$C^{\ast}\mbox{-algebras}$ and Geometric Integration

Time Independent Quantum Mechanics

Let \mathcal{H} be a separable Hilbert space. Let H be a densely defined, unbounded, self adjoint operator on \mathcal{H} i.e. H may be the one dimensional Hamiltonian on $L^2(\mathbb{R})$ thus

$$Hf(x) = -\frac{1}{2}f''(x) + V(x)f(x).$$

Question: How do we compute $\sigma(H)$ the spectrum of H?

Algorithm for computing the spectrum

- Define an appropriate one parameter family $H_{\tau} \in \mathcal{B}(\mathcal{H})$.
- Find a sequence of finite dimensional Hilbert spaces $\{\mathcal{H}_n\}, \mathcal{H}_n \subset \mathcal{H}$ with corresponding projections P_n such that $P_n \to I$ strongly and $\bigcup_{n\geq 1} \mathcal{H}_n$ is dense in \mathcal{H} with respect to the norm topology.
- Compute the eigenvalues of $A_n = P_n H_{\tau} |_{\mathcal{H}_n}$.

Divide the problem into two parts:

- Find the one-parameter family $H_{\tau} \in \mathcal{B}(\mathcal{H})$.
- Computations of the spectrum of elements in $\mathcal{B}(\mathcal{H})$.

Let $A \in \mathcal{B}(\mathcal{H})$ and let $A_n = P_n A |_{\mathcal{H}_n}$. Define $\Lambda = \{\lambda \in \mathbb{R} : \exists \lambda_n \in \sigma(A_n), \lambda_n \to \lambda\}.$

For every set S of real numbers let $N_n(S)$ denote the number of eigenvalues (counting mult.) of A_n which belong to S.

Definition 1 (1) A point $\lambda \in \mathbb{R}$ is called essential if, for every open set U containing λ , we have

$$\lim_{n \to \infty} N_n(U) = \infty.$$

The set of essential points is denoted Λ_e

(2) $\lambda \in \mathbb{R}$ is called transient if there is an open set U containing λ such that

$$\sup_{n\geq 1} N_n(U) < \infty.$$

Theorem 1 (Arveson) Let A_1, A_2, \ldots be as discussed. Then $\sigma(A) \subset \Lambda$ and $\sigma_e(A) \subset \Lambda_e$.

- Examples show that the inclusions can be proper, i.e. one may experience convergence to points not in the desired spectrum.
- We need to impose some restrictions.

Definition 2 (1) A filtration of \mathcal{H} is a sequence $\mathcal{F} = \{\mathcal{H}_1, \mathcal{H}_2, \ldots\}$ of finite dimensional subspaces of \mathcal{H} such that $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and

$$\overline{\cup_{n\geq 1}\mathcal{H}_n}=\mathcal{H}$$

(2) Let $\mathcal{F} = \{\mathcal{H}_n\}$ be a filtration of \mathcal{H} and let P_n be the projection onto \mathcal{H}_n . The degree of an operator $A \in \mathcal{B}(\mathcal{H})$ is defined by

$$deg(A) = \sup_{n \ge 1} rank(P_n A - AP_n).$$

Let $D(\mathcal{F})$ denote the set of all operators $A\in\mathcal{B}(\mathcal{H})$ such that

$$A = \sum_{k=1}^{\infty} A_k, \quad deg(A_K) < \infty$$

and

$$s = \sum_{k=1}^{\infty} (1 + \deg(A_K)^{1/2}) \|A_k\| < \infty$$
⁽¹⁾

Defining $|A|_{\mathcal{F}}$ to be the infimum of all such sums s which arise from representations of A as in (1). Then $(D(\mathcal{F}), |\cdot|_{\mathcal{F}})$ is a Banach *-algebra.

Theorem 2 (Arveson) Assume $A = A^* \in D(\mathcal{F})$. Then (i) $\sigma_e(A) = \Lambda_e$. (ii) Every point of Λ is either transient or essential.

Open problems

- Closing the gap $\sigma(A) \subset \Lambda$.
- Detect "false" eigenvalues.
- Definition of convergence.
- Rate of convergence.
- Error bounds in terms of n and possibly \mathcal{H}_n .
- Can the algorithm be improved?

The art of choosing $H_{ au}$

Consider the Hamiltonian H on $\mathcal{H}=L^2(\mathbb{R})$ defined by

$$H = \frac{1}{2}P^2 + v(Q),$$

where $P=-i\frac{d}{dx}$, Q= multiplication by x and v is continuous. We want to find

$$P_{ au}, Q_{ au} \in \mathcal{B}(\mathcal{H})$$
 and define $H_{ au} = rac{1}{2}P_{ au}^2 + v(Q_{ au}).$

Define

$$V_t f(x) = f(x - t)$$
 then $P = \lim_{t \to 0} \frac{1}{it} (V_t - I)$

so P is the infinitesimal generator of V_t i.e. $V_t = e^{itP}$ (Stone's Thrm).

The choice of P_{τ}

Possible choices of P_{τ}

(1)
$$P_{\tau} = \frac{1}{i\tau}(V_{\tau} - I)$$
 or (2) $P_{\tau} = \frac{1}{2i\tau}(V_{\tau} - V_{-\tau}).$

(1) is not self-adjoint, but (2) is. Choosing $P_{\tau} = \frac{1}{2i\tau}(V_{\tau} - V_{-\tau})$ and since $V_t = e^{itP}$ we have

$$P_{\tau} = \frac{1}{\tau} \sin(\tau P).$$

Recalling the Spectral Mapping Theorem

$$\sigma(f(a)) = f(\sigma(a))$$

and since $f(x) = \frac{1}{\tau} \sin(\tau x)$ approximates x when τ is small suggest that P_{τ} could be a good choice.

The choice of $Q_{ au}$

Now P and Q satisfy the Weyl relation

$$V_t U_s = e^{ist} U_s V_t$$
, where $V_t = e^{itP}, U_t = e^{itQ}$ (2)

which implies the "uncertainty principle"

$$PQ - QP = \frac{1}{i}I.$$
(3)

Now (2) cannot be achieved for P_{τ}, Q_{τ} by the Stone-von Neumann Theorem but (3) is true if

 $P = F^{-1}QF$, where F is the Fourier transform. $Q_{\tau} = FP_{\tau}F^{-1} = F\frac{1}{\tau}\sin(\tau P)F^{-1} = \frac{1}{\tau}\sin(\tau Q).$

Simplification using representations

Theorem 3 (Arveson) Let \mathcal{A} be the C^* -algebra generated by P_{τ}^2 and Q_{τ} and let K be a Hilbert space spanned by a bilateral orthonormal set $\{e_n : n \in \mathbb{Z}\}$. Then there is a faithful representation $\pi : \mathcal{A} \to \mathcal{B}(K)$ such that $\pi(H_{\tau})$ has the form

$$\pi(H_{\tau}) = aT + bI$$

where $a=1/8\tau^2$, $b=-1/4\tau^2$, and T is the tridiagonal operator

$$Te_n = e_{n-1} + 8\tau^2 v(\frac{1}{\tau}\sin(2n\tau))e_n + e_{n+1},$$

 $n=0,\pm 1,\pm 2,\ldots$

Open problems

- Definition of convergence.
- Rate of convergence.
- How the structure preservation affects the computational result.
- Error bounds in terms of τ .
- Final open Problem: Error bounds in terms of τ , n and \mathcal{H}_n .

Computational Chemistry

The key problem is to compute the ground state of a molecule given by

$$E_0 = \inf\{\langle \psi, H\psi \rangle, \psi \in \mathcal{H}, \|\psi\| = 1\}.$$
(4)

- Problems: E_0 may not be attained and \mathcal{H} may be huge.
- Solution: Born-Oppenheimer approximation, leads to the problem

$$\inf\{\langle\psi, \hat{H}\psi\rangle, \psi \in \hat{\mathcal{H}}, \|\psi\| = 1\},\tag{5}$$

where \hat{H} and $\hat{\mathcal{H}}$ are different from (4), and (5) is attained in most cases.

- State of the art method: Born-Oppenheimer-Hartree-Fock approximation which leads to a large number of nonlinear partial differential equations.
- Possible solution: Born-Oppenheimer approximation together with the Arveson method.

Operator theory

We consider Barry Simon's 15 open problems in connection with Schrödinger operators. Given the operator on $l^2(\mathbb{Z})$ defined by

$$(h_{\alpha,\lambda,\theta}u)(n) = u(n+1) + u(n-1) + \lambda\cos(\pi\alpha + \theta)u(n),$$

where $\alpha,\lambda\in\mathbb{R}$ and $\theta\in[0,2\pi]$

- (Problem 4)(Ten Martini) Prove that for all $\lambda \neq 0$ and all irrational α that $\sigma(h_{\alpha,\lambda,\theta})$ is a Cantor set.
- (Problem 5) Prove that for all irrational α and $\lambda = 2$ that $\sigma(h_{\alpha,\lambda,\theta})$ has measure zero.
- (Problem 6) Prove that for all irrational α and $\lambda < 2$ that the spectrum is purely continuous.