theory

* Balanced realizations in linear system theory
$>$ Consider the linear dynamical system defined by the triple $(A, B, C) \in \mathrm{P}^{n \times n} \times \mathrm{P}^{n \times m} \times \mathrm{P}^{p \times n}$

$$
\begin{aligned}
& x(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

$>$ Gramians: $W_{C}=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t \quad W_{O}=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t$
$>(A, B, C)$ is a balanced realization if $W_{C}=W_{O}$
$>(A, B, C)$ is a diagonal balanced realization if $W_{C}=W_{O}=D$

Examples in Control Theory

* Any $T \in G L(n)$ changes a realization by

$$
(A, B, C) \rightarrow\left(T A T^{-1}, T B, C T^{-I}\right)
$$

* and the Gramians via

$$
W_{C} \rightarrow T W_{C} T^{-1} \quad W_{0} \rightarrow T^{-T} W_{0} T^{-1}
$$

* Balanced and diagonal balanced realizations have been proved to be critical points of costs functions defined on the orbit

$$
\mathrm{O}(A, B, C)=\left\{\left(T A T^{-1}, T B, C T^{-1}\right) \in \mathrm{P}^{n \times n} \times \mathrm{P}^{n \times m} \times \mathrm{P}^{k \times n} \mid T \in G L(n)\right\}
$$

Examples in Control Theory

The cost functions are respectively:

$$
\left[\begin{array}{ll|}
\hline \Phi: \mathrm{O}(A, B, C) \rightarrow \mathrm{P} & \Phi(T)=\operatorname{tr}\left(T W_{C} T^{-1}+T^{-T} W_{O} T^{-1}\right) \\
\Phi_{N}: \mathrm{O}(A, B, C) \rightarrow \mathrm{P} & \Phi_{N}(T)=\operatorname{tr}\left(N T W_{C} T^{-1}+N T^{-T} W_{O} T^{-1}\right)
\end{array}\right.
$$

* All balancing transformation $T \in G L(n)$ for a given asymptotically stable system (A, B, C) can be obtained solving the gradient flow
$\begin{aligned} \text { balanced }^{\dot{T}} & =T^{-T}\left(W_{O}\left(T^{T} T\right)^{-1}-T^{T} T W_{C}\right) & & T(0)=T_{0} \\ \dot{T} & =T^{-T}\left(W_{O} T^{-1} N T^{-T}-T^{T} N T W_{C}\right) & & T(0)=T_{0} \begin{array}{l}\text { diagonal } \\ \text { balanced }\end{array}\end{aligned}$

Examples in Multivariate Data Analysis

\& Weighted oblique Procrustes problem (WObPP)
$>$ Manifold of the oblique rotation matrices

$$
O B(n)=\left\{X \in \mathrm{P}^{n \times n} \mid \operatorname{det}(X) \neq 0, \operatorname{diag}\left(X^{T} X\right)=I\right\}
$$

Given A, B, C fixed matrices with conformal dimensions
$>$ Minimize $\|\boldsymbol{A X C} \boldsymbol{-} \boldsymbol{B}\|$ subject to $\boldsymbol{X} \in \boldsymbol{O B}(\boldsymbol{n})$
$>$ Problem in factor analysis known as a "rotation to factor-structure matrix"
$>$ Minimize $\left\|\boldsymbol{A} \boldsymbol{X}^{-\boldsymbol{T}} \boldsymbol{C}-\boldsymbol{B}\right\|$ subject to $\boldsymbol{X} \in \boldsymbol{O B}(\boldsymbol{n})$
$>$ Problem of finding an approximation to a "factorpattern"matrix

Examples in Multivariate Data Analysis

* The solution of the WObPP problem can be obtained solving a descent matrix ODE:

$$
\frac{d X}{d t}=-\pi_{O B(n)}(\nabla)=-X^{-T} o f f\left(X^{T} \nabla\right)
$$

* being ∇ the gradient of the function to be minimize with respect to the chosen metric
(N. Trendafilov FGCS 2003)

Examples in Inverse Eigenvalue Problem and control theory

* Pole placement or eigenvalue assignment via output feedback:
$>$ Given a linear system described by the triple $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ and a self-conjugate set of complex points $\left\{\lambda_{1} \lambda_{2} \ldots \lambda_{n}\right\}$
$>$ find a feedback gain matrix \boldsymbol{K} such that $\boldsymbol{A}+\boldsymbol{B} \boldsymbol{K} \boldsymbol{C}$ has eigenvalues λ_{i}
$*$ Denoted by Λ a fixed matrix with eigenvalues λ_{i} the pole placement task is equivalent to find a matrix $T \in G L(n)$ and $K \in \mathrm{P}^{m \times p}$ minimizing the distance $\mu \mathrm{l}$

$$
\left\|\Lambda-T(A+B K C) T^{-1}\right\|
$$

Examples in Inverse Eigenvalue Problem and control theory

* Using a gradient flow techniques the solution can be obtained solving

$$
\begin{aligned}
& \dot{T}=T^{-T}\left[(A+B K C)^{T}, T^{T}(\Lambda-(A+B K C)) T^{-T}\right] \\
& \dot{K}=-B^{T} T^{T}\left(T(A+B K C) T^{-1}-F\right) T^{-T} C^{T}
\end{aligned}
$$

Examples in Inverse Eigenvalue Problem

Matrix completion with prescribed eigenvalues

PEIEP (prescribed entries inverse eigenvalue

 problem) :
Given

$>\Lambda=\left\{\left(i_{v} j_{\mathrm{v}}\right) \mid v=1, \ldots, m\right\} m$ pairs of integers $1 \leq i_{v}<j_{\mathrm{v}} \leq n$
$>\boldsymbol{a}=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathrm{P}$
$>\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathrm{X}$ closed under conjugation
Find a matrix $X \in \mathrm{P}^{n \times n}$ such that $\sigma(X)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$

$$
\text { and } \quad x_{i_{v} j_{v}}=a_{v} \quad v=1, \ldots, m
$$

Examples in Inverse Eigenvalue Problem

Let Λ a matrix with eigenvalues λ_{i} and denoting

$$
\mathrm{M}(\Lambda)=\left\{V \Lambda V^{-1} \mid V \in G L(n)\right\}
$$

the orbit of matrices isospectral to Λ under the action group of $G L(n)$ and

$$
\Sigma(\Lambda, \boldsymbol{a})=\left\{X=\left[x_{i j}\right] \in \mathrm{P}^{n \times n} \mid \quad x_{i_{v} j_{v}}=a_{v} v=1, \ldots, m\right\}
$$

* Solving the PEIEP is to find intersection of the two geometric entities $\mathrm{M}(\Lambda)$ and $\Sigma(\Lambda, \boldsymbol{a})$

Examples in Inverse Eigenvalue Problem

* Minimize for each given $X \in \mathrm{M}(\Lambda)$ the distance between X and $\Sigma(\Lambda, \boldsymbol{a})$

$$
\min _{V \in \mathrm{M}(\Lambda)} \frac{1}{2}<V \Lambda V^{-1}-\underset{\uparrow}{P\left(V \Lambda V^{-1}\right), V \Lambda V^{-1}-P\left(V \Lambda V^{-1}\right)>} \text { Projection on } \Sigma(\Lambda, a)
$$

Using a descent flow approach we get

$$
\frac{d V}{d t}=\kappa\left(V \Lambda V^{-1}\right) V^{-T} \quad \text { with } \quad \kappa(X)=\left[X^{T}, X-P(X)\right]
$$

(M.T. Chu et al. FGCS 2003)

Numerical Approximation: substituting approach

Consider our system:

$$
\begin{aligned}
& \dot{Y}(t)=Y(t)^{-T} F\left(Y(t), Y(t)^{-T}\right) \\
& Y(0)=Y_{0} \in G L(n)
\end{aligned}
$$

* Setting $\boldsymbol{Z}=\boldsymbol{Y}^{\boldsymbol{-} \boldsymbol{T}}$ from $\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{Z}=\boldsymbol{I}$ we get

$$
\dot{Y}^{T} Z+Y^{T} \dot{Z}=0 \Leftrightarrow \dot{Z}=-Y^{-T} \dot{Y}^{T} Z
$$

$$
\begin{cases}\dot{Y}=Z F(Y, Z)=H(Y, Z), & Y(0)=Y_{0} \\ \dot{Z}=-Z F^{T}(Y, Z) Z^{T} Z=-Z H^{T}(Y, Z) Z, & Z(0)=Y_{0}^{-T}\end{cases}
$$

Substituting Approach

* Advantages:

$>$ No direct use of the inverse of $\boldsymbol{Y}(t)$ (computational advantages)

* Drawbacks:
$>$ Solution of a new matrix ODE with double dimension with respect to the original system;
$>$ High stiffness (when $\boldsymbol{Y}(\boldsymbol{t})$ tends to a singular matrix or the Lipschitz constant of \boldsymbol{H} is large);
$>$ The presence of an additional structure of the solution matrix $\boldsymbol{Y}(t)$ is not considered \square need of $a d$ hoc numerical scheme

Solution via Riccati equation

* When the matrix function F does not depend explicitely on Y^{-T}, i.e.:

$$
\begin{aligned}
& \dot{Y}(t)=Y(t)^{-T} F(Y(t)) \\
& Y(0)=Y_{0} \in G L(n)
\end{aligned}
$$

* It could be convenient work with the implicit equation

$$
\begin{aligned}
& Y(t) \dot{Y}(t)=F(Y(t)) \\
& Y(0)=Y_{0} \in G L(n)
\end{aligned}
$$

Solution via Riccati equation

* Applying the second order Gauss Legendre method, we get:

$$
Y_{n+1}^{T} Y_{n+1}+Y_{n}^{T} Y_{n+1}-Y_{n+1}^{T} Y_{n}-Y_{n}^{T} Y_{n}-2 h F\left(\frac{Y_{n}+Y_{n+1}}{2}\right)=0
$$

The previous equation can be iteratively solved starting from an initial approximation $Y_{n+1}^{(0)}$
(avoiding the nonlinearity of \boldsymbol{F})

$$
Y_{n+1}^{T} Y_{n+1}+Y_{n}^{T} Y_{n+1}-Y_{n+1}^{T} Y_{n}-Y_{n}^{T} Y_{n}-2 h F\left(\frac{Y_{n}+Y_{n+1}^{(0)}}{2}\right)=0
$$

Solution via Riccati Equation

* The latter equation is the prototype of an Algebraic Riccati equation, in fact setting

$$
A=Y_{n} \quad \text { and } \quad C=Y_{n}^{T} Y_{n}+2 h F\left(\frac{Y_{n}+Y_{n+1}^{(0)}}{2}\right)
$$

we get

$$
R(X)=X^{T} X+A^{T} X-X^{T} A+C=0
$$

Solution via Algebraic Riccati equation

* Numerical methods to solve Algebraic Riccati equation are based on fixed point or Newton iteration:
$>$ Picard iteration:

$$
A^{T} X_{k+1}-X_{k+1}^{T} A=-C-X_{k}^{T} X_{k}
$$

$>$ Newton method:
$>R: \mathrm{P}^{n \times n} \rightarrow \mathrm{P}^{n \times n}$
$>$ its Frechét derivatitive is: $R_{X}^{\prime}(H)=H^{T}(X-A)+(X+A)^{T} H$
$>$ the Newton iteration starts from \boldsymbol{X}_{0} and solves $\boldsymbol{R}(\boldsymbol{X})=0$ via $\boldsymbol{X}_{\boldsymbol{k}+1}=\boldsymbol{X}_{\boldsymbol{k}}+\boldsymbol{D}_{\boldsymbol{k}}$ being $\boldsymbol{D}_{\boldsymbol{k}}$ the solution of Sylvester equation

$$
R_{X}^{\prime}\left(D_{k}\right)=-R\left(X_{k}\right) \Leftrightarrow\left(X_{k}+A\right)^{T} D_{k}+D_{k}^{T}\left(X_{k}-A\right)=-R\left(X_{k}\right)
$$

Solution via Riccati equation

* Solving Riccati equation implies the numerical treatment of the Sylvester equation

$$
\mathrm{A} X+X^{\mathrm{T}} \mathrm{~B}=\mathrm{X}
$$

with $\mathrm{A}, \mathrm{B}, \mathrm{X}$ given $n \times n$ matrices

Existence: there exists a solution X of the Sylvester equation iff

$$
\left[\begin{array}{ll}
\mathrm{X} & \mathrm{~A} \\
\mathrm{~B} & O
\end{array}\right] \text { and }\left[\begin{array}{ll}
O & \mathrm{~A} \\
\mathrm{~B} & O
\end{array}\right]
$$

are equivalent

Solution via Riccati equation

To obtain conditions for uniqueness of solution and for constructing it, we reformulate the Sylvester equation as a $\boldsymbol{n}^{2} \times \boldsymbol{n}^{2}$ linear system:

$$
\begin{aligned}
&(I \otimes \mathrm{~A}) \operatorname{vec}(X)+\left(B^{T} \otimes I\right) \operatorname{vec}\left(X^{T}\right)=\operatorname{vec}(\mathrm{X}) \\
& \operatorname{vec}\left(X^{T}\right)=P(n, n) \operatorname{vec}(X) \\
& P(n, n)=\sum_{i=1}^{n} \sum_{j=1}^{n} E_{i j} \otimes E_{i j}^{T}
\end{aligned}
$$

Solution via Riccati equation

$$
M=\left[\begin{array}{cccc}
\mathrm{A}+e_{1} b_{1}^{T} & e_{2} b_{1}^{T} & \cdots & e_{n} b_{1}^{T} \\
e_{1} b_{2}^{T} & \mathrm{~A}+e_{2} b_{2}^{T} & \cdots & e_{n} b_{2}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
e_{1} b_{n}^{T} & e_{2} b_{n}^{T} & \cdots & \mathrm{~A}+e_{n} b_{n}^{T}
\end{array}\right]
$$

being $\boldsymbol{b}_{\boldsymbol{i}}$ the columns of the matrix B

Uniqueness: there exists a unique solution X of the Sylvester equation $A \boldsymbol{X}+\boldsymbol{X}^{\mathrm{T}} \mathrm{B}=\mathrm{X}$ if the matrix \boldsymbol{M} is non-singular $\left(\operatorname{rank}(\boldsymbol{M})=\boldsymbol{n}^{2}\right)$

Solution via Riccati equation

* Considering the linear equation derived from:
$>$ Picard iteration: $\mathrm{A}=\boldsymbol{A}^{\boldsymbol{T}}$ and $\mathrm{B}=\boldsymbol{A} \Rightarrow \boldsymbol{M}$ is singular
$>$ Newton iteration: $\mathrm{A}=\boldsymbol{X}_{\boldsymbol{k}}+\boldsymbol{A}^{\boldsymbol{T}}$ and $\mathrm{B}=\boldsymbol{X}_{\boldsymbol{k}}-\boldsymbol{A} \Rightarrow \boldsymbol{M}$ is non-singular \Rightarrow unique solution!
* Newton method converges in a reasonable number of iterations
* Numerical solution of Sylvester equation :
$>$ Direct methods (QR, Gaussian Elimination);
$>$ Iterative algorithms;
$>$ Generalize Conjugate Residual method.

Singular Value Decomposition

* To avoid the inverse matrix computations and to control the singularities of the matrix solution $Y(t)$ we can adopt a continuous Singular Value Decomposition approach
* The continuous SVD of $Y(t)$ is a continuous factorization

$$
Y(t)=U(t) \Sigma(t) V^{\mathrm{T}}(\mathrm{t})
$$

$>\boldsymbol{U}(t), \boldsymbol{V}(t)$ orthogonal matrices $\left(\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U}=\boldsymbol{I}_{\boldsymbol{n}}\right.$ and $\left.\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{V}=\boldsymbol{I}_{\boldsymbol{n}}\right)$
$>\Sigma(t)$ diagonal matrix with diagonal elements the singular values $\sigma_{i}(t)$ of $\boldsymbol{Y}(t)$

* The motion of $\boldsymbol{Y}(t)$ is now described by the variables $\boldsymbol{U}(t)$, $\Sigma(t), V(t)$ giving more information on the flow

Singular Value Decomposition

* Suppose that the solution $Y(t)$ possesses dinstinct and nonzero singular values $\sigma_{i}(t)$, for $i=1, \ldots, n$ and t in $[0, \tau)$ then there exists a continuous SVD of $Y(t)$ and the factors $U(t), \Sigma(t), V(t)$ of such a decomposition satisfy the following ODEs:

$$
\begin{aligned}
& \dot{\Sigma}=\Sigma^{-1} V^{T} F\left(Y, Y^{-T}\right) V-H \Sigma+\Sigma K, \quad \Sigma(0)=\Sigma_{0} \\
& \dot{U}=U H, \quad U(0)=U_{0} \\
& \dot{V}=V K, \quad V(0)=V_{0}
\end{aligned}
$$

Singular Value Decomposition

* The differential equations for the singular values are

$$
\dot{\sigma}_{i}=\frac{1}{\sigma_{i}}\left(V^{T} F\left(Y, Y^{-T}\right) V\right)_{i i}, \quad i=1, \cdots, n
$$

The elements of the skew-symmetric matrices $\boldsymbol{H}, \boldsymbol{K}$ are

$$
\begin{aligned}
& H_{i j}=\frac{1}{\sigma_{i} \sigma_{j}\left(\sigma_{j}^{2}-\sigma_{i}^{2}\right)}\left[\sigma_{j}^{2}\left(V^{T} F V\right)_{i j}+\sigma_{i}^{2}\left(V^{T} F V\right)_{j i}\right] \\
& K_{i j}=\frac{1}{\left(\sigma_{j}^{2}-\sigma_{i}^{2}\right)}\left[\left(V^{T} F V\right)_{i j}+\left(V^{T} F V\right)_{j i}\right]
\end{aligned}
$$

Singular Value Decomposition

* Numerical solution of:
$>$ a diagonal system in σ_{i} (information on the conditioning of the matrix solution $Y(t)$)
$>$ two linear systems in $\boldsymbol{H}_{i j} \boldsymbol{K}_{i j}$
$>$ two orthogonal systems in \boldsymbol{U} and \boldsymbol{V}
$>$ our aim is to preserve the non-singular behavior of the numerical solution \rightarrow explicit integration of the systems in \boldsymbol{U} and \boldsymbol{V} (orthogonality preserved up to the order of the method)
Drawback distinct singular values
$>$ Block Continuous SVD

Rectangular case

* Some of the previous results can be extended to differential problems on the manifold

$$
\boldsymbol{G} \boldsymbol{L}(m, n)=\left\{\boldsymbol{Y} \in P^{\boldsymbol{m} \times \boldsymbol{n}} \mid \operatorname{rank}(Y)=n\right\}, \quad n \leq m
$$

* Differential systems on $G L(m, n)$ have the following form:

$$
\dot{Y}=G(Y), \quad Y(0)=Y_{0} \in G L(n, p)
$$

with \boldsymbol{G} belonging to the tangent space of $G L(m, n)$:
$\underbrace{G(Y)=Y\left(Y^{T} Y\right) \underbrace{-1} F_{1}(Y)+[I_{n}-Y\left(Y^{T} Y\right)^{-1} Y^{T} \underbrace{F_{2}(Y)}_{m \times n}}_{n \times n}$

Rectangular Case: numerical treatment

Continuous SVD (economy)

$$
\overbrace{Y(t)}^{m \times n}=U_{1}(t) \Sigma_{1}(t) V^{T}(t)
$$

$m \times n$ matrix

$$
U_{1}{ }^{T} U_{1}=I_{n}
$$

$$
\operatorname{diag}\left(\sigma_{l}, \ldots, \sigma_{n}\right)
$$

$n \times n$ matrix
$V^{T} V=V V^{T}=I_{n}$

* Differentiating we obtain the differential systems satisfied by the three factors:

Rectangular Case: numerical treatment

$$
\begin{aligned}
& \dot{\sigma}_{i}=\frac{1}{\sigma_{i}}\left(V^{T} F_{1}(Y) V\right)_{i j} \quad i=1, \cdots, n \\
& \dot{V}=V K, \quad V(0)=V_{0} \\
& \dot{U}_{1}=U_{1} H+\left(I_{n}-U_{1} U_{1}^{T} T\right) F_{2}(Y) \Sigma_{1}^{-1}, \quad U(0)=U_{0}
\end{aligned}
$$

Differential System on the Stiefel manifold

$$
\begin{aligned}
& H_{i j}=\frac{1}{\sigma_{i} \sigma_{j}\left(\sigma_{j}^{2}-\sigma_{i}^{2}\right)}\left[\sigma_{j}^{2}\left(V^{T} F_{1}(Y) V\right)_{i j}+\sigma_{i}^{2}\left(V^{T} F_{1}(Y) V\right)_{j i}\right] \\
& K_{i j}=\frac{1}{\left(\sigma_{j}^{2}-\sigma_{i}^{2}\right)}\left[\left(V^{T} F_{1}(Y) V\right)_{i j}+\left(V^{T} F_{1}(Y) V\right)_{j i}\right]
\end{aligned}
$$

Rectangular Case: numerical treatment

Substituting approach:

$$
\dot{Y}=Y\left(Y^{T} Y\right)^{-1} F_{1}(Y)+\left[I_{n}-Y\left(Y^{T} Y\right)^{-1} Y^{T}\right] F_{2}(Y)
$$

* Setting $\boldsymbol{Z}=\left(\boldsymbol{Y}^{T} \boldsymbol{Y}\right)^{-1}$ we obtain

$$
\begin{aligned}
& \dot{Y}=Y Z F_{1}(Y)+\left[I-Y Z Y^{T}\right] F_{2}(Y) \\
& \dot{Z}=-Z\left[F_{1}(Y)+F_{1}^{T}(Y)\right] Z
\end{aligned}
$$

Numerical Illustrations

* First example:

$$
\dot{Y}=Y^{-T}\left[\begin{array}{cc}
0 & -\frac{\delta}{2} \\
-\frac{\delta}{2} & 0
\end{array}\right]
$$

$$
Y(0)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

* With solution existing in $(\mathbf{- 1} / \boldsymbol{\delta}, \mathbf{1} / \boldsymbol{\delta})$

$$
Y(t)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\sqrt{1+\delta t} & -\sqrt{1+\delta t} \\
\sqrt{1-\delta t} & \sqrt{1-\delta t}
\end{array}\right]
$$

* We solve the problem with $\delta=1 / 2$

Numerical Illustrations

* Behaviour of the global error on [02)

Numerical Illustrations

* Second example

$$
\dot{Y}=Y^{-T}\left[\begin{array}{cc}
-\sin (t) \cos (t) & \cos (t) \\
-t \sin (t) & t
\end{array}\right] \quad Y(0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

with solution

$$
Y(t)=\left[\begin{array}{cc}
\cos (t) & t \\
0 & 1
\end{array}\right]
$$

* periodically singular (for each $\tau_{k}=k \pi / 2$)

Numerical Illustrations

* Semilog plot of the global error on $(\pi / 4, \pi / 2)$

Nicoletta Del Buono

Conclusions

* We have considered a particular ODEs on $G L(n)$ often occurring in applications
* Several problems modeled by such ODEs
* Different numerical approaches avoiding the direct use of matrix inversion and detection of singular behavior
* Future works:
$>$ Improving the validation of the proposed approaches by tackling numerical tests on real examples

