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Abstract

We find an exact expression for the bipartite fidelity f = |〈vac|vac〉′|2, where |vac〉 is the
vacuum eigenstate of an infinite-size antiferromagnetic XXZ chain and |vac〉′ is the vacuum
eigenstate of an infinite-size XXZ chain which is split in two. We consider the quantity − ln(f)
which has been put forward as a measure of quantum entanglement, and show that the large
correlation length ξ behaviour is consistent with a general conjecture − ln(f) ∼ c

8
ln(ξ), where

c is the central charge of the UV conformal field theory (with c = 1 for the XXZ chain).
This behaviour is a natural extension of the existing conformal field theory prediction of
− ln(f) ∼ c

8
ln(L) for a length L bipartite system with 0 � L � ξ.

1 Introduction

In this letter, we consider two separate Hamiltonians: the usual infinite-size XXZ Hamiltonian H,
and the infinite-size XXZ Hamiltonian H ′ with the interaction between central adjacent sites 0
and 1 removed. The precise definitions of these Hamiltonians are given by (2.3) and (2.4) below.
Specialising the previous results of the author [1], we obtain exact expressions for the respective
vacua |vac〉 and |vac〉′ and for the bipartite fidelity f = |〈vac|vac〉′|2.

The quantity − ln(f) has been put forward as a measure of quantum entanglement in [2].
This interpretation is physically reasonable: the closer |vac〉 is to a pure tensor-product state, the
closer f will be to 1 and the smaller will be − ln(f). Another way in which − ln(f) resembles other
measures of quantum entanglement, such as the standard von Neumann entanglement entropy,
is in its universal scaling behaviour. The scaling behaviour of − ln(f) has been considered in the
setting of conformal field theory in [2]. Using the results of Cardy and Peschel for the free energy
of a conformal field theory on a 2D sheet of size L × L with a semi-infinite slit [3], Dubai and
Stéphan derived the following universal form for − ln(f) for a length L 1D bipartite quantum
system [2]:

− ln(f) ∼
L→∞

c

8
ln(L), (1.1)

1



where c is the central charge of the UV conformal field theory. This result is valid in the case
when the correlation length ξ is much larger than the system size L. In this letter, we consider
the alternative regime in which ξ is finite and L infinite. We find the exact expression for f given
by (3.8), and the scaling behaviour

− ln(f) ∼
ξ→∞

c

8
ln(ξ), (1.2)

with the constant c equal to 1 for the antiferromagnetic XXZ model. We conjecture that when 0 �
ξ � L the universal form (1.2) should hold for any 1D quantum system which is a perturbation of
a UV conformal field theory with central charge c (and which has a trivial c = 0 IR fixed point).

It is interesting to note that the entanglement entropy −Tr(ρ ln ρ) of a 1D bipartite system
(in which ρ is the reduced density matrix associated with the half-line) has a universal scaling
behaviour of the form (1.2) but with the coefficient

c

8
replaced by

c

6
[4,5]. A general field theory

argument leading to this latter result for the entanglement entropy and exact calculations for the
XY and XXZ lattice models are given in [5–7]. Apart from the the different c coefficient, the scal-
ing form of the bipartite fidelity we find for the XXZ model differs from the analogous expression
for the entanglement entropy in another important respect: there are no finite correction terms
as ξ →∞ (see Expression (4.11)). Such corrections are present for the entanglement entropy and
in that context they have been interpreted as boundary entropy contributions [5, 7].

2 The Model

In this section we define our two different quantum spin chain Hamiltonians. The first is the
infinite-size antiferromagnetic XXZ Hamiltonian

H = −1
2

∑
j∈Z

(
σx

j σx
j+1 + σy

j σy
j+1 + ∆σz

j σ
z
j+1

)
, ∆ = −(x + x−1)

2
, 0 < x < 1. (2.3)

This Hamiltonian acts on the space with antiferromagnetic boundary conditions + − + − +−
at plus and minus infinity (we use + and − to refer to the two eigenstates of σz). The second
Hamiltonian H ′ is split into H ′ = HL +HR, where HL acts on a left-hand semi-infinite space and
HR acts on a right-hand semi-infinite space with the same boundary conditions as above. We
have

H ′ = HL + HR, with

HL = −1
2

∑
j≤−1

(
σx

j σx
j+1 + σy

j σy
j+1 + ∆σz

j σ
z
j+1

)
, (2.4)

HR = −1
2

∑
j≥1

(
σx

j σx
j+1 + σy

j σy
j+1 + ∆σz

j σ
z
j+1

)
.

Note that H ′ differs from H only in the absence of any interaction between the sites at positions
0 and 1. Exact expressions for the vacuum eigenstates |vac〉 and |vac〉′ of H and H ′ and all
correlation functions 〈vac|O|vac〉′ were obtained by the author in [1] by exploiting the vertex
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operator approach to bulk and boundary quantum spin chains [8–10]. In fact, a slightly more
general split Hamiltonian H ′ + h(σz

0 − σz
1) was considered in [1], but in the current paper we set

the magnetic field h = 0 corresponding to the choice of r = −1 in the notation of [1].

3 The Exact Bipartite Fidelity

The bipartite fidelity f = |〈vac|vac〉′|2 can be read off from Equation (4.1) of [1] with the special-
isation r = −1. Using the infinite-product notation

(z; a1, a2, · · · , aN )∞ =
∞∏

n1=0

∞∏
n2=0

· · ·
∞∏

nN=0

(1− z an1
1 an2

2 · · · anN
N ) (3.5)

we have the raw result

f = (x2;x4)∞
(x6;x8, x8)2∞ (x10;x8, x8)2∞
(x4;x8, x8)2∞ (x12;x8, x8)2∞

(x2;x4, x8)2∞
(x4;x4, x8)2∞

.

This expression simplifies considerably if we make use of the q-calculus identities

(z;x2b, xc)∞(zxb;x2b, xc)∞ = (z;xb, xc)∞, (3.6)

(z;xb, xc)∞(−z;xb, xc)∞ = (z2;x2b, x2c)∞, (3.7)

which follow easily from the infinite-product definition of Equation (3.5) (an introduction to q-
calculus can be found for example in the chapter by G.E. Andrews in [11]). Using the identities
(3.6) and (3.7) successively we find

f = (x2;x4)∞
(−x4;x4, x4)2∞
(−x2;x4, x4)2∞

. (3.8)

4 The Large Correlation Length Behaviour

The XXZ model is exactly solvable and the correlation length ξ of the antiferromagnetic XXZ
Hamiltonian H is given by [12,13]

ξ−1 = −1
2

ln(k(x2)) = −1
2

ln
(

1− k′(x)
1 + k′(x)

)
,

where k and k′ are the the elliptic modulus and dual modulus functions1 given by

k(z) = 4 z
1
2
(−z2; z2)4∞
(−z; z2)4∞

, k′(z) =
(z; z2)4∞

(−z; z2)4∞
. (4.9)

The ξ →∞ limit corresponds to x → 1 (or equivalently ∆ → −1) at which point k′(x) → 0 and
we have

ln(ξ) =
k′→0

− ln(k′) + O(k′2).

1The basic properties of elliptic functions and their modular transformations are described in many places

including Chapter 15 of [13] and [11].
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If we parametrise x = e−ε, and define x̃ = e−π2/ε, then we have k′(x) = k(x̃) [13]. The behaviour
of ln(k(x̃)) as x̃ → 0 is then specified by (4.9), which leads to

ln(ξ) =
ε→0

π2

2ε
− ln(4) + O(ε).

The ε → 0 behaviour of − ln(f) may be computed from (3.8) using the method described in
Appendix A which again relies primarily on the known x → x̃ modular transformation properties
of elliptic functions. We find

− ln(f) =
ε→0

π2

16ε
− 1

4
ln(2) + O(ε), (4.10)

and hence arrive at the result

− ln(f) =
ε→0

1
8

ln(ξ) + O(ε). (4.11)

The antiferromagnetic XXZ model has a UV fixed point described by a c = 1 conformal field
theory (namely the ŝl2 WZW model at level 1 [14]). Hence, by analogy with the conformal field
theory prediction (1.1), we are led to the following conjecture for the universal scaling behaviour
of a 1D bipartite system with 0 � ξ � L which is a perturbation of a UV conformal field theory
with central charge c and which has a trivial c = 0 IR fixed point:

− ln(f) ∼
ξ→∞

c

8
ln(ξ). (4.12)

5 Comments

In this letter, we have used the language of 1D quantum systems. There is of course an inter-
pretation of − ln(f) in terms of the free energy of a 2D classical statistical-mechanical system -
the 6-vertex model. This ‘fractured’ 6-vertex model with a semi-infinite slit from the centre was
discussed in detail in [1]. In particular, the boundary conditions along the slit, the construction
of the partition function and correlation function in terms of corner and semi-infinite transfer
matrices, and an exact expression for all correlation functions 〈vac|O|vac〉′ can be found in [1].

Two obvious questions arise in association with our conjecture (4.12): does it indeed hold
for other examples of exactly-solvable 1D lattice models, and can it be proved using field theory
arguments along the lines of those deployed in the analysis of the scaling behaviour of the entan-
glement entropy with 0 � ξ � L [5, 15, 16]? Both questions will be addressed by the author in
future publications.
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A Asymptotic behaviour of ln(f)

In this appendix we derive the x → 1 behaviour of the log of the fidelity f given by Equation
(3.8). Our strategy is to rewrite f in terms of a function with simple behaviour under the modular
transformation x = e−ε → x̃ = e−π2/ε times a function that is manifestly convergent when x → 1.
To this end, we use the q-calculus identity

(−x4;x4, x4)∞ =
(−1;x4, x4)∞
2(−x4;x4)∞

to obtain

f =
(x2;x4)∞

2(−x4;x4)∞
g, (A.13)

where g =
(−1;x4, x4)∞(−x4;x4, x4)∞

(−x2;x4, x4)2∞
. (A.14)

The non-g terms in (A.13) may be rewritten using the identity

x−
b
48 (x

b
2 ;xb)∞ =

√
2 x̃

1
6b (−x̃

4
b ; x̃

4
b )∞, (A.15)

which may be derived either by identifying (x
b
2 ;xb)2∞ as a short theta function and using the

modular transformation properties of the latter2, or more directly by Poisson resummation of the
log of both sides [13]. Making use of (A.15) allows us to rewrite

f = x
1
4 x̃

1
16

(−x̃; x̃)∞
(x̃

1
2 ; x̃)∞

g. (A.16)

The log of the function g given by (A.14) may be expressed by using

ln
(
(−z;x4, x4)∞

)
=

∞∑
N=1

(−1)N+1

N

zN

(1− x4N )2
,

from which we obtain

ln(g) =
∞∑

N=1

(−1)N+1

N

1
(1 + x2N )2

.

This is convergent as x = e−ε → 1 with

ln(g) =
ε→0

1
4

ln(2) + O(ε).

The x = e−ε → 1, x̃ = e−π2/ε → 0 behaviour of the non-g terms in (A.16) is also well defined and
is controlled by the x̃1/16 term. We thus obtain

ln(f) =
ε→0

− π2

16ε
+

1
4

ln(2) + O(ε). (A.17)

2A clear description of the definition and properties of short theta functions is given in [17].
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