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Outline
PART I (Introductory)

• Linear IVPs, Eigenvalue problems, linear PDEs

• Manifolds (“stay on manifold” principle)

• Classical problems (“curved path” principle)

PART II (Recent results on exp ints)

• A unified approach to exponential integrators

• Order theory

• Bounds for dimensions of involved function spaces
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I.1 Linear IVPs
One may for instance write

u̇ = A(t) u, A : R → R
n×n

In literature, usually u ∈ R
n.

LGI: Magnus series or related (Cayley etc)

When/Why use this scheme.

1. Highly oscillatory ODEs, large imaginary eigenvalues.
Iserles

2. PDEs, A(t) unbounded, classical example: Linear
Schrödinger equation (LSE)). Blanes & Moan,
Hochbruck & Lubich.
Recently also Landau-Lifschitz equation Sun, Qin, Ma
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I.1 Magnus works on LSE!

i
du

dt
= H(t) u, H(t) unbounded, selfadjoint

d expu is not invertible for 2kπi ∈ σ(u), k ∈ Z\{0}.

Truncated series is still unbounded at ∞.
H & L find error bounds of the form

‖um − u(tm)‖ = C hp tm max
0≤t≤tm

‖Dp−1u(t)‖

D is a “differentiation operator” related to the LSE.
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Eigenvalue problems
Stability of travelling wave solutions to PDEs. Boils down
to eigenvalue problem

Ẏ = A(t, λ) Y

where λ is a parameter.
Needs to be solved for several λ.

Magnus integrators used with success by Malham, Oliver
and others.

Early work by Moan on such problems.
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I.2 Problems on (nonlinear) manifolds
A large part of the applications I know involves the
orthogonal group which acts transitively on either of

• The orthogonal group itself (or its tangent bundle).

• Stiefel manifold. (n × p matrices with orthonormal
columns)

• The n − 1-sphere. (Stiefel with p = 1)
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I.2 Orthogonal group problems
Most used examples are on n = 3 (3D rotations): Free
rigid body, spinning top,. . .

Scheme. Most LGIs work. RKMK, Crouch-Grossmann,. . .
combined with all possible “coordinates” exp, Cayley,
CCSK etc.

My evaluation

• Most Lie group integrators do little else for you than
maintaining orthogonality.

• Poor long-time behaviour.
• Hard to get reversible / symplectic schemes.
• There are exceptions (Lewis and Simo, Zanna et

al.) but these LGIs seem expensive.
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I.2 Stiefel manifolds
Some applications which involve computation on Stiefel
manifolds

• Computation of Lyapunov exponents

• Multivariate data analysis (optimisation, gradient
flows)

• Neural networks, Independent Component Analysis

Demands. Maintain orthonormality. Inexpensive stepping,
cost O(np2) per step.

Schemes. Most LGIs work. RKMK,
Crouch-Grossmann,. . . combined with all possible
“coordinates” exp, Cayley, CCSK etc. Most of them
can be implemented in O(np2) ops per step, but
special care must be taken.
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I.2 Stiefel manifolds
My evaluation

• Lie group integrators meet requirements specified
in literature

• Long-time behaviour has not been an issue.
• Overall judgement: Lie group integrators are

competitive, if not superior to classical integrators.

Sources

• Dieci, Van Vleck [schemes, but also general
viewpoints, Lyapunov exponents]

• Trendafilov. [Multivariate data analysis]

• Celledoni, Fiori.[Neural nets, ICA]

• LGIs for Stiefel, Krogstad, Celledoni + O
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I.2 Other manifold applications
• Certain PDEs whose solution evolve on (copies of)

Sn−1, Lie group integrators have been used.

• Some special types of manifolds, e.g described by
quadratic invariants like oblique manifold, DelBuono,
Lopez.
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I.2 Conclusions
• There are several manifold applications where Lie

group integrators now represent an alternative choice.
Recent research have caused implementations to be
much less expensive.

• Their best feature is that they preserve the manifold. I
have seen little evidence to suggest that Lie group
integrators is natural for maintaining additional
geometric structure. Is there hope for improvement on
this point?

• The development of Lie group integrators has added
important insight in the integration of DEs on
manifolds. Understanding of numerics has become
less dependent on specific coordinates and
embeddings.
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I.2 Conclusions (2)
The activity on Lie group integrators has caused progress
in fields related to geometric integration:

• Computing the matrix exponential

• Computing highly oscillatory integrals

• Analysis of split-step schemes

• Exponential integrators

• Algebraic structure on trees, Hopf algebras

• Computation with the BCH-formula
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I.3 Curved path principle
• Classical numerical ODE-solvers progress solution

along straight lines.

• Lie group integrators map a straight line in some other
space (Lie algebra) to phase space through a
nonlinear map.

• Allows for much more general “movements”.

Two excellent examples provided by Munthe-Kaas.

1. The northern light equations.

2. PDEs with perturbation terms by affine action
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I.3 Northern light
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I.3, II Time Integrators for Nonlinear PDEs
Many PDEs are of the (abstract) form

ut = L u + N(u)

L: unbounded linear operator (like ∆)
N(u): a (relatively) small nonlinear term.

Includes: NLS, Nonlinear heat equations, KdV,
Allen–Cahn, Kuramoto–Sivashinsky, and many more.

Unbounded L requires a form of implicit integrator.
One wants an explicit scheme for the nonlinear part.
Many time integrators are known for this purpose.
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Main Classes of Time Integrators
LI Linearly implicit or IMEX methods (Varah, Ruuth,

Ascher, Russo and many more)

SS Split step methods (Godunov, Strang etc)

IF Integrating factor methods (Lawson, Nørsett)

SL Sliders (Fornberg, Driscoll)

ETD Exponential Time Differencing (Cox, Matthews, now
also Krogstad)

LGI Lie group integrators with special actions
(Munthe-Kaas and others).
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Exact or Rational
Among all these schemes, some use exact partial flows,
others use rational approximants for the unbounded part.

Claim

Real eigenvalues of L favour rational approxmants,
imaginary eigenvalues favour exact partial flows.

Henceforth we consider only schemes which apply exact
partial flows (ie. “exact up to space discretization”)
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Assumptions
In what follows, we shall always assume

• Whenever L = 0 the scheme reduces to a classical
RK scheme for the problem ut = N(u)

• Whenever N(u) ≡ 0, the exact solution of ut = Lu
is recovered.

The classical Runge-Kutta scheme obtained when L = 0
is denoted “The underlying RK-scheme”

Our favourite choice for underlying RK scheme is the
classical RK4.
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Classical Runge-Kutta 4 (RK4C)
Problem of form ut = N(u). Step from t0 to t0 + h

N1 = N(u0)

N2 = N(u0 + 1
2
hN1)

N3 = N(u0 + 1
2hN2)

N4 = N(u0 + hN3)

u1 = u0 + h
6
(N1 + 2N2 + 2N3 + N4)
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An Integrating Factor Scheme (LAW4)
Lawson (1967) derived the schemes by setting

v(t) = exp(−tL)u(t)

which leads to vt = Ñ(v) where Ñ = etL ◦ N ◦ e−tL.
Solve resulting equation by RK4C.

N1 = N(u0)

N2 = N(e
h

2
L(u0 + 1

2hN1))

N3 = N(e
h

2
Lu0 + 1

2hN2)

N4 = N(ehLu0 + e
h

2
LhN3)

u1 = ehLu0 + h
6 (ehLN1 + 2e

h

2
L(N2 + N3) + N4)
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Lie Group Methods and the Affine Action
The scheme is based on the affine Lie group action.
Discrete case: Let G be a matrix group over C with Lie
algebra g. Pairs (M, b) ∈ G n C

N act on points in C
N

(M, b) · x = Mx + b

The Lie algebra consists of pairs (A, b) ∈ g n C
N .

Exponential map

Exp(t(A, b)) = (etA,
etA − 1

A
b).

Commutator

[(A1, b1), (A2, b2)] = [A1A2 − A2A1, A1b2 − A2b1].

Here, set g = span{L}.
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An RK–Munthe-Kaas Scheme (RKMK4)
From Munthe-Kaas & Owren (1999) we derive

N1 = N(u0)

N2 = N(e
hL
2 u0 + h

2
φ0(

hL
2

)N1)

C1 = h L(N2 − N1)

N3 = N(e
hL
2 u0 + φ0(

hL
2 )(h

2N2 − h
8C1))

N4 = N(ehLu0 + φ0(hL)hN3)

C2 = h L(N1 − 2N2 + N4)

u1 = ehLu0 + h
6φ0(hL)(N1 + 2N2 + 2N3 + N4 − C1 − 1

2C2)

where φ0(z) = ez−1
z
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A Commutator-Free Lie Group Integrator, Cf4
Celledoni et al. (2002)

N1 = N(u0)

U2 = e
hL
2 u0 + h

2φ0(
hL
2 )N1

N2 = N(U2)

N3 = N(e
hL
2 u0 + h

2φ0(
hL
2 )N2)

N4 = N(e
hL
2 U2 + hφ0(

hL
2 )(N3 − 1

2N1))

Us = e
hL
2 u0 + h

12φ0(
hL
2 )(3N1 + 2N2 + 2N3 − N4)

u1 = e
hL
2 Us + h

12φ0(
hA
2 )(−N1 + 2N2 + 2N3 + 3N4)
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A Cox and Matthews Scheme (C-M4)
This scheme has the same N1, . . . , N4 as Cf4.

u1 = ehAu0+h(f2(hL)N1+2f3(hL)(N2+N3)+f4(hL)N4)

where

f2(z) =
−4 − z + ez(4 − 3z + z2)

z3

f3(z) =
2 + z + ez(−2 + z)

z3

f4(z) =
−4 − 3z − z2 + ez(4 − z)

z3

Derivation technique: Unknown!
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A unified format
By carefully studying all these schemes, one finds that
they all fit into the framework

Nr = N(ecrhL u0 + h

s
∑

j=1

aj
r(hL) Nj), r = 1, . . . , s

u1 = ehL u0 + h

s
∑

r=1

br(hL) Nr.

aj
r(z) =

∑

m

αj,m
r zm, br(z) =

∑

m

βr,m zm

(αj,0
r ), (βr,0) underlying RK scheme.

Applications of Lie group integrators and exponential schemes – p. 25/60



Order theory
Order conditions and B-series can be derived by
standard tools (rooted trees).

T : The set of bicolored rooted trees where each white
node has at most 1 child.

T ′ : Subset of T where each white node has precisely
one child (no white leaves)

W+ : τ 7→ ◦

τ
, B+ : {τ1, . . . , τm} 7→ •

τ1 τ2 · τm

• B-series indexed by T .

• Order conditions: T ′ suffices.
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Order conditions for exponential integrators
An exponential integrator has order p if

u1(τ ) =
1

γ(τ )
, for all τ ∈ T ′ such that |τ | ≤ p,

where

u1(∅) = Ur(∅) = 1, 1 ≤ r ≤ s,

u1(W
m
+ B+(τ1, . . . , τµ)) =

∑

r

βr,mUr(τ1) · · · Ur(τµ)

Ur(W
m
+ B+(τ1, . . . , τµ)) =

∑

j

αj,m
r Uj(τ1) · · · Uj(τµ)
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Number of conditions
Generating function for # trees with q nodes in T ′

M(x) =
x

1 − x
exp

(

M(x) +
M(x2)

2
+

M(x3)

3
+ · · ·

)

The number of order conditions for each order 1 to 9 is
1, 2, 5, 13, 37, 108, 332, 1042, 3360.

Applications of Lie group integrators and exponential schemes – p. 28/60



Coefficient function spaces
aj

r(z), br(z) belong to some function spaces we denote
Va, Vb of finite dimension.
Often, Va, Vb they are related to the functions

φk(z) =

∫ 1

0
e(1−θ)z θk dθ, e.g. φ0(z) =

ez − 1

z

Scheme Va Vb

Cf4 φ0(
z
2
), zφ0(

z
2
)2 φ0(

z
2
), φ0(z)

C-M4 As Cf4 φ0(z), φ1(z), φ2(z)

RKMK4: φ0(
z
2
), zφ0(

z
2
) φ0(z), zφ0(z)

Law4: 1, ez/2 1, ez/2, ez
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Assumption and bounds
Let V of dim K be a function space as above.
Assumption. The map

f ∈ V 7→ (f(0), f ′(0), . . . , f (K−1)(0)) ∈ RK

is injective

Theorem. For any pth order exponential integrator, one
has

Ka = dim Va ≥

⌊

p

2

⌋

, Kb = dim Vb ≥

⌊

p + 1

2

⌋

.

Moreover, the lower bound for Vb is always attainable with
basis φ0, . . . , φKb−1
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Remarks
• We have no general proof that lower bound for Ka is

sharp. However, with p = 5 one can use Kb = 2 with
φ1(z), φ1(

3
5
z).

• A procedure for constructing exponential integrators
has been developed. One starts with an arbitrary
underlying scheme as well as Va, Vb.

• The really interesting part is still ahead: Choose
spaces Va, Vb to deal with unbounded L. In the time
to come, we focus in particular on the NLS.
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Natural Continuous Extensions Zennaro 1986
Let (αj,0

r ) (βr,0) define an underlying Runge-Kutta
scheme of order p
Suppose that polynomials w1(θ), . . . , ws(θ) of degree d
can be found such that

N̄(t0 + θh) :=
∑

r

w′
r(θ) Nr

satisfies

max
t0≤t≤t1

|N(u(t)) − N̄(t)| = O(hd−1)

∫ t1

t0

G(t)(N(u(t)) − N̄(t)) dt = O(hp+1)

NB! Requires aj
r(z) to be given.
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NCEs continued
Replace ut = L u + N(u) by vt = L v + N̄(t), solve
exactly, and set u1 := v(h). Yields exponential integrator
of order p with

br(z) =

∫ 1

0
exp((1 − θ)z)w′

r(θ) dθ

= βr,0 + z

∫ 1

0
exp((1 − θ)z)wr(θ) dθ

In particular, these are expressed in terms of

φk(z) =

∫ 1

0
exp(z(1 − θ)) θk dθ, k = 0, 1, . . .

We have rediscovered the Cox& Matthews schemes.
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Why it works

(u − v)t = L(u − v) + (N(u) − N̄(t))

⇓

(u − v)(t1) =
∫ t1
t0

e(t1−t)L(N(u(t) − N̄(t)) dt

= O(hp+1)

thanks to the definition of NCEs
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Theorem of Zennaro
The following result gives us a sharp lower bound for the
number of φk functions which must be included
Any NCE satisfies

q :=

[

p + 1

2

]

≤ d ≤ min{p, s∗}.

Moreover, and NCE of degree q always exists.

Conclusion. An underlying RK scheme of order p can
always be extended to an exponential integrator of order p
where

br(z) ∈ span{φ0, . . . , φq−1}, ∀r
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The nonlinear Schrödinger equation
Generally

iut = −∆u + (V (x) + λ |u|2σ) u, (t, x) ∈ R × R
d

Here

0 < σ, and σ <
2

d − 2
if d ≥ 3.

• Potential: V (x) ∈ L1 + L∞.

• IC: u(x, 0) = u0 ∈ Σ ⊂ H1.

• Here, let d = 1 and (x, t) ∈ S1 × R.

• Usually, take σ = 1 (cubic case).
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Spectral Discretisation in Space
Use 2n modes and set

ck(t) =

n−1
∑

m=−n

U(2mπ
2n , t)e−imk

leading to the NLS spectrally discretised system

dc

dt
= D c + Fn ◦ Ň ◦ F−1

n (c)

D = diag(−ik2)n−1
k=−n

iŇ(U)` = (V (x`) + λ|U(x`)|
2)U(x`).
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A Simplified Case
Let us

• Focus on one scheme, say the Cf4 scheme.

• For analysis, set V (x) ≡ v and λ = 0.

In this case, the SDNLS decouples into scalar equations

ċk = αkck + βk

where αk = −ik2, and β = −iv.

Setting ak = β
αk

, mk = e−
i
2hk2

the Cf4 scheme is

c1 = p(mk, ak)c0, p(m, a) =
5
∑

j=0

rj(a)mj, rj ∈ Π4[a]
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Global Error Cf4
Need to find global error at t = T .
Must estimate |pn

k − en
k | where n = T/h

pk = p(mk, ak), ek = exp(−ih(k2 + v))

A rigorous analysis shows that up to leading order

|pn
k − en

k | ≈

(

hk2

Sb

)4

, Sb =

(

480

T |v|

)4

whenever hk2 � 1 whereas for hk2 � 1 (and |v| ≤ 1
2k2)

|pn
k − en

k | ≤ 2
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The Global Error for Decoupled Case
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Summing It Up
The `2-norm of the global error is found by summing up

‖ge‖2 =
∑

k

|pn
k − en

k |2 |ck
0|2.

We may assume that |ck
0| ≤ K0

kp (holds in particular if u0 is
Cp(S1, C)). Assuming that N2h � 1 we estimate by
Euler–Maclaurin’s formula

‖ge‖ ≈ C h
2p−1

4 , p ≤ 8.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Our Work Plan
• Do this analysis for the other schemes

• Extend to more general V (x)

• Can the analysis include the nonlinear term?
Numerical tests show that it has little impact.

• We want to do the semiclassical case

• More space dimensions, more general boundary
conditions

• Compare results with those from geometric
integrators
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Long Time Integration
For systems with a symplectic structure, experience
shows that retention of such a structure in the numerical
scheme enhances the long time quality of integration.
Consider (Islas et al) the following 1D nonlinear
Schrödinger equation

iut = −uxx − 2|u|2 u

on the circle. It is a completely integrable Hamiltonian
system in the variables (q, q∗) with

H(q, q∗) = i

∫ L

0
(|q|4 − |qx|2) dx

ω =

∫ L

0
(dq∗ ∧ dq) dx
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Possible Strategies
1. Find a multisymplectic structure Reich (2000) and

discretise simultaneously in space and time to
preserve this structure.

2. Introduce an integrable space discretization
(Ablowitz/Ladik), the resulting ODE system is not
canonical. So standard symplectic integrators cannot
be used, one may then

(a) Use a Lie–Poisson type integrator based on the
generating function technique

(b) Apply (locally) the Darboux transformation to
obtain a standard canonical Hamiltonian system to
which a symplectic scheme can be applied
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A Multisymplectic Structure
The above Schrödinger equation can be written in the
form

Mzt + Kzx = ∇zS(z), z ∈ R
4.

Here M and K are skew-symmetric 4 × 4-matrices, and
S : R

4 → R.

The two matrices define symplectic structures ω, κ on
R

rank(M) and R
rank(K).

ω(U, V ) = V T MU, κ(U, V ) = V T KU.

In NLS we let a = Re u, b = Im u, z = (a, b, ax, bx)T so

S(z) = 1
2(a2

x + b2
x + (a2 + b2)2).
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Multisymplectic Cont’d
Let U, V be two solutions of the variational equation

Mdzt + Kdzx = DzzS(z)dz

It easily follows that this pair of solutions satisfies

∂tω(U, V ) + ∂xκ(U, V ) = 0

the symplectic conservation law.
The simplest multisymplectic scheme is obtained as the
concatenated midpoint rule:

M





z
j+1
i+1

2

− z
j
i+1

2

∆t



+K





z
j+1

2

i+1 − z
j+1

2

i

∆x



 = ∇zS
(

z
j+1

2

i+1

2

)

Applications of Lie group integrators and exponential schemes – p. 57/60



The Ablowitz–Ladik Truncation
For simplicity, set q = u and p = u∗. The above NLS now
has the formulation

iqt = −qxx − 2q2p

−ipt = −pxx − 2p2q

Semidiscretised version

iq̇n = −
qn−1 + qn+1 − 2qn

(∆x)2
− pnqn(qn−1 + qn+1)

−iṗn = −
pn−1 + pn+1 − 2pn

(∆x)2
− pnqn(pn−1 + pn+1)
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AL Truncation Cont’d
It has a noncanonical Hamiltonian form

ż = P (z)∇H(z), z = (p, q)

H =
i

(∆x)3

∑

n

(∆x)2pn(qn−1 + qn+1)−

2 ln(1 + (∆x)2qnpn)

P (z) =

(

0 −R

R 0

)

R = diag

{

1 + (∆x)2qnpn

∆x

}N

n=1
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Conclusions—Structure Preserving Integrators
• The literature (Islas et al.) report excellent long time

behaviour of the presented approaches.

• Which approach is best depends on the parameters of
the problems and the properties of interest.

• It is admitted that these geometric integrators are
more expensive than classical ones.
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