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Part I:
Quadrature of HiOsc integrals
Suppose that the kernel

K(x, ω) ∈ L[[0,1] × R+]

oscillates rapidly for ω À 1, e.g.

• The Fourier oscillator eiωx;

• The irregular oscillator eiωg(x), where g is real;

• The singular oscillator eiω|x−y|/|x − y|α, where y ∈ [0,1]
and α < 1;

• The Bessel oscillator Jν(ωx), ν ∈ R;

• The Airy oscillator Ai(−ωx).

We are interested in approximating

I[f ] =
∫ 1

0
f(x)K(x, ω)dx.
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What’s wrong with Gaussian quadrature?

Gauss–Christoffel quadrature:

I[f ] ≈ QGC[f ] =
∫ 1

0
φ(x)dx =

ν
∑

l=1

blf(cl)K(cl, ω),

where φ is the (ν − 1)-degree polynomial that
interpolates f(x)K(x, ω) at the quadrature nodes

c1 < c2 < · · · < cν in [0,1].

In particular: c1, c2, . . . , cν zeros of Pν(2x − 1) ⇒

the quadrature is of maximal order 2ν: this is the
Gauss–Legendre quadrature.

Suppose for simplicity that K(x, ω) = eiωx.
For ω À 1 and fixed x 6= 0 the value eiωx is, to all
intents and purposes, a random number on the
complex unit circle |z| = 1. Therefore, for fixed ν

QGC[f ] =
ν

∑

l=1

blf(cl)e
iωcl ∼ O(1) , ω → ∞.

On the other hand, Riemann–Lebesgue implies that

lim
ω→∞ I[f ] = 0, f ∈ L1[0,1].
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∫ 1

0
e(1+iω)xdx =

e1+iω − 1

1 + iω
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Generalising the Filon method

Instead of interpolating the integrand f(x)K(x, ω) at
the quadrature nodes, we interpolate the values of
f(x) there by the polynomial φ̃:

I[f ] ≈ QF[f ]=
∫ 1

0
φ̃(x)K(x, ω)dx=

ν
∑

l=1

bl(ω)f(cl).

Note that the weights depend on the frequency ω.

Filon–Legendre: ν = 2, c = [12 −
√

6
3 , 1

2 +
√

6
3 ].
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Just two quadrature points. . .
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. . . but we can do even better!

Choose instead Lobatto points: ν = 2, c = [0,1]:
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The wonder-method is
∫ 1

0
f(x)eiωxdx ≈ b1(ω)f(0) + b2(ω)f(1),

where

b1(ω)=
1

−iω
+

eiω − 1

(−iω)2
,

b2(ω)=− eiω

−iω
− eiω − 1

(−iω)2
.

But why does it work so well?
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Asymptotic expansion

Let K(x, ω) = eiωg(x), where g is real and smooth.
In addition, we require that g′ 6= 0 in [0,1].
Integrating by parts,

I[f ]=
1

iω

∫ 1

0

f(x)

g′(x)
deiωg(x)

dx
dx

=
1

iω

[

eiωg(1) f(1)

g′(1)
− eiωg(0) f(0)

g′(0)

]

− 1

iω
I[d(f/g′)/dx].

We continue by induction. Let

σ0(x)=f(x),

σm+1(x)=
d

dx

σm(x)

g′(x)
, m ∈ Z+.

Then, in the limit,

I[f ]∼
∞
∑

m=0

1

(−iω)m+1

[

σm(0)

g′(0)
eiωg(0)

− σm(1)

g′(1)
eiωg(1)

]

.
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We have

σ0=f,

σ1=− g′′

g′2
f +

1

g′
f ′,

σ2=
3g′′2 − gg′′′

g′4
f − 3

g′′

g′3
f ′ +

1

g′2
f ′′

and so on.

Asymptotic quadrature

Let

QA
s [f ]=

s−1
∑

m=0

1

(−iω)m+1

[

σm(0)

g′(0)
eiωg(0)

− σm(1)

g′(1)
eiωg(1)

]

.

The method uses s − 1 derivatives of f and

QA
s [f ] − I[f ] ∼ O

(

ω−s−1
)

, ω → ∞.

For g(x) = x we have

QA
s [f ] =

s−1
∑

m=0

1

(−iω)m+1
[f(m)(0) − eiωf(m)(1)].
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Filon-type methods

Given nodes c1, < · · · < cν and n1, . . . , nν ∈ N, we
choose the unique polynomial φ̃ of degree

∑

l nl − 1

such that for all l = 1, . . . , ν

φ̃(j)(cl) = f(j)(cl), j = 0, . . . , nl − 1.

A Filon-type method is

QF[f ] = I[φ̃].
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THEOREM If c1 = 0, cν = 1 and n1 = nν = s then
QF[f ] − I[f ] ∼ O

(

ω−s−1
)

when ω → ∞.

Proof Since QF[f ] − I[f ] = I[φ̃ − f ] and

φ̃(j)(0) = f(j)(0), φ̃(j)(1) = f(j)(1),

for j = 0,1, . . . , s − 1, the proof follows from the
asymptotic expansion of I[φ̃ − f ]. 2

Thus, Filon has the same asymptotic order as the
asymptotic method. Typically it has a smaller error
constant, which can be further decreased, by adding
extra nodes in (0,1).

All this is true as long as there are no stationary points
of the oscillator in [0,1], i.e. g′ 6= 0 in the interval.
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Stationary points

Suppose first that g′(y) = 0, g′′(y) 6= 0, for some
y ∈ [0,1] and that g′ 6= 0 elsewhere.

Naive integration by parts breaks down, since division
by g′ introduces a polar singularity. An alternative
is the method of stationary phase (Cauchy, Stokes,
Kelvin), except that, while requiring nasty contour
integration, it does not deliver all the information we
need. Instead, let

µ0(ω) =
∫ 1

0
eiωg(x)dx

and

I[f ]=f(y)µ0(ω) +
1

iω

∫ 1

0

f(x) − f(y)

g′(x)
deiωg(x)

dx
dx

=f(y)µ0(ω) +
1

iω

[

eiωg(1)f(1) − f(y)

g′(1)

− eiωg(0)f(0) − f(y)

g′(0)

]

− 1

iω

∫ 1

0

[

d

dx

f(x) − f(y)

g′(x)

]

eiωg(x)dx.
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We continue by induction. Letting

σ0(x)=f(x),

σm+1(x)=
d

dx

σm(x) − σm(y)

g′(x)
, m ∈ N,

we have

I[f ]∼µ0(ω)
∞
∑

m=0

σm(y)

(−iω)m

+
∞
∑

m=0

1

(−iω)m+1

[

eiωg(0)σm(0) − σm(y)

g′(0)

−eiωg(1)σm(1) − σm(y)

g′(1)

]

.

The van der Corput lemma ⇒ µ0(ω) = O
(

ω−1/2
)

.
Therefore, using the first s derivatives at 0, y and 1

gives an asymptotic method with an asymptotic error

of O
(

ω−s−3
2

)

.

Easy generalisation to several stationary points and to
g′(y) = · · · = g(r)(y) = 0, g(r+1)(y) 6= 0, r ≥ 1.
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Filon again. . .

The Filon method can be generalised to cater for
stationary points. Again, the idea is to interpolate to
f and its derivatives at {0, y1, y2, . . . , yn,1}, where
y1, . . . , yn are the stationary points.
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‘Exotic’ oscillators

Most results can be extended to more ‘exotic’
oscillators, for example

Jν(ωx) and Ai(−ωx)

but, clearly, much remains to be done.

Computation of special functions

In the stage of tentative ideas: using Filon quadrature
for fast computation of special functions (e.g.
hypergeometric and Bessel functions) for large
arguments, (hopefully) more precise than using
standard asymptotic formulæ.

Singular integrals (Hermann Brunner, AI & SPN)

Similar techniques have been applied to the kernels

eiω|x−y|

|x − y|α and eiω|x−y| log |x − y|,

where α < 1 and y ∈ [0,1]. The asymptotic
expansion is more difficult, mainly since σm need not
be smooth at y, but an important observation is that
singularities play similar role to stationary points.
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Multivariate integrals

This is perhaps the most fascinating chapter of our
work!

RESULT 1 Let Ω ⊂ R
d be a compact domain with

piecewise-linear boundary,
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Then, as long as ∇g(x) 6= 0 in clΩ,
∫

Ω
f(x)eiωg(x)dV ∼

∞
∑

m=0

1

(−iω)m+d

∑

k

am,k[f ],

where each functional am,k, a periodic function in ω,
depends just on f and its first m derivatives at the kth
vertex.
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Consequently, we again have two options, both
resulting in an O

(

ω−s−d
)

quadrature: either truncate
the asymptotic expansion at m = s or replace f by
Hermite interpolation to the function and its first s
directional derivatives at the vertices.

RESULT 2 Let Ω ⊂ R
d be a compact domain with

piecewise-smooth boundary and without cusps. Sup-
pose again that there are no critical points in clΩ, i.e.
that ∇g 6= 0 there. Then

∫

Ω
f(x)eiωg(x)dV

=
1

iω

∫

∂Ω

f(x)

‖∇g(x)‖2n(x)>∇g(x)eiωg(x)dS

− 1

iω

∫

Ω
∇

> f(x)

‖∇g(x)‖2∇g(x)eiωg(x)dV,

where n is the outward unit normal.

This can be converted into an asymptotic expansion,
a Stokes-type theorem, “pushing” the integral from Ω

to the boundary. All this can be extended to cater for
nondegenerate critical points x0 ∈ Ω, where
∇g(x0) = 0, det∇∇

>g(x0) 6= 0.
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Part II:
Fredholm equations of the 2nd kind
(Hermann Brunner, AI & SPN)

Consider the problem

K[φ](y) = λφ(y) − g(y), y ∈ [0,1],

where g is given,

K[φ](y) =
∫ 1

0
φ(x)eiω|x−y|dx

and λ 6∈ σ(K).

A naive approach Cover [0,1] with the grid

0 = y0 < y1 < · · · < yN−1 < yN = 1.

Let φk ≈ φ(yk) and replace integrals with Filon. We
obtain a linear system of the form

N
∑

l=0

bk,l(ω)φl = λφk − gk, k = 0,1, . . . , N.

This will not work, since the solution φ also oscillates
with frequency ω, and this means that our asymptotics
break down.
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An alternative We seek complex numbers λm

and complex-valued functions φm s.t.

K[φm] = λmφm.

Since

K[φ](y)=
∫ y

0
φ(x)eiω(y−x)dx+

∫ 1

y
φ(x)eiω(x−y)dx,

we have

dK[φ](y)

dy
=iω

[
∫ y

0
φ(x)eiω(y−x)dx

−
∫ 1

y
φ(x)eiω(x−y)dx

]

,

d2K[φ](y)

dy2
=(iω)2K[φ](y) + 2iωφ(y).

But

dK[φ](y)

dy
= λφ′(y),

d2K[φ](y)

dy2
= λφ′′(y).
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Therefore

λφ′′ = (iω)2λφ + 2iωφ.

Let

θ(ω) =

√

ω2 − 2iω

λ
,

then

φ′′ + θ2φ = 0.

Moreover,

λφ′(0)=
dK[φ](0)

dy
= −iωλφ(0),

λφ′(1)=
dK[φ](1)

dy
= iωλφ(1).

The condition at y = 0 results (up to normalization) in

φ(x) = (θ − ω)eiθx + (θ + ω)e−iθx.

Note however that θ depends on the unknown
eigenvalue λ.
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Using the boundary condition at y = 1 we obtain

(θ − ω)2eiθ = (θ + ω)2e−iθ.

Therefore

(θ − ω)e
1
2iθ = ±(θ + ω)e−

1
2iθ,

Taking the plus sign we obtain the transcendental
equation

iθ tan
θ

2
= ω,

while the minus sign yields

iθ cot
θ

2
= ω.

The solutions of these equations interlace: the first
has a solution for Re θ ∈ (2mπ, (2m + 1)π) and the
second in Re θ ∈ ((2m + 1)π, (2m + 2)π). We
observe that

The real part of θ behaves like O(m),
The imaginary part of θ is O(1) and small.
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How is this going to help?

Let (with greater generality)

K[f ](y) =
∫ 1

0
f(x)K(x, y)dx, y ∈ [0,1].

Then the Hilbert–Schmidt theory tells us that K has a
countable number of distinct eigenvalues and
eigenfunctions {λm, φm}. Let

〈f, g〉 =
∫ 1

0
f(x)g(x)dx

be the standard real L2 inner product.

21



For m 6= n

λmφm(y) =
∫ 1

0
φm(y)K(x, y)dx

⇒ λm〈φm, φn〉 =
∫ 1

0

∫ 1

0
φm(x)φn(x)K(x, y)dxdy.

By symmetry, also

λn〈φm, φn〉 =
∫ 1

0

∫ 1

0
φm(x)φn(x)K(x, y)dxdy

and we just deduce L2 orthogonality of the
eigenfunctions,

〈φm, φn〉 = 0, m 6= n.

Note that 〈 · , · 〉 is not a positive definite inner product:
it is complex-valued and it is entirely possible that

〈f, f〉 = 0, f 6= 0.

However, 〈φm, φm〉 6= 0, and that’s all we need.
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A spectral method

We expand

f(y) =
∞
∑

m=0

fmφm(y).

Therefore,

fm =
gm

λ − λm
, m ≥ 0,

where

gm =
〈g, φm〉
〈φm, φm〉 =

〈g, φm〉
2(λ2

m − 2iω − ω2)
.

We thus need to compute 〈g, φm〉 for a large number
of ms. However, if

θm = αm − iβm

then

〈g, φm〉=(θm − ω)
∫ 1

0
g(x)e(βm+iαm)xdx

+ (θm + ω)
∫ 1

0
g(x)e−(βm+iαm)xdx.
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Recall: while αm ≈ 2πm is large, |βm| is small.
Moreover, g is nonoscillatory. Therefore

All the integrals can be computed very fast and
accurately by either the asymptotic method or a
Filon-type method.

An ongoing challenge is to generalize all this to other
Fredholm kernels, e.g.

K[f ](y) =
∫ 1

0
f(x)xγeiω|x−y|dx

for γ > −1 and

K[f ](y) =
∫ 1

0
f(x)

eiω|x−y|

|x − y|γdx

for γ ∈ (0,1).
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Part III:
Solving HiOsc differential equations
We commence from the linear ODE

y
′ = A(t)y, t ≥ 0, y(0) = y0.

Suppose that its solution oscillates fast, e.g. that all
the eigenvalues of A live in clC− and there are large
eigenvalues on iR.

Standard numerical methods perform very poorly, the
reason being that the principal error term of a
p th-order classical method is of the form

hp+1Dp+1(y(tN)),

where Dp+1 is a linear combination of elementary
differentials of order p + 1.

y(t) oscillates with frequency ω ⇒

‖y(p+1)(t)‖ ∼ ωp+1‖y(t)‖,
hence ‖Dp+1‖ is very large!
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An alternative: Change of variables

To time-step from tN to tN+1 = tN + h, set

y(t) = e(t−tN)Ã
x(t − tN), t ≥ tN ,

where Ã = A(t
N+1

2
). Then

x
′ = B(t)x, t ≥ 0, x(0) = yN ,

where

B(t) = e−tÃ[A(t) − Ã]etÃ.

Since e±tÃ oscillates rapidly, so does B(t).
We have already seen that high oscillation can be
turned to our advantage. The main idea is to ‘invert’
the reason for the failure of classical methods:

Integrate, don’t differentiate!

Specifically, for an s-fold integral and B(x) a product
of s terms from {B(x1), . . . , B(xs)},

∥

∥

∥

∥

∫

· · ·
∫

B(x)dxs · · ·dx1

∥

∥

∥

∥

∼ O
(

ω−s
)

.
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The Magnus method Letting

x(t) = eΩ(t)
x0,

we have

Ω(t)=
∫ t

0
B(x)dx

− 1
2

∫ t

0

∫ x1

0
[B(x2), B(x1)]dx2dx1

+ 1
4

∫ t

0

∫ x1

0

∫ x2

0
[[B(x3), B(x2)], B(x1)]dx3dx2dx1

+ 1
12

∫ t

0

∫ x1

0

∫ x1

0
[B(x3), [B(x2), B(x1)]]dx3dx2dx1

+ · · · .
Thus, repeated integration. . . .

An advantage of Magnus: If A(t) lives in a Lie
algebra g then y(t) evolves on a homogeneous space
M, acted upon by the corresponding Lie group G.
Using Magnus (with or without change of variables)
ensures yN ∈ M, N ≥ 0.
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An example: The Airy equation Let y′′ + ty = 0.
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Calculating integrals: We use Filon: all (multivariate)
integrals can be calculated to high precision using just
B(0) and B(h). As before, high oscillation helps
computation!

A disadvantage of Magnus: We need to calculate two
exponentials per step:

e±hÃ and eΩ(h).

This can be problematic when the dimension is large.
However, while Ω is typically unstructured, this is not
the case with Ã.

Suppose that the ODE originates in a semidiscretized
PDE. Then often Ã is block Toeplitz and e±Ã can be
calculated very fast by FFT. The challenge is thus to
do away with the need for the calculation of eΩ(h).
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The Neumann method To avoid the calculation of the
second exponential, we abandon Magnus in favour of
the Neumann expansion

x(t) =
∞
∑

m=0

Nk(t)yN ,

where N0(t) ≡ I and

Nm(t) =
∫ t

0

∫ x1

0
· · ·

∫ xm−1

0
B(x1) · · ·B(xm)dxm · · ·dx1.

Because of high oscillation, ‖Nm(h)‖∼O((h/ω)m),
hence very rapid convergence.

Multivariate integrals can be computed in a very small
number of function evaluations, similarly to Magnus
integrals. Again, high oscillation of B means that Filon
methods are very precise.

Numerical results for Airy are virtually identical to
Magnus, but the method comes into its own for HiOsc
PDEs, e.g. the Schrödinger equation.
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Nonlinear equations Suppose that

y
′ = A(t)y + g(y)

is highly oscillatory. Transforming as before, but letting
Ã = A(tN), we have

x
′ = B(t)x + e−tÃ

g(tN + t, etÃ
x).

Let

Φ′ = B(t)Φ, t ≥ 0, Φ(0) = I.

Note that we can evaluate Φ by either Magnus or
Neumann. Then

x(t)=Φ(t)yN

+
∫ t

0
Φ(t − ξ)eξÃ

g(tN + ξ, eξÃ
x(ξ))dξ.

This motivates the waveform relaxation approach,

x
[0](t)≡ yN ,

x
[m+1](t)=Φ(t)yN

+
∫ t

0
Φ(t − ξ)eξÃ

g(tN + ξ, eξÃ
x
[m](ξ))dξ.
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Next steps. . .

• Filon without derivatives: Work in progress.
Letting nodes depend on ω, it is possible to obtain
arbitrary degree of error attenuation without using
derivatives;

• Exotic oscillators: For starters, how to compute
∫ 1

0
f(x) sin(ω sinπx)dx?

• Multivariate HiOsc integrals: What are the
implications of the Stokes-type theorem?

• Volterra HiOsc equations: The current approach
doesn’t scale up e.g. to singular kernels;

• HiOsc PDEs: Much further work required for
specific PDEs, e.g. Schrödinger and Hamilton–
Jacobi;

• Stochastic DEs: Perhaps. . .
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