Workshop on Lie group methods and control theory June 28 - July 1 Edinburgh

Numerical techniques for approximating the solution of matrix ODE on the general linear group

Nicoletta Del Buono

Joint work with : Luciano Lopez

Outline

- The matrix ODE we deal with
- Theoretical results
- ✤ Examples
- Numerical tools:
 - Substituting approach
 - Solution via Riccati equation
 - ➢ SVD approach
- Rectangular Case
- Numerical examples

The differential system

Consider the matrix differential equation

•

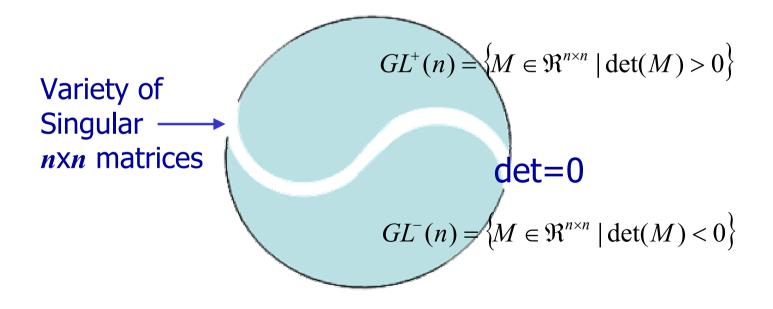
$$Y(t) = Y(t)^{-T} F(Y(t), Y(t)^{-T})$$

 $Y(0) = Y_0 \in GL(n)$

- *F* is a continuous matrix function, globally Lipschitz on a subdomain of GL(n)
- the solution Y(t) exists and is unique in a neighborhood]-τ τ[of the origin 0

The structure of GL(n)

Two maximal connected and disjoint open subsets comprising GL(n)



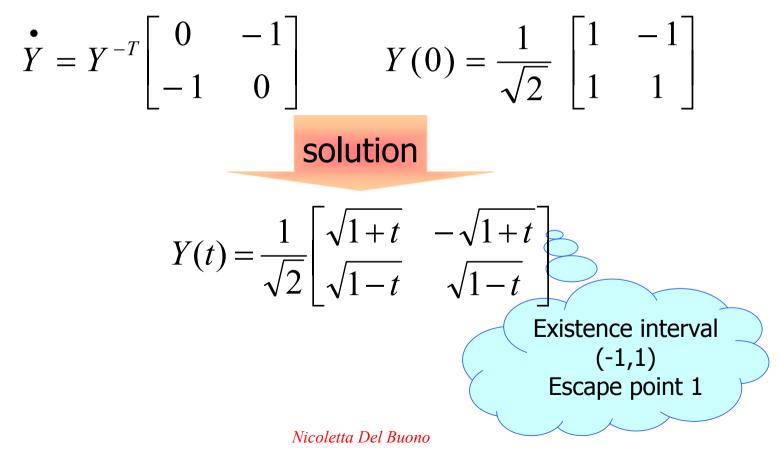
Theoretical results

- The existence of the solution Y(t) for all t is not guaranteed a priori and the presence of a finite escape time behavior is not precluded.
- The value of the escape point depends on the function F
 - ➢ If the escape point *τ* is finite then *Y*(*t*) approaches a singular matrix as *t* → *τ*

 \succ if *τ* < ∞ then *Y*(*t*) exists for all *t* > *θ*

Theoretical results

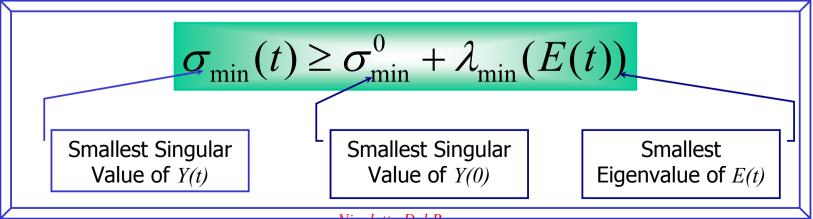
Example: F constant function with trace(F) = 0



Theoretical results

Relationship between the singular values of the solution Y(t), the initial condition Y(0) and the symmetric matrix function:

$$E(t) = \int_{0}^{T} [F^{T}(Y(s), Y^{-T}(s)) + F(Y(s), Y^{-T}(s))] ds$$



Nicoleíía Del Buono

Systems with structure

If the matrix function *F* maps all matrices into the Lie algebra of skew-symmetric matrices
 Y(t) belongs to the orthogonal manifold (whenever *Y(0)* is orthogonal)

• If diag(F) = 0 for all nonsingular matrices $diag(Y(t)^TY(t)) = diag(Y(0)^TY(0))$

Examples

- **Control Theory**
 - Optimal system assignment via Output Feedback Control
 - Balanced Matrix Factorizations
 - Balanced realizations (Isodynamical flows)
- * Multivariate Data Analysis
 - Weighted Oblique Procrustes problem
- ***** Inverse Eigenvalue Problem
 - Pole placement or eigenvalue assignment problem via output feedback
 - > Prescribed Entries Inverse Eigenvalue Problem

Output Feedback Control of linear system

➤ Consider the linear dynamical system defined by the triple (A,B,C)∈P^{n×n}×P^{n×m}×P^{p×n}

 $\begin{aligned} \mathbf{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned}$

- The process of "*feeding back*" the output or the state variables in a dynamical system configuration through the input channels
- > Output Feedback: u(t) is replaced by u(t)=Ky(t)+v(t)

 $K \in \mathbb{P}^{m \times p}$ feedback gain matrix

Nicoletta Del Buono

Output Feedback Control of linear system

> The feedback system is

$$\begin{aligned} \mathbf{\dot{x}}(t) &= (A + BKC) \mathbf{x}(t) + Bv(t) \\ y(t) &= Cx(t) \end{aligned}$$

Optimal system assignment

➢ Given a target system described by the triple
(F,G,H)∈P^{n×n}×P^{n×m}×P^{p×n} find an optimal feedback transformation of (A,B,C) which results the best approximation of (F,G,H).

★ The set GL(n)×P^{m×p} of feedback transformation is a Lie group under the operation (T₁, K₁)◦(T₂,K₂) = (T₁T₂, K₁+K₂)

We can consider action on the output feedback group and orbits, particularly:

 $\Phi(A,B,C) = \{ (T(A+BKC)T^{-1},TB,CT^{-1} | (T,K) \in GL(n) \times \mathbb{P}^{m \times p} \}$

★ The distance function $\Phi = \|T(A + BKC)T^{-1} - F\|^{2} + \|TB - G\|^{2} + \|CT^{-1} - H\|^{2}$

 The gradient flow of this distance function with respect to a specific Riemannian metric on Φ(*A*,*B*,*C*) can be written as:

•

$$T = T^{-T} f(T, T^{-T}, K)$$

•
 $K = -B^{T}T^{T} (T(A + BKC)T^{-1} - F)T^{-T}C^{T}$

Balanced matrix factorizations

- General matrix factorization problem:
 - Given a matrix $H \in P^{k \times l}$ find two $X \in P^{k \times n}$ and $Y \in P^{n \times l}$ such that H = XY
 - \succ balanced factorization $X^T X = Y Y^T$
 - > diagonal balanced factorization $X^T X = Y Y^T = D$
- Balanced and diagonal balanced factorization can be characterized as critical points of cost functions defined on the orbit

 $O(X,Y) = \{(XT^{-1},TY) \in \mathbf{P}^{k \times n} \times \mathbf{P}^{n \times l} \mid T \in GL(n)\}$

The cost functions are respectively:

 $\Phi: \mathcal{O}(X, Y) \to \mathcal{P} \qquad \Phi(XT^{-1}, TY) = ||XT^{-1}||^2 + ||TY||^2$ $\Phi_N: \mathcal{O}(X, Y) \to \mathcal{P} \qquad \Phi_N(XT^{-1}, TY) = tr(NT^{-T}X^TXT^{-1} + NTYY^TT^T)$

Applying a gradient flow techniques differential systems on *GL(n)* can be constructed:

balanced

$$T = T^{-T} (X^T X (T^T T)^{-1} - T^T TYY^T) \qquad T(0) = T_0$$

$$T = T^{-T} (X^T X T^{-1} N T^{-T} - T^T N TYY^T) \qquad T(0) = T_0$$
diagonal balanced

***** Balanced realizations in linear system theory

Consider the linear dynamical system defined by the triple $(A,B,C) \in \mathbb{P}^{n \times n} \times \mathbb{P}^{n \times m} \times \mathbb{P}^{p \times n}$ $\mathbf{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t)

Scamians: $W_C = \int_0^\infty e^{At} B B^T e^{A^T t} dt$ $W_O = \int_0^\infty e^{A^T t} C^T C e^{At} dt$ (A,B,C) is a balanced realization if $W_C = W_O$

 \succ (*A*,*B*,*C*) is a **diagonal balanced realization** if $W_C = W_O = D$

★ Any *T*∈*GL*(*n*) changes a realization by $(A,B,C) \rightarrow (TAT^{-1}, TB, CT^{-1})$

and the Gramians via

 $W_C \rightarrow T W_C T^{-1}$

 $W_0 \rightarrow T^{-T} W_0 T^{-1}$

Balanced and diagonal balanced realizations have been proved to be critical points of costs functions defined on the orbit

 $O(A, B, C) = \{ (TAT^{-1}, TB, CT^{-1}) \in P^{n \times n} \times P^{n \times m} \times P^{k \times n} | T \in GL(n) \}$

The cost functions are respectively:

 $\Phi: \mathcal{O}(A, B, C) \to \mathcal{P} \qquad \Phi(T) = tr(TW_C T^{-1} + T^{-T}W_O T^{-1})$ $\Phi_N: \mathcal{O}(A, B, C) \to \mathcal{P} \qquad \Phi_N(T) = tr(NTW_C T^{-1} + NT^{-T}W_O T^{-1})$

All balancing transformation *T*∈*GL*(*n*) for a given asymptotically stable system (*A*,*B*,*C*) can be obtained solving the gradient flow

balanced
$$\overset{\bullet}{T} = T^{-T} (W_O (T^T T)^{-1} - T^T T W_C)$$
 $T(0) = T_0$
 $\overset{\bullet}{T} = T^{-T} (W_O T^{-1} N T^{-T} - T^T N T W_C)$ $T(0) = T_0$ diagonal balanced

Nicoletta Del Buono

Examples in Multivariate Data Analysis

Weighted oblique Procrustes problem (WObPP)

> Manifold of the oblique rotation matrices

 $OB(n) = \{X \in \mathbb{P}^{n \times n} \mid \det(X) \neq 0, diag(X^T X) = I\}$

Given A,B,C fixed matrices with conformal dimensions

> Minimize || AXC- B || subject to $X \in OB(n)$

Problem in factor analysis known as a "rotation to factor-structure matrix"

> Minimize $|| AX^{-T}C^{-}B ||$ subject to $X \in OB(n)$

Problem of finding an approximation to a "factorpattern" matrix

Examples in Multivariate Data Analysis

The solution of the WObPP problem can be obtained solving a descent matrix ODE:

$$\frac{dX}{dt} = -\pi_{OB(n)}(\nabla) = -X^{-T}off(X^{T}\nabla)$$

♦ being ∇ the gradient of the function to be minimize with respect to the chosen metric

(N. Trendafilov FGCS 2003)

Examples in Inverse Eigenvalue Problem and control theory

Pole placement or eigenvalue assignment via output feedback:

- Siven a linear system described by the triple (A,B,C)and a self-conjugate set of complex points $\{\lambda_1 \lambda_2 \dots \lambda_{n_n}\}$
- ➢ find a feedback gain matrix K such that A+BKC has eigenvalues $λ_i$

◆ Denoted by Λ a fixed matrix with eigenvalues λ_i the pole placement task is equivalent to find a matrix *T*∈*GL*(*n*) and *K*∈P^{*m×p*} minimizing the distance μι ||Λ−*T*(*A*+*BKC*)*T*⁻¹||

Examples in Inverse Eigenvalue Problem and control theory

Using a gradient flow techniques the solution can be obtained solving

•

$$T = T^{-T} [(A + BKC)^T, T^T (\Lambda - (A + BKC))T^{-T}]$$

•
 $K = -B^T T^T (T (A + BKC)T^{-1} - F)T^{-T}C^T$

Examples in Inverse Eigenvalue Problem

Matrix completion with prescribed eigenvalues

PEIEP (prescribed entries inverse eigenvalue problem) :

Given $\lambda = \{(i_v, j_v) \mid v = 1, ..., m\} \text{ } m \text{ pairs of integers } 1 \le i_v < j_v \le n$ $\lambda = \{a_1, ..., a_m\} \subset P$ $\lambda_1, ..., \lambda_n \} \subset X \text{ closed under conjugation}$ Find a matrix $X \in P^{n \times n}$ such that $\sigma(X) = \{\lambda_1, ..., \lambda_n\}$ and $x_{i_v, j_v} = a_v, v = 1, ..., m$

Examples in Inverse Eigenvalue Problem

★ Let Λ a matrix with eigenvalues λ_i and denoting $M(\Lambda) = \{V\Lambda V^{-1} \mid V \in GL(n)\}$

the orbit of matrices isospectral to Λ under the action group of GL(n) and

$$\Sigma(\Lambda, \boldsymbol{a}) = \{ X = [x_{ij}] \in \mathbb{P}^{n \times n} \mid x_{i_v j_v} = a_v \quad v = 1, \dots, m \}$$

* Solving the PEIEP is to find intersection of the two geometric entities $M(\Lambda)$ and $\Sigma(\Lambda, a)$

Examples in Inverse Eigenvalue Problem

★ Minimize for each given *X* ∈ M(Λ) the distance between *X* and Σ(Λ,*a*)

$$\min_{V \in M(\Lambda)} \frac{1}{2} < V\Lambda V^{-1} - P(V\Lambda V^{-1}), V\Lambda V^{-1} - P(V\Lambda V^{-1}) >$$

Projection on $\Sigma(\Lambda, a)$

Using a descent flow approach we get

 $\frac{dV}{dt} = \kappa (V\Lambda V^{-1})V^{-T} \quad \text{with} \quad \kappa(X) = [X^T, X - P(X)]$

(M.T. Chu et al. FGCS 2003)

Numerical Approximation: substituting approach

Consider our system:

•

$$Y(t) = Y(t)^{-T} F(Y(t), Y(t)^{-T})$$

 $Y(0) = Y_0 ∈ GL(n)$

Setting $Z=Y^{-T}$ from $Y^{T}Z=I$ we get

$$Y^{T} Z + Y^{T} \dot{Z} = 0 \Leftrightarrow \dot{Z} = -Y^{-T} Y^{T} Z$$

$$Y = ZF(Y,Z) = H(Y,Z), \qquad Y(0) = Y_0$$

•

$$Z = -ZF^{T}(Y,Z)Z^{T}Z = -ZH^{T}(Y,Z)Z, \quad Z(0) = Y_{0}^{-T}$$

Nicoletta Del Buono

Substituting Approach

Advantages:

> No direct use of the inverse of Y(t) (computational advantages)

Drawbacks:

- Solution of a new matrix ODE with double dimension with respect to the original system;
- High stiffness (when Y(t) tends to a singular matrix or the Lipschitz constant of H is large);
- The presence of an additional structure of the solution matrix Y(t) is not considered need of ad hoc numerical scheme

• When the matrix function F does not depend explicitly on Y^{-T} , i.e.:

$$\overset{\bullet}{Y(t)} = Y(t)^{-T} F(Y(t))$$
$$Y(0) = Y_0 \in GL(n)$$

It could be convenient work with the implicit equation

$$Y(t)Y(t) = F(Y(t))$$
$$Y(0) = Y_0 \in GL(n)$$

Nicoletta Del Buono

Applying the second order Gauss Legendre method, we get:

$$Y_{n+1}^{T}Y_{n+1} + Y_{n}^{T}Y_{n+1} - Y_{n+1}^{T}Y_{n} - Y_{n}^{T}Y_{n} - 2hF\left(\frac{Y_{n} + Y_{n+1}}{2}\right) = 0$$

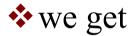
The previous equation can be iteratively solved starting from an initial approximation $Y_{n+1}^{(0)}$

(avoiding the nonlinearity of F)

$$Y_{n+1}^{T}Y_{n+1} + Y_{n}^{T}Y_{n+1} - Y_{n+1}^{T}Y_{n} - Y_{n}^{T}Y_{n} - 2hF\left(\frac{Y_{n} + Y_{n+1}^{(0)}}{2}\right) = 0$$

The latter equation is the prototype of an Algebraic Riccati equation, in fact setting

$$A = Y_n$$
 and $C = Y_n^T Y_n + 2hF\left(\frac{Y_n + Y_{n+1}^{(0)}}{2}\right)$



$$R(X) = X^T X + A^T X - X^T A + C = 0$$

Solution via Algebraic Riccati equation

- Numerical methods to solve Algebraic Riccati equation are based on fixed point or Newton iteration:
 - > Picard iteration:

$$A^{T}X_{k+1} - X_{k+1}^{T}A = -C - X_{k}^{T}X_{k}$$

- > Newton method:
 - $\succ R: \mathbf{P}^{n \times n} \to \mathbf{P}^{n \times n}$

> its Frechét derivatitive is: $R'_X(H) = H^T(X - A) + (X + A)^T H$

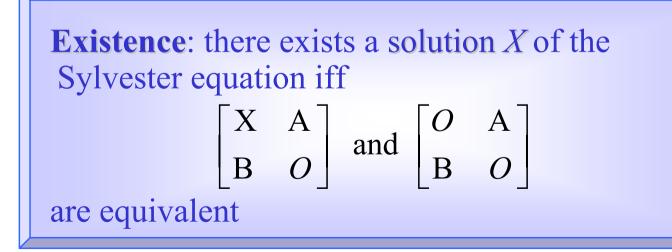
➢ the Newton iteration starts from X_θ and solves R(X)=0 via $X_{k+1}=X_k+D_k$ being D_k the solution of Sylvester equation

 $R'_{X}(D_{k}) = -R(X_{k}) \Leftrightarrow (X_{k} + A)^{T} D_{k} + D_{k}^{T} (X_{k} - A) = -R(X_{k})$

Solving Riccati equation implies the numerical treatment of the Sylvester equation

 $\mathbf{A}X + X^{\mathrm{T}}\mathbf{B} = \mathbf{X}$

with A, B, X given $n \times n$ matrices



✤ To obtain conditions for uniqueness of solution and for constructing it, we reformulate the Sylvester equation as a $n^2 \times n^2$ linear system:

 $(I \otimes A) \operatorname{vec}(X) + (B^T \otimes I) \operatorname{vec}(X^T) = \operatorname{vec}(X)$

$$\operatorname{vec}(X^{T}) = P(n,n)\operatorname{vec}(X)$$
$$P(n,n) = \sum_{i=1}^{n} \sum_{j=1}^{n} E_{ij} \otimes E_{ij}^{T}$$

$$\underbrace{\left[(I \otimes A) + (B^T \otimes I)P(n,n)\right]}_{M} \operatorname{vec}(X) = \operatorname{vec}(X)$$

Nicoletta Del Buono

$$M = \begin{bmatrix} A + e_1 b_1^T & e_2 b_1^T & \cdots & e_n b_1^T \\ e_1 b_2^T & A + e_2 b_2^T & \cdots & e_n b_2^T \\ \vdots & \vdots & \ddots & \vdots \\ e_1 b_n^T & e_2 b_n^T & \cdots & A + e_n b_n^T \end{bmatrix}$$

being b_i the columns of the matrix B

Uniqueness: there exists a unique solution *X* of the Sylvester equation $AX+X^TB=X$ if the matrix *M* is non-singular (rank $(M)=n^2$)

Nicoletta Del Buono

Considering the linear equation derived from:

- **Picard iteration:** $A = A^T$ and $B = A \Rightarrow M$ is singular
- ▶ Newton iteration: $A = X_k + A^T$ and $B = X_k A \implies M$ is non-singular ⇒ unique solution !
- Newton method converges in a reasonable number of iterations
- Numerical solution of Sylvester equation :
 - Direct methods (QR, Gaussian Elimination);
 - Iterative algorithms;
 - ➢ Generalize Conjugate Residual method.

Singular Value Decomposition

- To avoid the inverse matrix computations and to control the singularities of the matrix solution Y(t) we can adopt a continuous Singular Value Decomposition approach
- * The continuous SVD of Y(t) is a continuous factorization

 $Y(t) = U(t) \Sigma(t) V^{\mathrm{T}}(t)$

- $\succ U(t), V(t)$ orthogonal matrices $(U^T U = I_n \text{ and } V^T V = I_n)$
- > $\Sigma(t)$ diagonal matrix with diagonal elements the singular values $\sigma_i(t)$ of Y(t)
- * The motion of Y(t) is now described by the variables U(t), $\Sigma(t)$, V(t) giving more information on the flow

Singular Value Decomposition

Suppose that the solution Y(t) possesses dinstinct and nonzero singular values σ_i(t), for i=1,..., n and t in [0, τ) then there exists a continuous SVD of Y(t) and the factors U(t), Σ(t), V(t) of such a decomposition satisfy the following ODEs:

$$\begin{split} \dot{\Sigma} &= \Sigma^{-1} V^T F(Y, Y^{-T}) V - H \Sigma + \Sigma K, \quad \Sigma(0) = \Sigma_0 \\ \dot{U} &= U H, \quad U(0) = U_0 \\ \dot{V} &= V K, \quad V(0) = V_0 \end{split}$$

Singular Value Decomposition

The differential equations for the singular values are

$$\overset{\bullet}{\sigma}_{i} = \frac{1}{\sigma_{i}} \left(V^{T} F(Y, Y^{-T}) V \right)_{ii}, \quad i = 1, \cdots, n$$

The elements of the skew-symmetric matrices *H*, *K* are

$$H_{ij} = \frac{1}{\sigma_i \sigma_j (\sigma_j^2 - \sigma_i^2)} \left[\sigma_j^2 (V^T F V)_{ij} + \sigma_i^2 (V^T F V)_{ji} \right]$$
$$K_{ij} = \frac{1}{(\sigma_j^2 - \sigma_i^2)} \left[(V^T F V)_{ij} + (V^T F V)_{ji} \right]$$

Singular Value Decomposition

Numerical solution of:

- > a diagonal system in σ_i (information on the conditioning of the matrix solution Y(t))
- \succ two linear systems in H_{ij} K_{ij}
- \succ two orthogonal systems in U and V
 - → our aim is to preserve the non-singular behavior of the numerical solution → explicit integration of the systems in U and V (orthogonality preserved up to the order of the method)
- Drawback distinct singular values
 Block Continuous SVD

Rectangular case

Some of the previous results can be extended to differential problems on the manifold

 $GL(m, n) = \{ Y \in P^{m \times n} \mid \operatorname{rank}(Y) = n \}, \quad n \le m$

Differential systems on *GL(m,n)* have the following form:

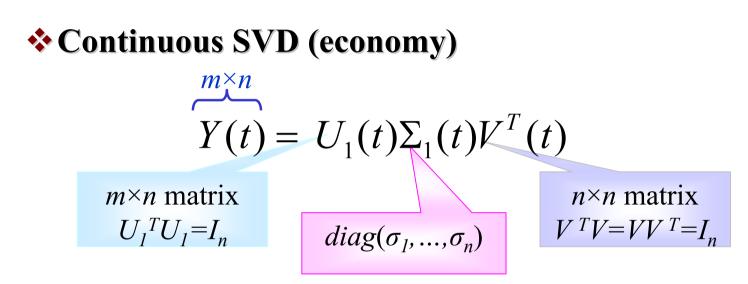
$$\mathbf{Y} = G(Y), \quad Y(0) = Y_0 \in GL(n, p)$$

* with *G* belonging to the tangent space of GL(m,n):

$$G(Y) = Y\left(Y^{T}Y\right)^{-1}F_{1}(Y) + \left[I_{n} - Y\left(Y^{T}Y\right)^{-1}Y^{T}F_{2}(Y)\right]$$

Nicoletta Del Buono

Rectangular Case: numerical treatment



Differentiating we obtain the differential systems satisfied by the three factors:

Rectangular Case: numerical treatment

$$\overset{\bullet}{\sigma}_{i} = \frac{1}{\sigma_{i}} \left(V^{T} F_{1}(Y) V \right)_{ij} \qquad i = 1, \cdots, n$$

$$\overset{\bullet}{V} = VK, \qquad V(0) = V_{0}$$

$$\overset{\bullet}{U}_{1} = U_{1}H + (I_{n} - U_{1}U_{1}^{T}T)F_{2}(Y)\Sigma_{1}^{-1}, \qquad U(0) = U_{0}$$

Differential System on the Stiefel manifold

$$H_{ij} = \frac{1}{\sigma_i \sigma_j (\sigma_j^2 - \sigma_i^2)} \Big[\sigma_j^2 (V^T F_1(Y) V)_{ij} + \sigma_i^2 (V^T F_1(Y) V)_{ji} \Big]$$

$$K_{ij} = \frac{1}{(\sigma_j^2 - \sigma_i^2)} \Big[(V^T F_1(Y) V)_{ij} + (V^T F_1(Y) V)_{ji} \Big]$$

Nicoletta Del Buono

Rectangular Case: numerical treatment

Substituting approach:

$$\overset{\bullet}{Y} = Y \left(Y^T Y \right)^{-1} F_1(Y) + \left[I_n - Y \left(Y^T Y \right)^{-1} Y^T \right] F_2(Y)$$

Setting $Z = (Y^T Y)^{-1}$ we obtain

$$\dot{Y} = YZF_{1}(Y) + \left[I - YZY^{T}\right]F_{2}(Y)$$
$$\dot{Z} = -Z\left[F_{1}(Y) + F_{1}^{T}(Y)\right]Z$$

First example:

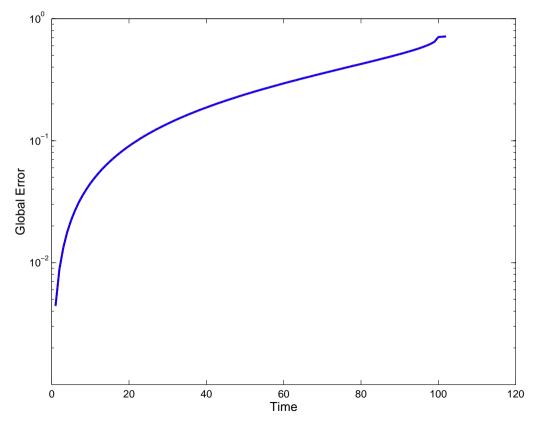
$$\dot{Y} = Y^{-T} \begin{bmatrix} 0 & -\frac{\delta}{2} \\ -\frac{\delta}{2} & 0 \end{bmatrix}$$
 $Y(0) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

• With solution existing in $(-1/\delta, 1/\delta)$

$$Y(t) = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{1+\delta t} & -\sqrt{1+\delta t} \\ \sqrt{1-\delta t} & \sqrt{1-\delta t} \end{bmatrix}$$

• We solve the problem with $\delta = 1/2$

◆ Behaviour of the global error on [0 2)



Nicoletta Del Buono

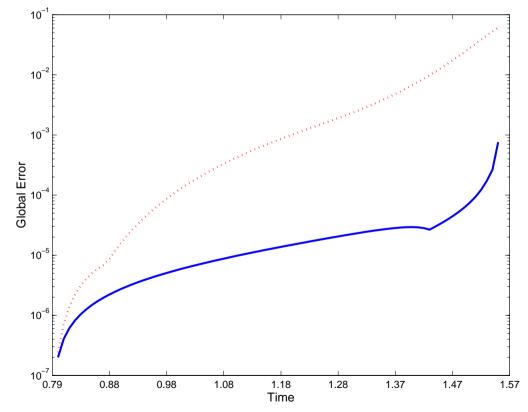
Second example

with solution

$$Y(t) = \begin{bmatrix} \cos(t) & t \\ 0 & 1 \end{bmatrix}$$

• periodically singular (for each $\tau_k = k \pi/2$)

Semilog plot of the global error on $(\pi/4,\pi/2)$



Conclusions

- We have considered a particular ODEs on *GL(n)* often occurring in applications
- Several problems modeled by such ODEs
- Different numerical approaches avoiding the direct use of matrix inversion and detection of singular behavior

Future works:

Improving the validation of the proposed approaches by tackling numerical tests on real examples