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The differential system

¢ Consider the matrix differential equation

Y(O)=Y(1) " FY (0,717
Y(0) =Y, € GL(n)

¢ I is a continuous matrix function, globally
Lipschitz on a subdomain of GL(n)

¢ the solution Y(¢) exists and is unique in a
neighborhood |-t t| of the origin 0
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The structure of GL(n)

¢ Two maximal connected and disjoint open subsets
comprising GL(n)

/GL\_M R | det(M) > 0
Variety of / (n)&\ ) et }

Singular — |
nXn matrices i det=0

GL (n)j/{M e R |det(M) < O}
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Theoretical results

¢ The existence of the solution Y(¢) for all # is not
guaranteed a priori and the presence of a finite
escape time behavior 1s not precluded.

¢ The value of the escape point depends on the
function F

» If the escape point 7 is finite then Y(¢) approaches a
singular matrix ast — 1

»1f T < oo then Y() exists for all > 0
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Theoretical results

“* Example: F constant function with frace(F) =0

vy 0 ! voy- - [} 7!
B {—1 o} ()_ﬁ{l 1

solution
1 [Vee Ve
YO=7 i i [

Existence interval

(-111)
Escape point 1
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Theoretical results

¢ Relationship between the singular values of the
solution ¥(7), the initial condition Y(0) and the
symmetric matrix function:
4

E(1) = I[F F(X(5),Y () +F(Y(5),Y " (s)]ds

WOEr m1n<E<t>H
-

Smallest Singular Smallest Singular Smallest
Value of Y1) Value of Y(0) Eigenvalue of E(1)
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Systems with structure

*¢ If the matrix function F maps all matrices into the
Lie algebra of skew-symmetric matrices

-:> Y(?) belongs to the orthogonal manifold
(whenever Y(0) 1s orthogonal)

“*If diag(F) = 0 for all nonsingular matrices

B diag(Y()TY(1) = diag(Y(0)TY(0))
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Examples

“* Control Theory

» Optimal system assignment via Qutput Feedback
Control

» Balanced Matrix Factorizations

» Balanced realizations (Isodynamical flows)
“* Multivariate Data Analysis

» Weighted Oblique Procrustes problem

** Inverse Eigenvalue Problem

» Pole placement or eigenvalue assignment problem
via output feedback

» Prescribed Entries Inverse Eigenvalue Problem
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Examples in Control Theory

“* Output Feedback Control of linear system
» Consider the linear dynamical system defined by the
triple (4,B,C) e P nxprmxppxn
PS4 (1) + Bu(f)
y(t) = Cx (1)

» The process of “feeding back’ the output or the state
variables in a dynamical system configuration through
the input channels

» Output Feedback: u(7) is replaced by u(1)=Ky(¢)+v(¢)

KePm*r feedback gain matrix
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Examples in Control Theory

“* Output Feedback Control of linear system
» The feedback system is

(1) = (A + BKC Yx(1) + Bv (1)
y(t) = Cx (1)

< Optimal system assignment

» (Given a target system described by the triple

(F,G,H)ePraxprmxpPr{ind an optimal feedback
transformation of (4,B,C) which results the best
approximation of (F,G,H).
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Examples in Control Theory

¢ The set GL(n)xP™*? of feedback transformation
1s a Lie group under the operation

(T}, K))o(T,,K,) = (T, T,, K, tK;)
“+* We can consider action on the output feedback
group and orbits, particularly:

®(A4,B,C)={(T(A+BKC)T ',TB,CT " |(T,K) € GL(n) x P ™"}

++* The distance function
® =|T(A+BKC)T"'-F | +||TB-G| +||CT"'-H|f
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Examples in Control Theory

¢ The gradient flow of this distance function with
respect to a specific Riemannian metric on
®d(A,B,C) can be written as:

T=T"f(T, T"",K)

K =B TT(T(A+ BKC)T™' = F)T'C"
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Examples in Control Theory

+* Balanced matrix factorizations

» General matrix factorization problem:

Given a matrix H e P find two XeP* " and YeP"*!
such that H=XY

balanced factorization X X=YY’
diagonal balanced factorization X “X=YY'=D

¢ Balanced and diagonal balanced factorization can be
characterized as critical points of cost functions
defined on the orbit

OX,Y)={(XT ", TY)eP*" xP™ | T € GL(n)}
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Examples in Control Theory

¢ The cost functions are respectively:

O:0(X,Y)>P OXT ', TY)=||XT " |} +||TY |f
O, :0X,Y)>P O (XT,TY)=tr(NT"'X"XT™' + NTYY'T")

“* Applying a gradient flow techniques differential
systems on (GL(n) can be constructed:

bal de
e = T T (X" X(TTT) = T7TYY ") T(0)=T,

T=T"(X'"XT'NT" -T'NTYY ") T(0)=T,

e
diagonal
balanced
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Examples in Control Theory

** Balanced realizations in linear system theory

» Consider the linear dynamical system defined by the triple
(4,B,C) e Prxprmxppn

0= Ax (1) + Bu(t)

y(t) = Cx (1)
> Gramians: W, —T e’ BB e dt TeATtC "Ce'dt
» (A,B,C)1s a balanced realization if W ISV
» (4,B,C) is a diagonal balanced realization if W =W =D
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Examples in Control Theory

“* Any Te GL(n) changes a realization by
(4,B,C)—(TAT, TB,CT)
¢+ and the Gramians via
W—TW. T W,—TWw,T

¢ Balanced and diagonal balanced realizations have
been proved to be critical points of costs functions
defined on the orbit

O(A4,B,C)={(TAT ", TB,CT ") eP"™" xP™ xP*" | T € GL(n)}
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Examples in Control Theory

¢ The cost functions are respectively:

p— (D :O(A, B, C) —> P (I)(T) e t]/'(TWCT_l + T—TWOT—I)
CDN :0(4,B,C)—>P () N(T) = f?'(NTW;,T_I + NT—TWOT_l) R

¢ All balancing transformation 7€ GL(n) for a given
asymptotically stable system (4,5,C) can be
obtained solving the gradient flow

v [ ]
balanced 7 = 7T (W _(T'T)"' = TTTW,.) r)=T1,

T = T_T(WOT_INT S TTNTWC) T(0)=T, diagvonal

balanced
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Examples in Multivariate Data
Analysis

“* Weighted oblique Procrustes problem (WObPP)

» Manifold of the oblique rotation matrices
OB(n)={X eP"" |det(X) # 0,diag(X" " X) =1}

*»* Given 4, B, C fixed matrices with conformal dimensions
» Minimize || AXC- B || subject to XeOB(n)

Problem 1n factor analysis known as a “rotation to
factor-structure matrix”

» Minimize || AX"TC- B || subject to X €OB(n)

Problem of finding an approximation to a “factor-
pattern”matrix
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Examples in Multivariate Data
Analysis

¢ The solution of the WObPP problem can be
obtained solving a descent matrix ODE:

O (V) = X Toff (X7V)

“*being V the gradient of the function to be
minimize with respect to the chosen metric

(N. Trendafilov FGCS 2003)
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Examples in Inverse Eigenvalue
Problem and control theory

“* Pole placement or eigenvalue assignment via
output feedback:

» Given a linear system described by the triple (4,B,C)
and a self-conjugate set of complex points {4;4,...4, }

» find a feedback gain matrix K such that A+BKC has
eigenvalues 4,

“*Denoted by A a fixed matrix with eigenvalues 4,
the pole placement task 1s equivalent to find a

matrix 7€ GL(n) and K€P "*? minimizing the
distance Lt |A—T(A+BKC)T™"|
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Examples in Inverse Eigenvalue
Problem and control theory

¢ Using a gradient flow techniques the solution can
be obtained solving

T =T "[(A+BKC) . TT(A —(A+BKC )T "]

K =—B'TT(T(A+BKC)T ™' - F)T'C’
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Examples in Inverse Eigenvalue
Problem

** Matrix completion with prescribed eigenvalues

“* PEIEP (prescribed entries inverse eigenvalue
problem) :

Given

» A={(i,j,) | v=1,...,m} m pairs of integers 1<i <j <n
»a={a,...,a,} P

»{4,..., 4, } © X closed under conjugation

Find a matrix X € P”"such that o(X)={4,,..., 4, }

and x;,, =a, v=1,..,m
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Examples in Inverse Eigenvalue
Problem

“* Let 4 a matrix with eigenvalues 4; and denoting
M)={VAV 1| VeGL(n) }
the orbit of matrices 1sospectral to 4 under the
action group of GL(n) and

S(Aa@)={X=[x,]e Prn| X =a, V= L,...,my

¢ Solving the PEIEP is to find intersection of the
two geometric entities M(/) and X(A,a)
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Examples in Inverse Eigenvalue
Problem

** Minimize for each given Xe M(A) the distance
between X and X(A,a)
min ~< VAV = PUAV VAV = P(PAV ") >

VeM(A) D
Projection on X(A,a)
¢ Using a descent flow approach we get

CZ_’; k(AW with &(X)=[X7, X —P(X)]

(M.T. Chu et al. FGCS 2003)
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Numerical Approximation:
substituting approach

+* Consider our system:

Y(1)=Y(t) " FY(0),Y (1))
Y(0)=Y, e GL(n)

“* Setting Z=Y -T from Y!Z=I we get

Y'Z+Y'"Z=0Z=-Y'Y"Z
1

(Y =ZF(Y.Z)=H(Y,7). Y(0)=7,

\Z=-ZF"(Y,2)Z"Z =—-ZH"(Y,Z)Z, Z(0)=Y,"
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Substituting Approach

“* Advantages:
» No direct use of the inverse of ¥(¢) (computational

advantages)

“* Drawbacks:

» Solution of a new matrix ODE with double dimension
with respect to the original system:;

» High stiffness (when ¥(7) tends to a singular matrix or
the Lipschitz constant of H is large);

» The presence of an additional structure of the solution
matrix ¥(7) 1s not considered ‘ need of ad hoc
numerical scheme
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Solution via Riccati equation

¢ When the matrix function F does not depend
explicitely on Y7/, i.e.:
Y()=Y(0) " F(Y(1))
Y(0)=Y, € GL(n)

¢ It could be convenient work with the implicit
equation

Y(1)Y (1) = F(Y(2))
Y(0) =Y, € GL(n)
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Solution via Riccati equation

¢ Applying the second order Gauss Legendre
method, we get:

Y'Y +Y'Y. ~Y Y Y'Y —2hF(Y” +Y"“j:o

n+1" n+l

n+l n+l"n
2

¢ The previous equation can be iteratively solved
starting from an 1nitial approximation Yn(fl)

(avoiding the nonlinearity of F)

( Y, 0
)
Y'Y, +Y'Y —1;211;—1;%—2%( " j:o
J

n+l1" n+l n “n+l 2
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Solution via Riccati Equation

¢ The latter equation 1s the prototype of an Algebraic
Riccati equation, 1n fact setting

(0)
A=Y and C=YY +2hF[Y” +2Y”+lj

o we get

RX)=X"X+A"X-X"4+C=0
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Solution via Algebraic Riccati
equation

“* Numerical methods to solve Algebraic Riccati
equation are based on fixed point or Newton
iteration:

» Picard iteration:
» Newton method:
R : P — pr
its Frechét derivatitive is: Ry(H)=H' (X —A)+(X+A4)'H
the Newton iteration starts from X, and solves
R(X)=0 via X, ,=X,+ D, being D, the solution of
Sylvester equation

[ R\ (D,)=-R(X,) < (X, +A)TDk "'DkT(Xk — A)=-R(X,) }
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Solution via Riccati equation

¢ Solving Riccati equation implies the numerical
treatment of the Sylvester equation

AX+X'TB=X
with A, B, X given n xn matrices

Existence: there exists a solution X of the
Sylvester equation 1ff

v oo™ o

are equivalent
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Solution via Riccati equation

¢+ To obtain conditions for uniqueness of solution
and for constructing 1t, we reformulate the
Sylvester equation as a n’xn” linear system:

(I ®A)vec(X)+(B" ® Dvec(X") = vec(X)
veo(X") = P(n,n)vec(X)

P(n,n)= iiEy ®E;

i=1 j=1

k] ®A)+ (B’ ® IP(n. nj vee(X) = vee(X)

Y
M
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Solution via Riccati equation

A +eb/ e,b/ e b’

T T T

M = el%)2 A +.€2b2 en.b2
- eb, e,b, - A+eb, |

being b, the columns of the matrix B

Uniqueness: there exists a unique solution X of the

Sylvester equation AX+X 'B=X if the matrix M is
non-singular (rank (M)=n?)
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Solution via Riccati equation

¢ Considering the linear equation derived from:

» Picard iteration: A=AT and B =4 = M is singular
» Newton iteration: A=X,+47and B=X,—-A4 = M is
non-singular = unique solution !

“* Newton method converges in a reasonable number
of 1terations

¢+ Numerical solution of Sylvester equation :
» Direct methods (QR, Gaussian Elimination);
» Iterative algorithms;
» Generalize Conjugate Residual method.
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Singular Value Decomposition

*» To avoid the inverse matrix computations and to
control the singularities of the matrix solution Y(z) we

can adopt a continuous Singular Value Decomposition
approach

¢ The continuous SVD of Y (¢) 1s a continuous
factorization

Y()=U(@®) Z(O)V (1)
» U(1),V(¢) orthogonal matrices (UTU=I, and V TV=I)
» 2(t) diagonal matrix with diagonal elements the
singular values o, (¢) of Y(¥)

¢ The motion of ¥(#) is now described by the variables U(®),
2(1), V(t) giving more information on the flow
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Singular Value Decomposition

¢ Suppose that the solution Y(¢) possesses dinstinct
and nonzero singular values o(¢), for i=1,..., n

and 7 1n [0, 1) then there exists a continuous SVD
of Y(¢) and the factors U(¢), 2(¢), V(¢) of such a
decomposition satisfy the following ODEs:

S=XV'FY,Y"W-HZ+3IK, Z(0)=%,
U=UH, U(0)=U,

V=VK, V(0)=V,
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Singular Value Decomposition

¢ The differential equations for the singular values are

o=~ WIFY, Y W), i=l.,n
O

i

¢ The elements of the skew-symmetric matrices H, K
are

1
H, = P — o2 TFY ), + 02 (v FY ), ]

1 T T
K, = (O_?_O_g)[(V Fv ), +0Trr),]

1
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Singular Value Decomposition

¢ Numerical solution of:
> a diagonal system in o; (information on the conditioning
of the matrix solution ¥(?))
» two linear systems in H; K;;
» two orthogonal systems in U and V

our aim is to preserve the non-singular behavior of
the numerical solution = explicit integration of the
systems in U and V (orthogonality preserved up to the
order of the method)

s* Drawback j distinct singular values
» Block Continuous SVD
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Rectangular case

¢+ Some of the previous results can be extended to
differential problems on the manifold

GL(m, n)={YeP™"|rank(Y)=n}, n<m

¢ Differential systems on GL(m,n) have the
following form:

¥=G(¥), Y(0)=Y, cGL(np)

“*with G belonging to the tangent space of GL(m,n):

G(Y) = Y(YTY)@ - Y(YTY)lYT@

nxn m»xn
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Rectangular Case: numerical

treatment
«»* Continuous SVD (economy)
mxn
T
Y (1) = Ul(t) 1(1)V (7)
mxn matrix nXxn matrix
U,"U=I, diag(o,,...,0,) viv=rvI=I,

¢ Differentiating we obtain the differential systems
satisfied by the three factors:
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Rectangular Case: numerical

treatment

i = (VTE(W),  i=len

i

V=VK, V(0)=V,
Ui =UH +(I, -UUIT)F,(N)Z', U©)=U,

Differential System on the Stiefel manifold

i

i

1
o0, (0] -0, [Gf(VTFl(Y)V)ij - af(VTFl(Y)V)ﬁ]

-l Rew), T Rew),]

(O-j _Gi)
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Rectangular Case: numerical
treatment

* Substituting approach:
y=y({¥'y) F(Y)+[] —y(y'y) ]F(Y)

¢ Setting Z= (Y 7Y )! we obtain

Y = YZF (Y) + I - Yz¥ " |F,(Y)

Z=-z|F )+ F )]z
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Numerical Illustrations

¢ First example:

Y=Y

Y (0) =

¢ With solution existing in (-1/0, 1/0)

Y(¢) = \IE

“* We solve the problem with 6 =1/2
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Numerical Illustrations

¢ Behaviour of the global error on [0 2)

10° [

10" -

Global Error

10_2 o

| | | | |
0 20 40 60 80 100 120
Time
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Numerical Illustrations

“* Second example

I./:Y_T —sin(t?cos(t) cos(t) Y(0) = 1
| ssin@) 1 K
s* with solution
cos(t) t
Y(t)=
o[ ]

“*periodically singular (for each 7,= k n/2)
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Numerical Illustrations

¢ Semilog plot of the global error on (7/4,1/2)

107°F
10}

107 2

Global Error

10° 2

10°F

-7
10 1 1 1 1 1 1 1
0.79 0.88 0.98 1.08 1.18 1.28 1.37 1.47 1.57

Time
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Conclusions

¢+ We have considered a particular ODEs on GL(n)
often occurring in applications

¢ Several problems modeled by such ODEs

¢ Different numerical approaches avoiding the
direct use of matrix inversion and detection of
singular behavior

«* Future works:

» Improving the validation of the proposed approaches by
tackling numerical tests on real examples
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