
C∗-algebras and Geometric Integration
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Time Independent Quantum Mechanics

Let H be a separable Hilbert space. Let H be a densely defined,

unbounded, self adjoint operator on H i.e. H may be the one dimensional

Hamiltonian on L2(R) thus

Hf(x) = −
1

2
f

′′

(x) + V (x)f(x).

Question: How do we compute σ(H) the spectrum of H?
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Algorithm for computing the spectrum

• Define an appropriate one parameter family Hτ ∈ B(H).

• Find a sequence of finite dimensional Hilbert spaces {Hn}, Hn ⊂ H

with corresponding projections Pn such that Pn → I strongly and
⋃

n≥1
Hn is dense in H with respect to the norm topology.

• Compute the eigenvalues of An = PnHτ

∣

∣

Hn

.

Divide the problem into two parts:

• Find the one-parameter family Hτ ∈ B(H).

• Computations of the spectrum of elements in B(H).
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Let A ∈ B(H) and let An = PnA
∣

∣

Hn

. Define

Λ = {λ ∈ R : ∃λn ∈ σ(An), λn → λ}.

For every set S of real numbers let Nn(S) denote the number of eigenvalues

(counting mult.) of An which belong to S.

Definition 1 (1) A point λ ∈ R is called essential if, for every open set U

containing λ, we have

lim
n→∞

Nn(U) = ∞.

The set of essential points is denoted Λe

(2) λ ∈ R is called transient if there is an open set U containing λ such that

sup
n≥1

Nn(U) <∞.
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Theorem 1 (Arveson) Let A1, A2, . . . be as discussed. Then σ(A) ⊂ Λ and

σe(A) ⊂ Λe.

• Examples show that the inclusions can be proper, i.e. one may experience

convergence to points not in the desired spectrum.

• We need to impose some restrictions.

Definition 2 (1) A filtration of H is a sequence F = {H1,H2, . . .} of finite

dimensional subspaces of H such that Hn ⊂ Hn+1 and

∪n≥1Hn = H

(2) Let F = {Hn} be a filtration of H and let Pn be the projection onto Hn. The

degree of an operatorA ∈ B(H) is defined by

deg(A) = sup
n≥1

rank(PnA−APn).
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Let D(F) denote the set of all operators A ∈ B(H) such that

A =

∞
∑

k=1

Ak, deg(AK) <∞

and

s =

∞
∑

k=1

(1 + deg(AK)1/2)‖Ak‖ <∞ (1)

Defining |A|F to be the infimum of all such sums s which arise from

representations of A as in (1). Then (D(F), | · |F ) is a Banach *-algebra.

Theorem 2 (Arveson) Assume A = A∗ ∈ D(F). Then

(i) σe(A) = Λe.

(ii) Every point of Λ is either transient or essential.
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Open problems

• Closing the gap σ(A) ⊂ Λ.

• Detect “false” eigenvalues.

• Definition of convergence.

• Rate of convergence.

• Error bounds in terms of n and possibly Hn.

• Can the algorithm be improved?
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The art of choosing Hτ

Consider the Hamiltonian H on H = L2(R) defined by

H =
1

2
P 2 + v(Q),

where P = −i d
dx , Q = multiplication by x and v is continuous. We want to

find

Pτ , Qτ ∈ B(H) and define Hτ =
1

2
P 2

τ + v(Qτ ).

Define

Vtf(x) = f(x− t) then P = lim
t→0

1

it
(Vt − I)

so P is the infinitesimal generator of Vt i.e. Vt = eitP (Stone’s Thrm).
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The choice of Pτ

Possible choices of Pτ

(1)Pτ =
1

iτ
(Vτ − I) or (2)Pτ =

1

2iτ
(Vτ − V−τ ).

(1) is not self-adjoint, but (2) is. Choosing Pτ = 1

2iτ (Vτ − V−τ ) and since

Vt = eitP we have

Pτ =
1

τ
sin(τP ).

Recalling the Spectral Mapping Theorem

σ(f(a)) = f(σ(a))

and since f(x) = 1

τ sin(τx) approximates x when τ is small suggest that

Pτ could be a good choice.
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The choice of Qτ

Now P and Q satisfy the Weyl relation

VtUs = eistUsVt, where Vt = eitP , Ut = eitQ (2)

which implies the “uncertainty principle”

PQ−QP =
1

i
I. (3)

Now (2) cannot be achieved for Pτ , Qτ by the Stone-von Neumann Theorem but

(3) is true if

P = F−1QF, where F is the Fourier transform.

Qτ = FPτF
−1 = F

1

τ
sin(τP )F−1 =

1

τ
sin(τQ).
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Simplification using representations

Theorem 3 (Arveson) Let A be the C∗-algebra generated by P 2
τ and Qτ

and let K be a Hilbert space spanned by a bilateral orthonormal set

{en : n ∈ Z}. Then there is a faithful representation π : A → B(K) such

that π(Hτ ) has the form

π(Hτ ) = aT + bI

where a = 1/8τ 2,b = −1/4τ 2, and T is the tridiagonal operator

Ten = en−1 + 8τ2v(
1

τ
sin(2nτ))en + en+1,

n = 0,±1,±2, . . . .
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Open problems

• Definition of convergence.

• Rate of convergence.

• How the structure preservation affects the computational result.

• Error bounds in terms of τ .

• Final open Problem: Error bounds in terms of τ , n and Hn.
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Computational Chemistry

The key problem is to compute the ground state of a molecule given by

E0 = inf{〈ψ,Hψ〉, ψ ∈ H, ‖ψ‖ = 1}. (4)

• Problems: E0 may not be attained and H may be huge.

• Solution: Born-Oppenheimer approximation, leads to the problem

inf{〈ψ, Ĥψ〉, ψ ∈ Ĥ, ‖ψ‖ = 1}, (5)

where Ĥ and Ĥ are different from (4), and (5) is attained in most cases.

• State of the art method: Born-Oppenheimer-Hartree-Fock approximation which

leads to a large number of nonlinear partial differential equations.

• Possible solution: Born-Oppenheimer approximation together with the Arveson

method.
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Operator theory

We consider Barry Simon’s 15 open problems in connection with Schrödinger

operators. Given the operator on l2(Z) defined by

(hα,λ,θu)(n) = u(n+ 1) + u(n− 1) + λ cos(πα+ θ)u(n),

where α, λ ∈ R and θ ∈ [0, 2π]

• (Problem 4)(Ten Martini) Prove that for all λ 6= 0 and all irrational α that

σ(hα,λ,θ) is a Cantor set.

• (Problem 5) Prove that for all irrational α and λ = 2 that σ(hα,λ,θ) has

measure zero.

• (Problem 6) Prove that for all irrational α and λ < 2 that the spectrum is purely

continuous.
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