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▲

▲

➲ ❏ ✘

...approach suggested by

Arieh Iserles



Outline of the talk
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▲

▲

➲ ❏ ✘

1. Some (well known) Lie group methods for linear problems (Fer and

Magnus expansions).

2. Schemes based on triangular matrices (splitting + solvability).

3. Some methods and practical issues in their construction



1 Lie group methods (linear problems)
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▲

▲

➲ ❏ ✘

Let us consider a linear matrix ODE evolving in a Lie group G

Y′ = A(t)Y, Y(t0) = Y0 ∈ G
(0)

with A : [t0,∞[×G −→ g smooth enough.

g: Lie algebra associated with G

Examples of G : SL(n), O(n), SU(n), Sp(n), SO(n), ...

Y(t) ∈ Lie group G if A(t) ∈ Lie algebra g

∗ There are several schemes preserving this feature (Magnus, Fer,

Cayley,...)



1.1 Magnus expansion
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▲

▲

➲ ❏ ✘

For the equation

Y′ = A(t)Y, Y(t0) = I ,

∗ Magnus (1954) proposed

Y(t) = eΩ(t), Ω(t) =
∞

∑
k=1

Ωk(t) (1)



1.1 Magnus expansion
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▲

▲

➲ ❏ ✘

For the equation

Y′ = A(t)Y, Y(t0) = I ,

∗ Magnus (1954) proposed

Y(t) = eΩ(t), Ω(t) =
∞

∑
k=1

Ωk(t) (1)

with log(Y(t)) satisfying

Ω′ = dexp−1
Ω A(t) =

∞

∑
k=0

Bk

k!
adk

Ω A(t), Ω(t0) = 0, (2)



1.1 Magnus expansion (II)
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▲

▲

➲ ❏ ✘

Here

ad0
ΩA = A

adk
ΩA = [Ω,adk−1

Ω A]

[Ω,A]≡ΩA−AΩ

and Bk are Bernoulli numbers.



1.1 Magnus expansion (III)
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▲

▲

➲ ❏ ✘

First terms in the expansion (Ai ≡ A(ti)):

Ω1(t) =
∫ t

t0
A(t1)dt1

Ω2(t) =
1
2

∫ t

t0
dt1

∫ t1

t0
dt2[A1,A2]

Ω3(t) =
1
6

∫ t

t0
dt1

∫ t1

t0
dt2

∫ t2

t0
dt3([A1, [A2,A3]]+ [A3, [A2,A1]])

eΩ(t) ∈ G even if the series Ω is truncated



1.1 Magnus expansion (III)
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▲

▲

➲ ❏ ✘

First terms in the expansion (Ai ≡ A(ti)):

Ω1(t) =
∫ t

t0
A(t1)dt1

Ω2(t) =
1
2

∫ t

t0
dt1

∫ t1

t0
dt2[A1,A2]

Ω3(t) =
1
6

∫ t

t0
dt1

∫ t1

t0
dt2

∫ t2

t0
dt3([A1, [A2,A3]]+ [A3, [A2,A1]])

eΩ(t) ∈ G even if the series Ω is truncated

* Expansion widely used in Quantum Mechanics, NMR spectroscopy,

infrared divergences in QED, control theory,...



1.1 Magnus expansion (IV)
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▲

▲

➲ ❏ ✘

Magnus as a numerical integration method (Iserles & Nørsett, 1997)



1.1 Magnus expansion (IV)
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▲

▲

➲ ❏ ✘

Magnus as a numerical integration method (Iserles & Nørsett, 1997)

Two critical factors in the computational cost of the resulting algorithms:



1.1 Magnus expansion (IV)
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▲

▲

➲ ❏ ✘

Magnus as a numerical integration method (Iserles & Nørsett, 1997)

Two critical factors in the computational cost of the resulting algorithms:

(1) Evaluation of exp(Ω)

(Moler & Van Loan, Celledoni & Iserles,...)



1.1 Magnus expansion (IV)
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▲

▲

➲ ❏ ✘

Magnus as a numerical integration method (Iserles & Nørsett, 1997)

Two critical factors in the computational cost of the resulting algorithms:

(1) Evaluation of exp(Ω)

(Moler & Van Loan, Celledoni & Iserles,...)

(2) Number of commutators involved in the expansion



1.1 Magnus expansion (IV)
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▲

▲

➲ ❏ ✘

Magnus as a numerical integration method (Iserles & Nørsett, 1997)

Two critical factors in the computational cost of the resulting algorithms:

(1) Evaluation of exp(Ω)

(Moler & Van Loan, Celledoni & Iserles,...)

(2) Number of commutators involved in the expansion

To reduce this number is particularly useful the concept of graded free

Lie algebra (Munthe-Kaas, Owren 1999)



1.1 Magnus expansion (V)
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▲

▲

➲ ❏ ✘

As a result,



1.1 Magnus expansion (V)
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▲

▲

➲ ❏ ✘

As a result,

* Numerical schemes based on Magnus up to order 8 have been

constructed involving the minimum number of commutators in terms of

quadratures and/or univariate integrals.



1.1 Magnus expansion (V)
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▲

▲

➲ ❏ ✘

As a result,

* Numerical schemes based on Magnus up to order 8 have been

constructed involving the minimum number of commutators in terms of

quadratures and/or univariate integrals.

* Efficient in applications



1.2 Other schemes
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▲

▲

➲ ❏ ✘

Fer expansion. Built by Francis Fer (1958).
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▲

▲

➲ ❏ ✘

Fer expansion. Built by Francis Fer (1958).

∗ Referred erroneously in the (mathematical physics) literature (e.g.,

Wilcox 1967), but ...
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▲

▲

➲ ❏ ✘

Fer expansion. Built by Francis Fer (1958).

∗ Referred erroneously in the (mathematical physics) literature (e.g.,

Wilcox 1967), but ...

∗ proposed (as an exercise!) by R. Bellman, ‘Introduction to Matrix

Analysis’, 1960, page 204:
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▲

▲

➲ ❏ ✘

Fer expansion. Built by Francis Fer (1958).

∗ Referred erroneously in the (mathematical physics) literature (e.g.,

Wilcox 1967), but ...

∗ proposed (as an exercise!) by R. Bellman, ‘Introduction to Matrix

Analysis’, 1960, page 204:

“The solution of dX/dt = Q(t)X, X(0) = I , can be put in the form

ePeP1 · · ·ePn · · · , where P =
∫ t

0 Q(s)ds, and Pn =
∫ t

0 Qnds, with

Qn = e−Pn−1Qn−1ePn−1 +
∫ −1

0
esPn−1Qn−1e−sPn−1ds

The infinite product converges it t is sufficiently small.”

(See also Mathematical Reviews 21 2771, review done by R. Bellman)



1.2 Other schemes (II)
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▲

▲

➲ ❏ ✘

∗ used as an (analytic) procedure in perturbation theory in Quantum

Mechanics by Klarsfeld & Oteo (1989), but...
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▲
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➲ ❏ ✘

∗ used as an (analytic) procedure in perturbation theory in Quantum

Mechanics by Klarsfeld & Oteo (1989), but...

∗ numerical integration method built by Iserles (1984).
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▲

▲

➲ ❏ ✘

∗ used as an (analytic) procedure in perturbation theory in Quantum

Mechanics by Klarsfeld & Oteo (1989), but...

∗ numerical integration method built by Iserles (1984).

∗ This class of methods can actually be built from Magnus.



1.2 Other schemes (II)
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▲

▲

➲ ❏ ✘

∗ used as an (analytic) procedure in perturbation theory in Quantum

Mechanics by Klarsfeld & Oteo (1989), but...

∗ numerical integration method built by Iserles (1984).

∗ This class of methods can actually be built from Magnus.

∗ They require the computation of several matrix exponentials.



1.3 Methods based on the Cayley transform
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▲

▲

➲ ❏ ✘

Let us suppose that Y′ = A(t)Y is defined in a J-orthogonal Lie group,

OJ(n) = {A∈GLn(R) : ATJA= J},

J: constant matrix



1.3 Methods based on the Cayley transform
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▲

▲

➲ ❏ ✘

Let us suppose that Y′ = A(t)Y is defined in a J-orthogonal Lie group,

OJ(n) = {A∈GLn(R) : ATJA= J},

J: constant matrix

Examples: orthogonal group (J = I ), symplectic group, Lorentz group

(J = diag(1,−1,−1,−1)).

Solution:

Y(t) =
(

I − 1
2

C(t)
)−1(

I +
1
2

C(t)
)



1.3 Methods based on the Cayley transform (II)
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▲

▲

➲ ❏ ✘

with C(t) ∈ oJ(n) satisfying (Iserles 2001)

dC
dt

= A− 1
2
[C,A]− 1

4
CAC, t ≥ t0, C(t0) = 0.

⇒ efficient methods without matrix exponentials!
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▲

▲

➲ ❏ ✘

with C(t) ∈ oJ(n) satisfying (Iserles 2001)

dC
dt

= A− 1
2
[C,A]− 1

4
CAC, t ≥ t0, C(t0) = 0.

⇒ efficient methods without matrix exponentials!

In fact, one can also combine Magnus with Padé to avoid the use of

matrix exponentials in J-orthogonal groups!



1.3 Methods based on the Cayley transform (II)
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▲

▲

➲ ❏ ✘

with C(t) ∈ oJ(n) satisfying (Iserles 2001)

dC
dt

= A− 1
2
[C,A]− 1

4
CAC, t ≥ t0, C(t0) = 0.

⇒ efficient methods without matrix exponentials!

In fact, one can also combine Magnus with Padé to avoid the use of

matrix exponentials in J-orthogonal groups!

* It is possible to construct methods which are more efficient than those

based on the Cayley transform (Blanes, C., Ros 2002).



1.4 Summary
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▲

▲

➲ ❏ ✘

∗ These methods require the evaluation of one or several matrix

exponentials
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▲

▲

➲ ❏ ✘

∗ These methods require the evaluation of one or several matrix

exponentials

⇒ They are expensive when n is very large
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▲

▲

➲ ❏ ✘

∗ These methods require the evaluation of one or several matrix

exponentials

⇒ They are expensive when n is very large

∗ In some cases, if the exponential is approximated by rational functions

the method does not preserve the Lie group structure,

in particular, when G = SL(n)



1.4 Summary
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▲

▲

➲ ❏ ✘

∗ These methods require the evaluation of one or several matrix

exponentials

⇒ They are expensive when n is very large

∗ In some cases, if the exponential is approximated by rational functions

the method does not preserve the Lie group structure,

in particular, when G = SL(n)

=⇒ Another class of methods is required.



2 Solvability + splitting
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▲

▲

➲ ❏ ✘

The procedure

For the linear system

Y′ = A(t)Y, Y(0) = I ,

we denote Y0 ≡Y, A0 ≡ A and suppose that

A0(t) = A0+(t)+A0−(t),

where

A0+ ∈5n is strictly upper-triangular

A0− ∈ 4̃n is weakly lower-triangular.



2 Solvability + splitting (II)
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▲

▲

➲ ❏ ✘

The idea is to write the solution as a product of upper and lower

triangular matrices.



2 Solvability + splitting (II)
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▲

▲

➲ ❏ ✘

The idea is to write the solution as a product of upper and lower

triangular matrices.

More specifically, we propose the following factorization:

Y0(t) = L0(t)U0(t)Y1(t)

such that

L′0 = A0−(t)L0, L0(0) = I



2 Solvability + splitting (II)
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▲

▲

➲ ❏ ✘

The idea is to write the solution as a product of upper and lower

triangular matrices.

More specifically, we propose the following factorization:

Y0(t) = L0(t)U0(t)Y1(t)

such that

L′0 = A0−(t)L0, L0(0) = I

Observe then that L0(t) can be obtained by quadratures and L0(t) ∈ 4̃n.



2 Solvability + splitting (III)
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▲

▲

➲ ❏ ✘

Now we form the matrix

C0 = L−1
0 A0+L0



2 Solvability + splitting (III)
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▲

▲

➲ ❏ ✘

Now we form the matrix

C0 = L−1
0 A0+L0

which can also be split as

C0(t) = C0+(t)+C0−(t),

where

C0+ ∈ 5̃n is weakly upper-triangular

C0− ∈4n is strictly lower-triangular.



2 Solvability + splitting (IV)
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▲

▲

➲ ❏ ✘

Next we choose U0 as the solution of

U ′
0 = C0+(t)U0, U0(0) = I

so that U0(t) can also be obtained by quadratures.



2 Solvability + splitting (IV)
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▲

▲

➲ ❏ ✘

Next we choose U0 as the solution of

U ′
0 = C0+(t)U0, U0(0) = I

so that U0(t) can also be obtained by quadratures.

It is easy to show that Y1 satisfies

Y′1 = A1(t)Y1, Y1(0) = I ,

with

A1 = U−1
0 C0−U0.



2 Solvability + splitting (V)
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▲

▲

➲ ❏ ✘

This gives a single step of the solvable cycle, which we repeat with A1.

A1 = A1+ +A1− , A1+ ∈5n, A1− ∈ 4̃n

Y1 = L1U1Y2

L′1 = A1−L1, L1(0) = I

etc.



2 Solvability + splitting (VI)
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▲

▲

➲ ❏ ✘

In this way one has the following algorithm:

Y ≡Y0 = L0U0L1U1 · · ·LkUkYk+1

with (k = 0,1,2, . . .)

Ak = Ak+ +Ak− , Ak+ ∈5n, Ak− ∈ 4̃n

L′k = Ak−Lk, Lk(0) = I

Ck ≡ L−1
k Ak+Lk = Ck+ +Ck−

Ck+ ∈ 5̃n, Ck− ∈4n

U ′
k = Ck+Uk, Uk(0) = I



2 Solvability + splitting (VII)
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▲

▲

➲ ❏ ✘

and finally

Ak+1 ≡U−1
k Ck−Uk, Y′k+1 = Ak+1Yk+1



2 Solvability + splitting (VII)
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▲

▲

➲ ❏ ✘

and finally

Ak+1 ≡U−1
k Ck−Uk, Y′k+1 = Ak+1Yk+1

Usually the factorization is truncated by taking Yk+1 = I .



2 Solvability + splitting (VII)
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▲

▲

➲ ❏ ✘

and finally

Ak+1 ≡U−1
k Ck−Uk, Y′k+1 = Ak+1Yk+1

Usually the factorization is truncated by taking Yk+1 = I .

In what follows we will analyse the main features of this procedure as a

numerical integrator.



2.1 Order of the method
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▲

▲

➲ ❏ ✘

Suppose that A(t) = ε(a0 +a1t +a2t2 + · · ·) for some parameter ε > 0.



2.1 Order of the method
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▲

▲

➲ ❏ ✘

Suppose that A(t) = ε(a0 +a1t +a2t2 + · · ·) for some parameter ε > 0.

Then

A j− = tn j εn j
(
εα1 + t(εα2 + ε2α3)+O(t2)

)
A j+ = tmj εmj

(
εβ1 + t(εβ2 + ε2β3)+O(t2)

)
for j = 1,2, . . ., so that

L j(t) = I +
1

n j +1
(tε)n j+1α1 +

1
n j +2

tn j+2εn j (εα2 + ε2α3)+ · · ·

U j(t) = I +
1

mj +1
(tε)mj+1β1 +

1
mj +2

tmj+2εmj (εβ2 + ε2β3)+ · · ·



2.1 Order of the method (II)
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▲

▲

➲ ❏ ✘

Furthermore,

n j+1 = n j +mj +1

mj+1 = n j +2mj +2 j = 1,2, . . .



2.1 Order of the method (II)
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▲

▲

➲ ❏ ✘

Furthermore,

n j+1 = n j +mj +1

mj+1 = n j +2mj +2 j = 1,2, . . .

j n j mj

1 1 2

2 4 7

3 12 20

4 33 54

5 88 143



2.1 Order of the method (III)
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▲

▲

➲ ❏ ✘

In consequence,



2.1 Order of the method (III)
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▲

▲

➲ ❏ ✘

In consequence,

(1) This algorithm could be useful for problems of the form

Y′ = (B0 + εB1)Y

if the system Y′ = B0Y can be solved exactly.



2.1 Order of the method (III)
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▲

▲

➲ ❏ ✘

In consequence,

(1) This algorithm could be useful for problems of the form

Y′ = (B0 + εB1)Y

if the system Y′ = B0Y can be solved exactly.

(2) The order of approximation is...



2.1 Order of the method (IV)
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▲

▲

➲ ❏ ✘

Y0 ≈ L0U0 is order 1

Y0 ≈ L0U0L1 2

Y0 ≈ L0U0L1U1 4

Y0 ≈ L0U0L1U1L2 7

Y0 ≈ L0U0L1U1L2U2 12

Y0 ≈ L0U0L1U1L2U2L3 20

Y0 ≈ L0U0L1U1L2U2L3U3 33



2.1 Order of the method (IV)
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▲

▲

➲ ❏ ✘

Y0 ≈ L0U0 is order 1

Y0 ≈ L0U0L1 2

Y0 ≈ L0U0L1U1 4

Y0 ≈ L0U0L1U1L2 7

Y0 ≈ L0U0L1U1L2U2 12

Y0 ≈ L0U0L1U1L2U2L3 20

Y0 ≈ L0U0L1U1L2U2L3U3 33

With only 4 solvable cycles we get order 33!



2.1 Order of the method (IV)
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▲

▲

➲ ❏ ✘

Y0 ≈ L0U0 is order 1

Y0 ≈ L0U0L1 2

Y0 ≈ L0U0L1U1 4

Y0 ≈ L0U0L1U1L2 7

Y0 ≈ L0U0L1U1L2U2 12

Y0 ≈ L0U0L1U1L2U2L3 20

Y0 ≈ L0U0L1U1L2U2L3U3 33

With only 4 solvable cycles we get order 33!

...if we can compute Lk and Uk up to this order...



2.2 Questions
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▲

▲

➲ ❏ ✘

Several problems involved
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▲

▲

➲ ❏ ✘

Several problems involved

(1) Does the approximate solution evolve in the Lie group if A is in the Lie

algebra, i.e., is it a Lie group method?
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▲

▲

➲ ❏ ✘

Several problems involved

(1) Does the approximate solution evolve in the Lie group if A is in the Lie

algebra, i.e., is it a Lie group method?

(2) Solve explicitly the systems L′k = Ak−Lk and U ′
k = Ck+Uk
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▲

▲

➲ ❏ ✘

Several problems involved

(1) Does the approximate solution evolve in the Lie group if A is in the Lie

algebra, i.e., is it a Lie group method?

(2) Solve explicitly the systems L′k = Ak−Lk and U ′
k = Ck+Uk

(3) Approximate efficiently the (multiple) integrals involved.



3 Practical issues
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▲

▲

➲ ❏ ✘

(1) Preservation of the Lie-group structure

If A(t) ∈ sl(n), the algorithm provides by construction approximations to

Y(t) in SL(n).
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▲

▲

➲ ❏ ✘

(1) Preservation of the Lie-group structure

If A(t) ∈ sl(n), the algorithm provides by construction approximations to

Y(t) in SL(n).

Proof. Ak = Ak+ +Ak− , with Ak+ ∈5n, Ak− ∈ 4̃n. In fact Ak− belongs to

a solvable subalgebra of sl(n). Therefore the solution of

L′k = Ak−Lk, Lk(0) = I

Lk(t) ∈ SL(n) (in fact, a solvable subgroup of).
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▲

▲

➲ ❏ ✘

(1) Preservation of the Lie-group structure

If A(t) ∈ sl(n), the algorithm provides by construction approximations to

Y(t) in SL(n).

Proof. Ak = Ak+ +Ak− , with Ak+ ∈5n, Ak− ∈ 4̃n. In fact Ak− belongs to

a solvable subalgebra of sl(n). Therefore the solution of

L′k = Ak−Lk, Lk(0) = I

Lk(t) ∈ SL(n) (in fact, a solvable subgroup of).

Tr(Ak+) = 0, and the trace is invariant under similarity, so that

Tr(Ck) = Tr(L−1
k Ak+Lk) = Tr(Ak+) = 0 ⇒ Ck ∈ sl(n)



3 Practical issues (II)
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▲

▲

➲ ❏ ✘

Next, Ck = Ck+ +Ck− , with Ck+ ∈ 5̃n, Ck− ∈4n and Uk, solution of

U ′
k = Ck+Uk, Uk(0) = I

belongs to SL(n). Finally

Ak+1 ≡U−1
k Ck−Uk ∈ sl(n)

and the process is repeated. �
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▲

▲

➲ ❏ ✘

Next, Ck = Ck+ +Ck− , with Ck+ ∈ 5̃n, Ck− ∈4n and Uk, solution of

U ′
k = Ck+Uk, Uk(0) = I

belongs to SL(n). Finally

Ak+1 ≡U−1
k Ck−Uk ∈ sl(n)

and the process is repeated. �

Other properties (i.e., orthogonality) are preserved only up to the order

of the method.



3 Practical issues (III)
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▲

▲

➲ ❏ ✘

(2a) Explicit solution of L′k = Ak−Lk
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NEW NUMERICAL INTEGRATORS BASED ON SOLVABILITY AND SPLITTING – 68 ➲

▲

▲

➲ ❏ ✘

(2a) Explicit solution of L′k = Ak−Lk

Consider k = 0 and denote A0(t) = (ai j ), i, j = 1, . . . ,n, L0(t) = (Li j ),
j ≤ i

Aii (t)≡
∫ t

0
aii (t1)dt1.

Then the solution of L′0 = A0−(t)L0, L0(0) = I is

Lii (t) = eAii (t), i = 1, . . . ,n (3)

Li j (t) = eAii (t)
∫ t

0
e−Aii (t1)

(
i−1

∑
k= j

aik(t1)Lk j(t1)

)
dt1

i = 2, . . . ,n, j = 1, . . . , i−1.



3 Practical issues (IV)
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▲

▲

➲ ❏ ✘

(2b) Explicit solution of U ′
k = Ck+Uk



3 Practical issues (IV)
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▲

▲

➲ ❏ ✘

(2b) Explicit solution of U ′
k = Ck+Uk

Consider k = 0 and denote C0(t) = (ci j ), i, j = 1, . . . ,n, U0(t) = (Ui j ),
j ≥ i

Cii (t)≡
∫ t

0
cii (t1)dt1.

Then the solution of U ′
0 = C0+(t)U0, U0(0) = I is

Uii (t) = eCii (t), i = 1, . . . ,n (4)

Ui j (t) = eCii (t)
∫ t

0
e−Cii (t1)

(
j

∑
k=i+1

cik(t1)Uk j(t1)

)
dt1

i = 1, . . . ,n−1, j = i +1, . . . ,n.



3 Practical issues (V)
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▲

▲

➲ ❏ ✘

⇒ Explicit expressions for the elements of Lk and Uk in terms of

multivariate integrals.
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▲

▲

➲ ❏ ✘

⇒ Explicit expressions for the elements of Lk and Uk in terms of

multivariate integrals.

They can be evaluated in sequence as follows:

Lii i = 1, . . . ,n Uii i = 1, . . . ,n

Li,i−1 i = 2, . . . ,n Ui,i+1 i = 1, . . . ,n−1

Li,i−2 i = 3, . . . ,n Ui,i+2 i = 1, . . . ,n−2
...

...

Ln1 U1n



3 Practical issues (VI)
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▲

▲

➲ ❏ ✘

In principle, the integrals appearing in Lk and Uk can be approximated by

quadrature rules.



3 Practical issues (VI)
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▲

▲

➲ ❏ ✘

In principle, the integrals appearing in Lk and Uk can be approximated by

quadrature rules.

To minimise the computational cost this has to be done by using the

minimum number of A evaluations in each integration step.
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▲

▲

➲ ❏ ✘

In principle, the integrals appearing in Lk and Uk can be approximated by

quadrature rules.

To minimise the computational cost this has to be done by using the

minimum number of A evaluations in each integration step.

Question: Is it possible to approximate all the nested integrals with the

evaluations required to compute

Aii =
∫ t

0
aii (t1)dt1,

i.e., à la Magnus?
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▲

▲

➲ ❏ ✘

In principle, the integrals appearing in Lk and Uk can be approximated by

quadrature rules.

To minimise the computational cost this has to be done by using the

minimum number of A evaluations in each integration step.

Question: Is it possible to approximate all the nested integrals with the

evaluations required to compute

Aii =
∫ t

0
aii (t1)dt1,

i.e., à la Magnus?

YES!



3.1 Example
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▲

▲

➲ ❏ ✘

Illustration: method of order 4 with 2 A evaluations

Step t = 0 7−→ t = h.
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▲

▲

➲ ❏ ✘

Illustration: method of order 4 with 2 A evaluations

Step t = 0 7−→ t = h.

1- Approximate Aii (h), i = 1, . . . ,n up to order 4

Aii (h) =
∫ h

0
aii (t)dt =

h
3

(
aii (0)+4aii (h/2)+aii (h)

)
+O(h5)

≡ Ãii (h)+O(h5)

and Aii (h/2), i = 1, . . . ,n−1, up to order 3 (necessary to approximate

Li j ):

Aii (h/2) =
h
24

(5aii (0)+8aii (h/2)−aii (h))+O(h4)



3.1 Example (II)
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▲

▲

➲ ❏ ✘

2- Lii (h) = exp(Ãii (h))+O(h5) (i = 1, . . . ,n) and

Lii (h/2) = exp(Ãii (h/2))+O(h4) (i = 1, . . . ,n−1).

3- Obtain an approximation to Li j (h), j < i, of order 4 and Li j (h/2) of

order 3

Li j (h) = eAii (h)
∫ h

0
Fi j (t)dt

with

Fi j (t)≡ e−Aii (t)
i−1

∑
k= j

aik(t)Lk j(t)



3.1 Example (III)
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▲

▲

➲ ❏ ✘

Then

Li j (h) = eÃii (h) h
3

(Fi j (0)+4Fi j (h/2)+Fi j (h))+O(h5)

where Fi j (0) = ai j (0) and Fi j (h/2) and Fi j (h) have to be approximated

up to order h3.

The sequence of computation is (i = 2, . . . ,n):

(a) Fi,i−1(h/2) = e−Ãii (h/2)ai,i−1(h/2)Li−1,i−1(h/2)+O(h4)

(b) Fi,i−1(h) = e−Ãii (h/2)ai,i−1(h)Li−1,i−1(h)+O(h5)

(c) Li,i−1(h), i = 2, . . . ,n up to order 4



3.1 Example (IV)
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▲

▲

➲ ❏ ✘

(d)

Li,i−1(h/2) = eÃii (h/2) h
24 (5ai,i−1(0)+8Fi,i−1(h/2)−Fi,i−1(h))+O(h4)

(e) Li,i−2(h), i = 3, . . . ,n, up to order 4 and Li,i−2(h/2) up to order 3

...and so on.



3.1 Example (IV)
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▲

▲

➲ ❏ ✘

(d)

Li,i−1(h/2) = eÃii (h/2) h
24 (5ai,i−1(0)+8Fi,i−1(h/2)−Fi,i−1(h))+O(h4)

(e) Li,i−2(h), i = 3, . . . ,n, up to order 4 and Li,i−2(h/2) up to order 3

...and so on.

In this way we have L0(h) computed up to order O(h5) and also L0(h/2)
up to order O(h4) with 2 evaluations of A(t).



3.1 Example (V)
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▲

▲

➲ ❏ ✘

3- Next we compute C0:

C0(0) = A0+(0) error O(h5)

C0(h/2) = L−1
0 (h/2)A0+(h/2)L0(h/2) error O(h4)

C0(h) = L−1
0 (h)A0+(h)L0(h) error O(h5)

4- Cii (h) = h
3

(
cii (0)+4cii (h/2)+cii (h)

)
+O(h5)

Cii (h/2) =
h
24

(5cii (0)+8cii (h/2)−cii (h))+O(h4)
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▲

▲

➲ ❏ ✘

5- Ui,i+1(h), i = 1, . . . ,n−1, up to order O(h5);

Ui,i+1(h/2), i = 1, . . . ,n−1, up to order O(h4);

Ui,i+2(h), i = 1, . . . ,n−2, up to order O(h5);

Ui,i+2(h), i = 1, . . . ,n−2, up to order O(h4);

... and so on.

Thus we compute U0(h) with error O(h5) and also U0(h/2) with error

O(h4).



3.1 Example (VII)
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▲

▲

➲ ❏ ✘

6- A1:

A1(0) = C0−(0) error O(h5)

A1(h/2) = U−1
0 (h/2)C0−(h/2)U0(h/2) error O(h4)

A1(h) = U−1
0 (h)C0−(h)U0(h) error O(h5)

... and the process is repeated again for the second cycle



3.1 Example (VII)
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▲

▲

➲ ❏ ✘

6- A1:

A1(0) = C0−(0) error O(h5)

A1(h/2) = U−1
0 (h/2)C0−(h/2)U0(h/2) error O(h4)

A1(h) = U−1
0 (h)C0−(h)U0(h) error O(h5)

... and the process is repeated again for the second cycle

⇒ it is possible to construct a method of order 4 with only 2 A(t)
evaluations (3 for the first step).



3.2 Other possibilities
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▲

▲

➲ ❏ ✘

One could use other quadrature rules instead, for instance

Gauss–Legendre, but...
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▲

▲

➲ ❏ ✘

One could use other quadrature rules instead, for instance

Gauss–Legendre, but...

in that case there are not enough nodes to approximate all the

multivariate integrals up to the required order.
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▲

▲

➲ ❏ ✘

One could use other quadrature rules instead, for instance

Gauss–Legendre, but...

in that case there are not enough nodes to approximate all the

multivariate integrals up to the required order.

Remark. This is not the case with Newton–Cotes rules, although the

error introduced may be important for higher order (negative coefficients)
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▲

▲

➲ ❏ ✘

One could use other quadrature rules instead, for instance

Gauss–Legendre, but...

in that case there are not enough nodes to approximate all the

multivariate integrals up to the required order.

Remark. This is not the case with Newton–Cotes rules, although the

error introduced may be important for higher order (negative coefficients)

Solution: use G–L with matrix evaluations in the previous/next step.
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▲

▲

➲ ❏ ✘

One could use other quadrature rules instead, for instance

Gauss–Legendre, but...

in that case there are not enough nodes to approximate all the

multivariate integrals up to the required order.

Remark. This is not the case with Newton–Cotes rules, although the

error introduced may be important for higher order (negative coefficients)

Solution: use G–L with matrix evaluations in the previous/next step.

⇒ method of order 4 with 2 evaluations (and 1 in the next step)



3.3 Some methods
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▲

▲

➲ ❏ ✘

Order 4

Y ≈ L0U0L1U1

∗ Quadratures NC / GL, 2 matrix evaluations per step

Order 6

Y ≈ L0U0L1U1L2

∗ order 6 with a 5 points NC quadrature (4 evaluations per step)

∗ order 7 with a 7 points NC (6 evaluations)

Order 12

Y ≈ L0U0L1U1L2U2

∗ with a 11 points NC (or GL involving several steps).



3.4 Variable step size
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▲

▲

➲ ❏ ✘

Local extrapolation technique is trivial to implement in this setting.
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▲

▲

➲ ❏ ✘

Local extrapolation technique is trivial to implement in this setting.

For instance,

Y1 ≡ L0U0L1

Ŷ1 ≡ L0U0L1U1 = Y1U1

Then

Ŷ1−Y1 = Y1U1−Y1 = Y1(U1− I)

and ‖Ŷ1−Y1‖ can be used as a measure of the error



3.5 Future work
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➲ ❏ ✘

∗ Analyse the convergence of the procedure
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∗ Analyse the convergence of the procedure

∗ Consider numerical examples in SL(n) with (very) large n
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∗ Analyse the convergence of the procedure

∗ Consider numerical examples in SL(n) with (very) large n

∗ Highly oscillatory problems (with special quadratures)



3.5 Future work

NEW NUMERICAL INTEGRATORS BASED ON SOLVABILITY AND SPLITTING – 98 ➲

▲

▲
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∗ Analyse the convergence of the procedure

∗ Consider numerical examples in SL(n) with (very) large n

∗ Highly oscillatory problems (with special quadratures)

∗ Analyse in practice the preservation of other structures (Blanes &

Moan)
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▲

▲

➲ ❏ ✘

∗ Analyse the convergence of the procedure

∗ Consider numerical examples in SL(n) with (very) large n

∗ Highly oscillatory problems (with special quadratures)

∗ Analyse in practice the preservation of other structures (Blanes &

Moan)

∗ Try to generalize to nonlinear problems
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