
ar
X

iv
:1

50
2.

04
94

4v
1 

 [
m

at
h-

ph
] 

 1
7 

Fe
b 

20
15

Discrete Holomorphicity in the Chiral Potts Model

Yacine Ikhlef∗1,2 and Robert Weston†3

1Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris,
France

2CNRS, UMR 7589, LPTHE, F-75005, Paris, France

3Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK, and
Maxwell Institute for Mathematical Sciences, Edinburgh, U.K.

February 18, 2015

Abstract

We construct lattice parafermions for the Z(N) chiral Potts model in terms of quasi-local
currents of the underlying quantum group. We show that the conservation of the quantum
group currents leads to twisted discrete-holomorphicity (DH) conditions for the parafermions.
At the critical Fateev-Zamolodchikov point the parafermions are the usual ones, and the DH
conditions coincide with those found previously by Rajabpour and Cardy. Away from the
critical point, we show that our twisted DH conditions can be understood as deformed lattice
current conservation conditions for an underlying perturbed conformal field theory in both
the general N ≥ 3 and N = 2 Ising cases.

1 Introduction

The chiral Potts model is a two-dimensional statistical model defined by spin variables subject
to a ZN -symmetric, local interaction, and was introduced in the 1980s as a lattice model for
commensurate-incommensurate phase transitions [1]. A few years later, it became of great
interest for mathematical physics as a solution of the star-triangle equations [2] in which the
Boltzmann weights do not satisfy the difference property, and also as a superintegrable [3]
generalisation of the Ising model. An important step in the understanding of the model was
its identification [4] as a descendent of the well-studied six-vertex model – more precisely, the
integrable chiral Potts model is based on ZN cyclic representations [5, 6] of the affine quantum
algebra Uq(ŝl2) (see also [7]). This class of representations was then studied in detail and
generalised to other quantum algebras in [8–10].

The chiral Potts model displays very peculiar physical features. In the superintegrable
regime, it describes a commensurate-incommensurate phase transition in an intrinsically aniso-
tropic lattice model [11–14]. This behaviour is believed to appear also in the ordinary integrable
regime, where the chiral Potts model provides an integrable chiral deformation [15] of the Fateev-
Zamolodchikov (FZ) clock model [16]. The latter is an integrable ZN -symmetric spin model
whose scaling limit is described by the ZN -parafermionic current algebra [17], an extension of
the Virasoro algebra generating the spectrum of a Conformal Field Theory (CFT). By a simple
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inspection of the Boltzmann weights, Rajabpour and Cardy have observed [18] that one of
the parafermionic currents {ψk} of the ZN -parafermionic CFT has a lattice analog in the FZ
clock model, which is a discretely holomorphic operator, i.e., it satisfies a discrete version of the
Cauchy-Riemann equations. Discretely holomorphic parafermions have been found empirically
in a number of critical lattice models [18–21], and are a crucial ingredient to the rigorous study of
bulk [22–26] and boundary [27] critical properties. In a recent paper [28], we have shown that the
origin of discretely holomorphic parafermions for loop models can be traced to the underlying
quantum algebraic structure, following the construction of quasi-local conserved currents by
Bernard and Felder [29].

The object of the present paper is to use the integrability and Uq(ŝl2) symmetry of the
chiral Potts model to (i) explain the algebraic origin of the discretely holomorphic parafermions
observed [18] for the FZ clock model, and (ii) extend the discrete Cauchy-Riemann equations to
the chiral regime around the FZ point, and analyse their physical meaning in the scaling limit.

The paper is organised as follows. Sections 2, 3 and 4 are devoted to reviewing some back-
ground material, respectively on the basics of the chiral Potts model, the Bernard-Felder con-
struction, and the Uq(ŝl2) symmetry of the chiral Potts model. In Section 5 we construct the

quasi-local operators associated to generators of Uq(ŝl2) (which reduce to the lattice parafermions
of [18] at the FZ point), and we give an explicit form of the linear relations generalising the
discrete Cauchy-Riemann equations for these operators. In Section 6 we interpret these linear
relations in terms of perturbed CFT [30] and discuss both the general N ≥ 3 model and N = 2
Ising case. Finally, we summarise our findings in Section 7.

2 The Chiral Potts Model

2.1 Definitions

The chiral Potts (CP) model [1–3] is a statistical model where the variables are spins aj ∈ ZN

living on the sites of a square lattice L. The Boltzmann weight of a spin configuration {aj} is
invariant under a rotation of all spins (aj → aj + 1 mod N), and is specified by the discrete
functions W〈ij〉 associated to the edges of L:

W[{aj}] =
∏

〈ij〉

W〈ij〉(ai − aj) , (2.1)

where 〈ij〉 denotes a pair of neighbouring sites, connected by an oriented edge i → j. Let us
describe the specific choice of weight functions W〈ij〉 which renders the model integrable. In
addition to the number of spin states N , we fix an external real parameter k′ ≥ 0. Each rapidity
line carries a spectral parameter ξ given as a triplet of complex numbers ξ = (x, y, µ) obeying
the algebraic equations

xN + yN = k(1 + xNyN ) and µN (1− kxN ) = k′ , (2.2)

where we have set k =
√
1− k′2. A SW→NE (resp. NW→SE) edge crossed by rapidity lines

(r, s) is assigned the weight function Wrs (resp. W rs), defined
1 for a ∈ {0, 1, 2, . . . } as

Wrs(a) =

(
µr
µs

)a

×
a∏

ℓ=1

ys − xrω
ℓ

yr − xsωℓ
, W rs(a) = (µrµs)

a ×
a∏

ℓ=1

xrω − xsω
ℓ

ys − yrωℓ
, (2.3)

where ω = exp(2iπ/N), and we have used ξr = (xr, yr, µr) and ξs = (xs, ys, µs) to denote the
spectral parameters attached to the rapidity lines r and s, respectively.

1 The conditions (2.2) ensure that Wrs and W rs are well-defined, i.e., Wrs(a+N) = Wrs(a) and W rs(a+N) =
W rs(a).
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The CP weights are represented by

Wrs(a− b) =

r s

a b , W rs(a− b) =

r s
a

b

. (2.4)

We sometimes use an alternative graphical notation for CP weights that emphasises the fact
that we can associate them with rhomboids on the covering lattice (i.e. the union of the CP
lattice points, denoted by •, and the dual lattice points denoted by by ◦). This notation is

Wrs(a− b) = a b , W rs(a− b) =

a

b

.

A homogeneous chiral Potts model partition function Zrs is given as the sum over the height
variables (i.e., the indices a ∈ {0, 1, · · · , N − 1} at the positions marked by •) associated with
a lattice with spectral parameters ξr, ξs distributed as shown in Figure 1, in which all diagonal
lines have downward arrows, which we have omitted for clarity.

s

s

sr

r

r

r s

Figure 1: A homogenous Chiral Potts Lattice

The above weight functions satisfy [2] the star-triangle equations:

N−1∑

d=0

W rs(a− d)Wrt(d− b)W st(d− c) = ρrst ×Wrs(c− b)W rt(a− c)Wst(a− b) , (2.5)

for any fixed spins (a, b, c), and the overall factor ρrst is a function of (ξr, ξs, ξt) .

2.2 Crossing symmetry

It is simple to see that the CP weights obey the crossing symmetry relations

Wr s(a) = W s∗ r(a), W r s(a) =Ws∗ r(−a) , (2.6)

where (x, y, µ)∗ = (ω−1y, x, 1/µ),

which can be indicated graphically by

r s

a b =

r

s∗

a b ,

r s
a

b

=

r

s∗
b

a

.
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2.3 Alternative parameterisation

The spectral parameter ξ = (x, y, µ) subject to the conditions (2.2) can be conveniently repa-
rameterised as

x = ei(u+φ)/N , y = ei(u−φ+π)/N , µ = ei(φ̄−φ)/N , (2.7)

where the variables (φ, φ̄, u) are now related by

sinφ = −k sinu , sin φ̄ = − ik
k′

cos u , cosφ = k′ cos φ̄ . (2.8)

Note that (2.8) amounts to two independent relations, so that one complex parameter among
(φ, φ̄, u) remains free.

When approaching the self-dual line {φ = φ̄, k′ = 1}, it is convenient to scale u as

u = −i log k + π

2
+ u′ ,

where u′ is finite. In the limit k′ → 1, one then gets, on the self-dual line:

sinφ = sin φ̄ = −e
−iu′

2
.

2.4 Transfer matrix and spin-chain Hamiltonian

In this paragraph, we consider a square lattice L tilted by 45o, so that the rapidity lines go along
the horizontal and vertical directions, unlike in Figure 1. We denote by Trs the transfer matrix
comprising two horizontal rapidity lines with spectral parameter ξr, and 2L vertical rapidity
lines with spectral parameter ξs, and we impose periodic boundary conditions in the horizontal
direction. Then, as a consequence of the star-triangle equations (2.5), the transfer matrices with
different values of the horizontal parameter commute:

[Tr1,s,Tr2,s] = 0 . (2.9)

Moreover, when ξr = ξs, the transfer matrix Trs reduces to a cyclic translation e−iP . Hence, one
can define the associated Hamiltonian in the usual way in the limit ξr → ξs, by writing:

Trs = e−iP ×
{
I− (ur − us)Hs +O[(ur − us)

2]
}
. (2.10)

This results in the spin chain Hamiltonian acting on the tensor space VL = C
N ⊗ · · · ⊗ C

N (L
times):

Hs =
1

N cos φ̄s

L∑

j=1

N−1∑

n=1

[
ᾱn(Zj)

n + αn(XjX
†
j+1)

n
]
,

αn =
exp [i(2n −N)φs/N ]

sin(πn/N)
, ᾱn = k′ × exp

[
i(2n −N)φ̄s/N

]

sin(πn/N)
.

(2.11)

with periodic boundary conditions XL+1 ≡ X1. The operators Xj and Zj are defined through
the elementary N ×N matrices (X,Z) with coefficients

Xab = ωa δab , Zab = δ
(mod N)
a,b−1 , (2.12)

which are characterised (up to a change of bases) by the relations XN = ZN = I and ZX =
ωXZ. The operator Xj (resp. Zj) then acts as the matrix X (resp. Z) on the j-th factor of VL,
and as the identity matrix on the other factors. Note that (2.11) is Hermitian for any choice of
real parameters (φs, φ̄s, k

′).
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2.5 ZN charges and Kramers-Wannier duality

Let R be the global rotation of spins: R =
∏L

j=1 Zj . SinceR andHs commute, we can diagonalise

them simultaneously. We denote the eigenvalues of R as ω−m withm ∈ ZN , and we refer tom as
the ZN charge. We may also consider the Hamiltonian (2.11) with “twisted” periodic boundary
conditions XL+1 ≡ ωmX1, with m ∈ ZN , and we call m the dual ZN charge.

In the present context, Kramers-Wannier (KW) duality amounts to the following non-local
change of bases. We introduce for j ∈ {1, . . . , L}, the dual operators

Zj+1/2 = XjX
†
j+1 , Xj+1/2 =

j∏

ℓ=1

Z†
ℓ , (2.13)

and we set by convention X1/2 = I. We see readily that

Hs =
L∑

j=1

N−1∑

n=1

[
αn(Zj+1/2)

n + ᾱn(Xj−1/2X
†
j+1/2)

n
]
, (2.14)

with X
N
j+1/2 = Z

N
j+1/2 = I, and Zj+1/2Xℓ+1/2 = ωδjℓXℓ+1/2Zj+1/2. Hence we recover the

original form (2.11), except that the roles of αn and ᾱn have been exchanged. In terms of
external parameters, KW duality acts as

(φ, φ̄, k′) −→ (φ̄, φ, 1/k′) . (2.15)

Note that this transformation preserves the integrability condition k′ cos φ̄ = cosφ. Let us
examine its effects on the ZN charges (m,m). From the identities

ωm
I =

L∏

j=1

Z†
j = X

†
1/2XL+1/2 , ωm

I = X†
1XL+1 =

L∏

j=1

Z
†
j+1/2 , (2.16)

it is clear that KW duality exchanges the two charges:

(m,m) −→ (m,m) . (2.17)

2.6 The Fateev-Zamolodchikov case

When φ = φ̄ = 0 and k′ = 1, the chiral Potts model reduces to the Fateev-Zamolodchikov
(FZ) clock model [16]. In the scaling limit, the model is isotropic, and is described by the
ZN -parafermionic CFT [17].

The weights of the FZ clock model enjoy the difference property, i.e., Wrs(a) and W rs(a)
are functions of us − ur and a. Under these conditions, the star-triangle equations (2.5) are
consistent with the following embedding of the model in the complex plane:

Wrs = θ , W rs = θ , (2.18)

where the angle θ is defined as
θ = us − ur , (2.19)

and the rhombi have a unit side length. Note that this choice also respects crossing symmetry,
in that the embedding angle of the left hand side of the first crossing relation (2.6) is us − ur,
and the embedding angle of the right-hand-side is π − us + ur (and similarly for the second
crossing relation).
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2.7 The Ising case

The chiral Potts model with N = 2 corresponds to an Ising model with a partition function of
the form

Z =
∑

σj=±1

∏

〈ij〉

exp(K〈ij〉σiσj) , (2.20)

where K〈ij〉 = K1 (resp. K〈ij〉 = K2) if 〈ij〉 is a horizontal (resp. vertical) edge. In this case,
the algebraic relations (2.2) can be parametrised by Jacobi elliptic functions of modulus k [31]:

x = −
√
k snβ , y = −

√
k

cnβ

dnβ
, µ =

√
k′

dnβ
. (2.21)

For any value of k′, the couplings are functions of βs − βr:

e−2K1 = k′scd(K − βs + βr) , e−2K2 = k′scd(βs − βr) , (2.22)

where scd(u) = snu
2/( cn

u
2 dnu

2 ), and K is the complete elliptic integral of the first kind of
modulus k. Using elliptic identities, one gets the relation

sinh 2K1 sinh 2K2 =
1

k′
. (2.23)

Expressions (2.22) show that the Ising model enjoys the difference property for any value of
k. Requiring that the star-triangle relation can be represented as a geometric relation in the
complex plane leads us to define the embedding angle (see Section 2.6) as

θk =
π

K
(βs − βr) . (2.24)

From (2.7) and (2.21), we have the relations

eiu = − ik snβ cnβ

dnβ
, eiφ =

i snβ dnβ

cnβ
, eiφ̄ =

ik′ snβ

cnβ dnβ
. (2.25)

In the critical limit k → 0, a way to recover the expression (2.19) for the embedding angle is to
set

β =
K

π

(
i

2
log p+ 2β′

)
, (2.26)

where β′ is finite [p is the nome of elliptic functions in (2.21), with k ∼ 4p1/2]. In this regime,
we have the expansions of elliptic functions (see [31]):

H(β) = −ieiβ′

+ ie−iβ′

p1/2 +O(p3/2) ,

H1(β) = eiβ
′

+ e−iβ′

p1/2 +O(p3/2) ,

Θ(β) = 1− e2iβ
′

p1/2 +O(p3/2) ,

Θ1(β) = 1 + e2iβ
′

p1/2 +O(p3/2) .

(2.27)

Using these, we find that eiu = −e2iβ′
+ O(p3/2), and hence (2.24) reduces to (2.19) up to

corrections of order k3.

2.8 Critical behaviour

Returning to the general N ≥ 3 case, we shall describe the critical behaviour of the chiral Potts
Hamiltonian (2.11) in the space of parameters (φ, φ̄, k′).
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On each of the self-dual (SD) lines

SD1 = {φ = φ̄, k′ = 1} and SD2 = {φ = −φ̄, k′ = 1} , (2.28)

the model is invariant (modulo a global spin reversal) under KW duality, and thus it is massless.
On each of the SD lines, for φ 6= 0, the model is in an “incommensurate state”, (i.e. the ground
state is in a sector with non-zero momentum), and remains critical [15], with the same critical
exponents as in the isotropic ZN -parafermionic CFT, but its correlations become anisotropic
in Minkowski space. These SD lines correspond respectively to a perturbation of the ZN -
parafermionic CFT by an operator of conformal spin +1 and −1.

As shown in [11–14], in the plane φ = φ̄, the model remains massless in a limited region
around SD1, and then it undergoes a commensurate-incommensurate transition to a massive
phase. It seems plausible that these results also hold outside this plane, i.e., there is a massless
incommensurate phase around the plane {k′ = 1}, and the model becomes massive for |k′ − 1|
large enough. At the FZ point, the massless phase is “pinched”, and any small perturbation
outside the plane k′ = 1 develops a finite mass.

3 Non-local Operators and Quantum Groups

In this section, we review the picture of non-local operators arising from quantum groups that
was developed by Bernard and Felder in [29]. In [28], these currents were used in a direct way
to construct discretely holomorphic operators in dense and dilute loop models. In the case of
chiral Potts, we will show in Section 5 that the currents constructed using the method of [29]
split naturally into two half-currents which obey a discrete holomorphicity condition.

The starting point of Bernard and Felder [29] is to consider a quasi-triangular Hopf algebra
A (also known as a quantum group) defined in terms of a set of generators {Ja,Θa

b, Θ̂a
b},

a, b = 1, 2, . . . , n that have the relations

Θa
bΘ̂c

b = δa,c and Θ̂b
aΘb

c = δa,c (3.1)

and the coproduct structure

∆(Ja) = Ja ⊗ 1 + Θa
b ⊗ Jb , ∆(Θa

b) = Θa
c ⊗Θc

b , ∆(Θ̂a
b) = Θ̂a

c ⊗ Θ̂c
b ,

where ∆ : A → A⊗A denotes the coproduct (for a gentle introduction to quantum groups see
for example [32]). Note that we use the convention that repeated indices are summed over. The
antipode and counit that complete the Hopf algebra structure can be found in [29].

It is helpful to introduce a graphical notation for representations of A. We indicate a
representation of A by a line and the action of the above generators of A on this representation
by

Ja =
a

, Θa
b =

a b
, Θ̂a

b =
ba

.

Adopting the convention that composition A◦B means that B is above A, the inversion relations
(3.1) are then represented as

= and = . (3.2)

7



The action of the generators on tensor products of representations is indicated by

∆(Ja) =

Ja ⊗ 1

a
+

Θa
b ⊗ Jb

a
,

∆(Θa
b) =

Θa
c ⊗Θc

b

a b
, ∆(Θ̂a

b) =

Θ̂a
c ⊗ Θ̂c

b

ba
.

Denoting the above coproduct by ∆(2) : A → A⊗ A , it is then possible to define a coproduct
∆(L) : A → A ⊗ A⊗ · · · ⊗ A (with L terms in the tensor product on the right) recursively by
∆(m+1) = (∆⊗ I⊗ I⊗ · · · · · · I)∆(m). Then it follows that the representation of ∆(L)(Ja) on an
L-fold tensor product is indicated graphically by

∆(L)(Ja) =

L∑

i=1
a

i

The above graphics becomes more useful when combined with the standard graphics for the
R-matrix. The R-matrix of a quantum group, Ř : V1 ⊗ V2 → V2 ⊗ V1, is a map between tensor
products of representations V1 and V2 that commutes with the action of the quantum group A.
That is, we have Ř∆(x) = ∆(x) Ř. We can represent the R-matrix graphically by

1 2

,

where the arrows serve to orient the picture and we view the R-matrix above as acting from top to
bottom. We shall generally suppress these arrows. The commutation relations Ř∆(x) = ∆(x) Ř
then have the following simple graphical realisations when x = Ja,Θa

b, and Θ̂a
b:

Ř(Ja ⊗ 1) +

a
+

Ř(Θa
b ⊗ Jb) =

a
=

(Ja ⊗ 1)Ř +

a
+

(Θa
b ⊗ Jb)Ř,

a
(3.3)

and

a b

Ř(Θa
c ⊗Θc

b) =

=
a b

(Θa
c ⊗Θc

b)Ř

,
ba

Ř(Θ̂a
c ⊗ Θ̂c

b) =

=
ba

(Θ̂a
c ⊗ Θ̂c

b)Ř.

(3.4)

We now wish to define a non-local operator ja(x, y) associated with the insertion of the
operator Ja at a point (x, y) in a 2D lattice model and an attached tail made up of tensor

8



products of Θa
b and Θ̂a

b along some path leading to a marked point on the boundary of the
lattice. In order to do this, we again follow the approach of Bernard and Felder. Suppose we have
a 2D lattice Λ consisting of 4-vertices at points ~p ∈ R

2. Let Λ′ denote the lattice consisting of
the points ~r which are the midpoints of the edges of Λ. Then if V (~r) denotes a A representation
associated with the midpoint ~r, the R-matrix associated with the vertex ~p ∈ Λ will be a map

Ř(~p) : V (~r1)⊗ V (~r4) → V (~r2)⊗ V (~r3)

~r1

~r3

~r4

~r2

~p , (3.5)

where the ~ri ∈ Λ′ are the indicated four midpoints surrounding the point ~p (some of the V~ri will
need to be isomorphic for the R-matrix to exist, which we assume to be the case). We can then
define a vector space

VΛ =
⊗

~r∈Λ′

V (~r) ,

and a linear operator B : VΛ → VΛ, by

B =
⊗

~p∈Λ

Ř(~p) .

The partition function of the vertex model with Boltzmann weights specified by the R-matrices
is given by

Z = TrVΛ
(B) , (3.6)

and the expectation value of any linear operator O : VΛ → VΛ is given by

〈O〉 = 1

ZTrVΛ
(OB) . (3.7)

The above expressions (3.6) and (3.7) may at first seem unusual – the partition function and
correlation functions are more commonly given as the trace over a 1D tensor product space that
would correspond to the Hilbert space in the quantum statistical mechanics interpretation of
the partition function. However, it is a useful, and simple, exercise to check that the partition
function does always reduce to the standard 1D trace. In contrast, the expectation value 〈O〉
may be written as a 1D trace only in the special case when the operator O acts trivially at all
~r in VΛ except those along some 1D line in the lattice.

In this paper, we are interested in operators O that act non-trivially on a set of midpoints ~r
that will wind along a path γ from a marked interior point to a marked point on the boundary of
the lattice. In this case the more general expression (3.7) will be required. To be more precise,
we consider the operator jγa (~r) : VΛ → VΛ constructed by the insertion of the representation
of Ja on V (~r) at the midpoint ~r, and the insertion of a “tail operator” constructed from the
insertion of Θa

b or Θ̂a
b along a line of midpoints specified by the path γ that terminates at some

fixed, but arbitrary, point on the boundary of the lattice. An example is shown in Figure 3.
The commutation relations with the R-matrix expressed by (3.3) and (3.4) have two imme-

diate consequences for expectation values 〈jγa (~r)〉. The second relation (3.4) implies that the
expectation value is independent of the path γ and will depend only upon the insertion point
~r and the fixed boundary point. Thus we will from now on drop the γ path superscript on the
current. The other commutation relation (3.3) implies that when inserted into an expectation
value we have

ja(~r1)− ja(~r2)− ja(~r3) + ja(~r4) = 0 , (3.8)

where ~ri are the four edge midpoints points surrounding any vertex – as indicated in (3.5). After
embedding the lattice into the complex plane it is this relation (3.8) that was interpreted as a
discrete holomorphicity relation in several examples in the paper [28].
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a

γ

~r

Figure 2: The insertion points and path of a non-local operator jγa (~r).

4 Chiral Potts Weights and Representation Theory

In this section we review the construction of chiral Potts weights in terms of the representation
theory of Uq(ŝl2) [8–10]. The notation we use is that of [9].

4.1 The quantum affine algebra Ũq(ŝl2)

We begin by defining Ũq(ŝl2), which is an algebra over C generated by ei, fi, t
±1
i , zi (i = 0, 1),

where ei, fi, t
±1
i satisfy the standard relation of the quantum affine algebra Uq(ŝl2), and z0 and

z1 are two new central elements. The comultiplication of Ũq(ŝl2) is chosen as

∆(ei) = ei ⊗ I+ ziti ⊗ ei, ∆(fi) = fi ⊗ t−1
i + z−1

i ⊗ fi,

∆(ti) = ti ⊗ ti, ∆(zi) = zi ⊗ zi.

The representations relevant to the chiral Potts occur when q = − exp(iπ/N) where N ∈
{2, 3, 4, · · · }, and we shall fix q to take this value from now on. We also define ω = q2. These
representations are N -dimensional cyclic representations denoted Vrr′ and parametrised by a
pair of points (r, r′) ∈ Ck × Ck. Here Ck is the algebraic curve (2.2) given by (x, y, z) ∈ C

3 such
that

xN + yN = k(1 + xNyN ) , µN =
k′

1− kxN
=

1− kyN

k′
,

where k2 + k′2 = 1.
If r = (x, y, z) ∈ Ck and r′ = (x′, y′, z′) ∈ Ck then the representation Vrr′ is given by

πrr′(e1) =
q

(q2 − 1)2
(xµµ′Z − y′)X , πrr′(f1) =

c0
xx′µµ′

X−1(yZ−1 − x′µµ′) ,

πrr′(t1) = c0µµ
′Z, πrr′(z1) = c−1

0 ,

πrr′(e0) =
q

(q2 − 1)2
X−1(y(µµ′)−1Z−1 − x′) , πrr′(f0) =

(
c0µµ

′

x′
Z − q2

c0y

)
X ,

πrr′(t0) =
1

c0µµ′
Z−1, πrr′(z0) = c0 .

(4.1)

Here, the objects X and Z are N ×N matrices, such that ZX = ωXZ and XN = ZN = I. In
this paper, we shall fix X and Z as

X =




1 0 0 · · · 0 0
0 ω 0 · · · 0 0
0 0 ω2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 ωN−1



, Z =




0 1 0 · · · 0 0
0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0



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The constant2 c0 also appearing in the above satisfies c20 = q2xx′/(yy′).

4.2 The Ř-matrix

Consider now the R-matrix Ř(rr′, ss′) : Vrr′ ⊗ Vss′ → Vss′ ⊗ Vrr′ that obeys Ř(rr′, ss′)∆(x) =
∆(x)Ř(rr′, ss′) for x ∈ Ũq(ŝl2). The approach of [9] starts with the Ansatz that this R-matrix
is of the factorised form

Ř(rr′, ss′) = Sr′s(Tr′s′ ⊗ Trs)Srs′ , (4.2)

where

Srs′ : Vrr′ ⊗ Vss′ → Vs′r′ ⊗ Vsr , Trs : Vsr → Vrs .

Then the relation

Ř(rr′, ss′)[πrr′ ⊗ πss′(∆(x))] = [πss′ ⊗ πrr′(∆(x))]Ř(rr′, ss′)

is ensured if S and T satisfy the stronger ‘sufficiency conditions’:

Srs′ [πrr′ ⊗ πss′(∆(x))] = [πs′r′ ⊗ πsr(∆(x))]Srs′ , (4.3)

(Tr′s′ ⊗ 1)[πs′r′ ⊗ πsr(∆(x))] = [πr′s′ ⊗ πsr(∆(x))](Tr′s′ ⊗ 1) , (4.4)

(1⊗ Trs)[πr′s′ ⊗ πsr(∆(x))] = [πr′s′ ⊗ πrs(∆(x))](1 ⊗ Trs) , (4.5)

Sr′s[πr′s′ ⊗ πrs(∆(x))] = [πss′ ⊗ πrr′(∆(x))]Sr′s . (4.6)

These sufficiency conditions were in turn found to be satisfied by the choice

Srs(vε1 ⊗ vε2) =Wrs(ε1 − ε2)(vε2 ⊗ vε1) , Trsvε =

N−1∑

a=0

W rs(a)vε−a ,

with the coefficients given by

Wrs(n)

Wrs(n− 1)
=
µr
µs

ys − xrω
n

yr − xsωn
,

W rs(n)

W rs(n− 1)
= µrµs

xrω − xsω
n

ys − yrωn
,

where we have now switched to the notation a = (xa, ya, µa) for a point a ∈ Ck. These are the
precisely the chiral Potts model Boltzmann weights (2.3) which can be found in [2]. Defining
components R(rr′, ss′)abcd of the R-matrix by Ř(rr′, ss′)(va ⊗ vb) =

∑
c,d

R(rr′, ss′)abcd(vd ⊗ vc), then

leads via (4.2) to the factorised expression

R(rr′, ss′)abcd =Wr′s(d− c)W r′s′(a− d)W rs(b− c)Wrs′(a− b) . (4.7)

It is useful to introduce a version of the standard 4-vertex graphical notation for R-matrices
that is modified to deal with the representation Vrr′ . We indicate the identity acting on the

representation Vrr′ by a directed double line

r′ r

, and the R-matrix Ř(rr′, ss′) by

Ř(rr′, ss′) =

s

s′r

r′

,

2The other constants appearing in Section 4 of [9] are here fixed as c1 = 1/c0 and κi = 1/(q2 − 1)
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The components R(rr′, ss′)abcd are then indicated by

R(rr′, ss′)abcd =

s

s′r

r′

d c

a b

,

with the graphical conventions of Section 2.

5 Construction of non-local operators in the Chiral Potts model

In this section, we consider the non-local operators ja(~r) discussed in Section 3 associated with
the cyclic representations of Ũq(ŝl2) introduced in Section 4.

5.1 The current jē0

Let us first consider the current associated with the generator ē0 := t0f0. We have the co-
products

∆(ē0) = ē0 ⊗ I+ t0z
−1
0 ⊗ ē0 , and ∆(t0z

−1
0 ) = t0z

−1
0 ⊗ t0z

−1
0 , (5.1)

and thus ē0 and t0z
−1
0 are respectively generators of type Ja and Θ b

a in the notation of Section 3.
It follows from (4.1) that the action of these generators on the representation Vrr′ is given by

πrr′(ē0) = X
[
x−1
r′ − y−1

r πrr′(t0z
−1
0 )

]
, πrr′(t0z

−1
0 ) = frfr′Z

−1 , (5.2)

where fr :=
yr

−qxrµr
.

We now wish to follow the approach of Section 3 and consider the non-local operator ē0(x, t)
associated with the insertion of the appropriate representation of the non-local operator

· · · ⊗ t0z
−1
0 ⊗ t0z

−1
0 ⊗ ē0 . (5.3)

The position (x, t) will correspond to a CP site (x, t) (indicated by a • in Figure 1) and we define
ē0(x, t) such that the ē0 in (5.3) acts on the representation associated with a pair of diagonal
lines either side of the point (x, t). To make this definition more precise it is useful to modify
the graphical notation of Section 3. To this end we introduce the following representation of the
diagonal action of X and non-diagonal action of πrr′(t0z

−1
0 ) on the representation Vrr:

X ∼
r′ r

, π(rr′)(t0z
−1
0 ) ∼

r′ r

.

It follows from (5.1) and (5.2) that the action of ē0(x, t) splits into two ‘half-currents’ which can
be represented graphically as

ē0(x, t) =
r′ r

· · ·x−1
r′

r′ r

· · ·−y−1
r (5.4)

Here (x, t) is the CP site marked by a � and the left tail will wind through the rest of the CP
lattice. Up to considerations of boundary conditions, which we will not need in this paper, the
position of this tail is arbitrary due to the commutation of t0z

−1
0 ⊗ t0z

−1
0 with the R-matrix.
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Let us now consider the sufficiency condition (4.3) in the case when x = ē0, r
′ = r and s′ = s.

Equation (4.3) becomes

Srs[πrr ⊗ πss(∆(ē0))] = [πsr ⊗ πsr(∆(ē0))]Srs ,

which can be represented graphically as

x−1
r

s

sr

r
− y−1

r + x−1
s − y−1

s

= x−1
r − y−1

s + x−1
r − y−1

s

Several points are worth noting about this commutation relationship:

1. The tail operator is naturally associated with the edges of the dual CP lattice with vertices
indicated by ◦.

2. We have appended a left horizontal tail to indicate that this relation may be embedded in
the larger CP lattice with such a left tail.

3. There is cancellation of four of the terms.

After cancellation, we arrive at the four-term relation

−y−1
r + x−1

s

= −q2y−1
s + x−1

r

(5.5)

Note that we have used the relation XZ−1 = q2Z−1X to rewrite the first term on the right-
hand-side of this equation.

In order to rewrite the relationship (5.5) in terms of CP weights, we need to understand the
effect of the tail operator purely in terms of the modification of CP weights. Recall that the
action of the tail operator t0z

−1
0 on the representation Vrr′ is given by

πrr′(t0z
−1
0 ) = frfr′Z

−1 , (5.6)

where Z−1 is the cyclic shift matrix that acts on canonical basis vectors va (a = 0, 1, · · · , N −1)
as Z−1va = va+1|mod N

. Hence, we can identify

a b = fr
fs
Wrs(a− b+ 1), a b = fs

fr
Wrs(a− b− 1),

a

b

= frfsW rs(a− b+ 1),

a

b

= 1
frfs

W rs(a− b− 1).

(5.7)
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In this way we identify the tail operator as a disorder operator for the CP model.
The diagrammatic identity of (5.5) can be written as a relation around any horizontal CP

plaquette inserted into a larger partition function as

− y−1
r + q2y−1

s

− x−1
r + x−1

s = 0 .

(5.8)

Consider the following non-local operator jē0(~r) defined in terms of the above half-currents by

jē0

(
~rσ + ~rµ

2

)
= T [µē0(~rµ)σ(~rσ)] ,

where

- σ(~rσ) corresponds to the insertion of X = � at embedded CP site ~rσ

- µē0(~rµ) is the above tail/disorder operator ending at embedded dual CP site ~rµ

- T is ‘tail ordering’ defined as:

T [µē0(~rµ)σ1(~rσ)] =

quasi-local op. µē0(~rµ)σ(~rσ) with tail

{
locally above ~rσ if Im(zµ) ≤ Im(zσ)

locally below ~rσ if Im(zµ) > Im(zσ)

With this definition, the graphical relation (5.8) can be written simply as

− y−1
r jē0(~r1) + q2y−1

s jē0(~r2)− x−1
r jē0(~r3) + x−1

s jē0(~r4) = 0 , (5.9)

where we have denoted the mid-edges of the plaquette as follows:

∗

∗ ∗

∗~r1

~r2 ~r3

~r4
. (5.10)

5.2 The operator O(s)
ē0 and twisted Cauchy-Riemann equation

Let us parameterise (x, y, µ) in terms of (u, φ, φ̄) as in (2.7), and introduce

α1 =
us − ur

2
− π , α2 = −us − ur

2
+ π , α3 =

us − ur
2

, α4 = −us − ur
2

. (5.11)

The linear relation (5.9) reads:

ei(φr+α1)/N jē0(~r1)− ei(φs+α2)/N jē0(~r2) + ei(−φr+α3)/N jē0(~r3)− ei(−φs+α4)/N jē0(~r4) = 0 . (5.12)

We choose θ = us − ur as the embedding angle in (2.18), so that the quantity αj coincides with
the principal argument of (zσ − zµ) on the corresponding edge of the plaquette. Then the linear
relation takes the form of a “twisted Cauchy-Riemann” relation:

e
iφr
N δz1 O(s)

ē0 (~r1) + e
iφs
N δz2 O(s)

ē0 (~r2) + e−
iφr
N δz3 O(s)

ē0 (~r3) + e−
iφs
N δz4 O(s)

ē0 (~r4) = 0 , (5.13)

where we have introduced the lattice current

O(s)
ē0 (~r) = exp[−isα(~r)] jē0(~r) , (5.14)

and where α(~r) is the principal argument of the oriented edge (zσ − zµ) carrying the point ~r,
and the spin s is set to s = 1− 1/N .
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5.3 The W rs plaquette

Equation (5.13) is a discrete integral relation around aWrs plaquette. There is a direct extension
of the above arguments that leads to a discrete integral relation for Oē0(z) around a W rs

plaquette. The starting point is to consider the commutation relation (4.5), that is

(Trs ⊗ 1)[πsr ⊗ πsr(∆(ē0))] = [πrs ⊗ πsr(∆(ē0))](Trs ⊗ 1) . (5.15)

Using the splitting into half-currents given by (5.4), this can be represented by

x−1
r

s

sr

r
− y−1

s + x−1
r − y−1

s

= x−1
s − y−1

r + x−1
r − y−1

s

Cancelling the common terms, and writing in terms of the W plaquette gives

x−1
r − q2y−1

s (5.16)

−x−1
s + y−1

r = 0 . (5.17)

Defining the operator O(s)
ē0 (~r) exactly as above, this leads to the discrete integral condition

e−
iφr
N δz1O(s)

ē0 (~r1) + e−
iφs
N δz2O(s)

ē0 (~r2) + e
iφr
N δz3O(s)

ē0 (~r3) + e
iφs
N δz4O(s)

ē0 (~r4) = 0 , (5.18)

around the embedded plaquette

∗

∗ ∗

∗~r1

~r2 ~r3

~r4
. (5.19)

The coefficients appearing in (5.13) and (5.18) are such that when we consider any larger region,
the contribution from internal points cancel and we are left with a discretely holomorphicity
relation expressed solely on the boundary of the region.

5.4 Other currents

It is possible to define quasi-local operators in terms of the half-currents associated with the
other generators. We consider these in turn.

5.4.1 The current for e0

The coproduct and representation of e0 are given by

∆(e0) = e0 ⊗ I+ t0z0 ⊗ e0, ∆(t0z0) = t0z0 ⊗ t0z0 , (5.20)

πrr′(e0) = βX−1 [xr′ − yrπrr′(t0z0)] , πrr′(t0z0) =
1

µrµr′
Z−1 ,
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where β := −q/(q2 − 1)2. Proceeding as above, may now define a new half-current

je0((~rσ + ~rµ)/2) = T (µe0(~rµ)σ
†(~rσ)),

where

- σ†(~rσ) corresponds to the insertion of X−1 at embedded CP site ~rσ

- µe0(~rµ) is a new disorder operator corresponding to the insertion of the operator t0z0 along
a path ending at the dual CP site ~rµ. The effect of this disorder operator is similar to that
of (5.7) except that fr,s → µ−1

r,s on the right-hand side.

Defining O(−s)
eo (~r) = exp[+isα(~r)]je0(~r), we can follow the previous analysis to arrive at the

discrete antiholomorphicity conditions

e−
iφr
N δz̄1O(−s)

eo (~r1) + e−
iφs
N δz̄2O(−s)

eo (~r2) + e
iφr
N δz̄3O(−s)

eo (~r3) + e
iφs
N δz̄4O(−s)

eo (~r4) = 0 ,

e
iφr
N δz̄1O(−s)

eo (~r1) + e
iφs
N δz̄2O(−s)

eo (~r2) + e−
iφr
N δz̄3O(−s)

eo (~r3) + e−
iφs
N δz̄4O(−s)

eo (~r4) = 0 ,

around the W plaquette (5.10) and W plaquette (5.19) respectively.

5.4.2 The current for ē1

A similar consideration leads us to define

jē1((~rσ + ~rµ)/2) = T (µē1(~rµ)σ
†(~rσ)) ,

where

- σ†(~rσ) corresponds to the insertion of X−1 at embedded CP site ~rσ

- µē1(~rµ) is a new disorder operator corresponding to the insertion of the operator t1z
−1
1

along a path ending at the dual CP site ~rµ. Noting that

πrr′(t1z
−1
1 ) =

1

frf ′r
Z

and comparing to equation (5.6), we see that this µē1(~rµ) disorder operator has the same
action as in (5.7), but now with the arrow is directed outwards from the dual CP site ~rµ.

Defining O(s)
ē1 (~r) = exp[−isα(~r)]jē1(~r), we obtain the W and W discrete holomorphicity condi-

tions

e−
iφr
N δz1O(s)

ē1 (~r1) + e−
iφs
N δz2O(s)

ē1 (~r2) + e
iφr
N δz3O(s)

ē1 (~r3) + e
iφs
N δz4O(s)

ē1 (~r4) = 0 , (5.21)

e
iφr
N δz1O(s)

ē1 (~r1) + e
iφs
N δz2O(s)

ē1 (~r2) + e−
iφr
N δz3O(s)

ē1 (~r3) + e−
iφs
N δz4O(s)

ē1 (~r4) = 0 . (5.22)

5.4.3 The current for e1

Finally, by considering the half-currents that make up e1, we arrive at the following definition
of a quasi-local operator

je1((~rσ + ~rµ)/2) = T (µe1(~rµ)σ(~rσ)) ,

where

- σ(~rσ) corresponds to the insertion of X at embedded CP site ~rσ
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- µe1(~rµ) is a disorder operator corresponding to the insertion of the operator t1z1 along a
path ending at the dual CP site ~rµ. This effect of the disorder operator is given by (5.7)
with fr,s → µ−1

r,s on the right-hand side and with the arrow leaving ~rµ.

Defining O(−s)
e1 (~r) = exp[isα(~r)]je1(~r), we obtain the W and W discrete anti-holomorphicity

conditions

e
iφr
N δz̄1O(−s)

e1 (~r1) + e
iφs
N δz̄2O(−s)

e1 (~r2) + e−
iφr
N δz̄3O(−s)

e1 (~r3) + e−
iφs
N δz̄4O(−s)

e1 (~r4) = 0 ,

e−
iφr
N δz̄1O(−s)

e1 (~r1) + e−
iφs
N δz̄2O(−s)

e1 (~r2) + e
iφr
N δz̄3O(−s)

e1 (~r3) + e
iφs
N δz̄4O(−s)

e1 (~r4) = 0 .

In summary, ēi yield half-currents with discrete holomorphicity and spin s = (1 − 1/N),
whilst ei yield ones with discrete antiholomorphicity and spin −s. The coefficients in the discrete
relations around either (~r1, ~r2, ~r3, ~r4) plaquette are just (e

±iφr/N , e±iφs/N , e∓iφr/N , e∓iφr/N ) in all
cases.

6 Physical interpretation

In this section, we discuss the physical meaning of the linear relations derived above for the

operators O(s)
ēi and O(−s)

ei . For simplicity, we restrict the discussion to the case of O(s)
ē0 and the

linear relation (5.13) around a Wrs plaquette, but very similar results hold for the other cases.

Also, in order to lighten notation, we drop the indices ē0 in jē0(~r) or O
(s)
ē0 (~r), and simply write

j(~r) and O(s)(~r).

6.1 Discrete linear relation in the vicinity of the FZ point

At the FZ point φr,s = φ̄r,s = 0, (5.13) takes the simple form

δz1O(s)(~r1) + δz2O(s)(~r2) + δz3O(s)(~r3) + δz4O(s)(~r4) = 0 . (6.1)

Note that at this point O(s)(z) coincides with the lattice parafermion of [18], and (6.1) is the
discrete Cauchy-Riemann relation of the form ∂̄ψs = 0 found empirically in [18].

In the vicinity of the FZ point, using (2.8), we can write the linearised relations

φr = cos θ φs + i sin θ φ̄s +O(φ3s, φ̄
3
s) , φ̄r = i sin θ φs + cos θ φ̄s +O(φ3s, φ̄

3
s) . (6.2)

Hence, if we introduce the notation φ± = (φ± φ̄)/2, we get φ±r ∼ e±iθφ±s , and (5.13) becomes

δz1O(s)(~r1) + δz2O(s)(~r2) + δz3O(s)(~r3) + δz4O(s)(~r4) =

− α+
s

[
tO(s)(~r1) + t−1O(s)(~r2) + tO(s)(~r3) + t−1O(s)(~r4)

]

+ α−
s

[
t−1O(s−2)(~r1) + tO(s−2)(~r2) + t−1O(s−2)(~r3) + tO(s−2)(~r4)

]

+ i(α+
s )

2
[
tO(s−1)(~r1) + t−1O(s−1)(~r2) + tO(s−1)(~r3) + t−1O(s−1)(~r4)

]

− i(α−
s )

2
[
t−1O(s−1)(~r1) + tO(s−1)(~r2) + t−1O(s−1)(~r3) + tO(s−1)(~r4)

]

+O((α±
s )

3), (6.3)

where we have set

t = −ieiθ , α+
s =

eiθ/2φ+s
N

, α−
s =

e−iθ/2φ−s
N

. (6.4)
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Note that the sum of coefficients multiplying the O’s in each bracket on the RHS of (6.3) is
4 sin θ, which is proportional to the area of the plaquette. In the case θ = π/2, then t = 1 and
(6.3) takes the simpler form:

δz1O(s)(~r1) + δz2O(s)(~r2) + δz3O(s)(~r3) + δz4O(s)(~r4) =

− α+
s Ô(s)(~p) + α−

s Ô(s−2)(~p) + i[(α+
s )

2 − (α−
s )

2]Ô(s−1)(~p) +O((α±
s )

3) , (6.5)

where we have defined ~p as the center of the plaquette, and

Ô(~p) = O(~r1) +O(~r2) +O(~r3) +O(~r4) .

6.2 Comparison with perturbed CFT

In general, consider the perturbed action [30]

S = SCFT + g

∫
d2r Φh,h̄(z, z̄) ,

where SCFT is the action of some CFT, and Φh,h̄ is an operator in the spectrum of this CFT.
Suppose the unperturbed theory possesses a holomorphic current ψs(z) with conformal spin s,
and moreover, assume an OPE between the current and the perturbing field of the form:

ψs(z)Φh,h̄(w, w̄) = · · ·+ χ(w, w̄)

z − w
+ . . . (6.6)

By dimensional analysis, χ must have conformal weights hχ = s + h − 1 and h̄χ = h̄. In
the perturbed theory, ψs is no longer a conserved current. More precisely, using the identity
∂z̄1 [1/(z1 − z2)] = πδ(~r1 − ~r2), one gets at first order in g:

∂̄ψs(z, z̄) = πg χ(z, z̄) . (6.7)

So this simple line of arguments tells us how the conservation equation for the current ψs is
modified by the perturbation.

Let us now specialise to the ZN parafermionic CFT for N ≥ 3 (the case N = 2 is treated
separately in the next section). The chiral Potts model corresponds [15,33] to a perturbation of
this CFT by the energy operator ε, together with the leading spin ±1 operators:

S = SFZ +

∫
d2r [δ+Φ+(z, z̄) + δ−Φ−(z, z̄) + τε(z, z̄)] . (6.8)

The energy operator ε has dimensions hε = h̄ε = 2/(N + 2), and the spin ±1 operators (which
are actually the descendants W−1ε and W−1ε in terms of the underlying WN algebra) have
dimensions (hΦ+

, h̄Φ+
) = (hε + 1, hε) and (hΦ−

, h̄Φ−
) = (hε, hε + 1). The parafermion of ZN

charges m = m = 1 has conformal spin s = 1 − 1/N , and its conservation equation is modified
by the perturbation according to (6.7):

∂̄ψs(z, z̄) = πδ+ χ+(z, z̄) + πδ− χ−(z, z̄) + πτ χ0(z, z̄) , (6.9)

where the operators on the right-hand side have ZN charges m = m = 1, and conformal
dimensions:

(hχ+
, h̄χ+

) = (hε + s, h̄ε) , (hχ−
, h̄χ−

) = (hε + s− 1, h̄ε + 1) , (hχ0
, h̄χ0

) = (hε + s− 1, hε) .

Their conformal spins are thus s, (s − 2) and (s − 1), respectively.
Hence, we see that we can interpret (6.5) as a discrete version of the perturbed current

conservation equation (6.9), with the parameters in the latter related by

τ ∝ (δ2+ − δ2−) . (6.10)
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6.3 The Ising case

To make contact with previous work [19], it is convenient to introduce the “bare” current

J = Z ⊗ Z ⊗ · · · ⊗ Z ⊗X . (6.11)

For this operator, the linear relations (5.13) and (5.21) arising from jē0 and jē1 , when written
in terms of the Ising parameterisation (2.24–2.25), read respectively:

Θ1(βr)H(βs)J(~r1) + Θ1(βs)H(βr)J(~r2) + Θ(βr)H1(βs)J(~r3)−Θ(βs)H1(βr)J(~r4) = 0 , (6.12)

Θ(βr)H1(βs)J(~r1) + Θ(βs)H1(βr)J(~r2)−Θ1(βr)H(βs)J(~r3) + Θ1(βs)H(βr)J(~r4) = 0 . (6.13)

When performing the p → 0 expansion using (2.27), the terms of order p1/2 vanish in the
combination (6.12)− i(6.13), and we obtain:

δz1 ψ(~r1) + δz2 ψ(~r2) + δz3 ψ(~r3) + δz4 ψ(~r4) =

− ip
[
t−1ψ̄(~r1) + tψ̄(~r2) + t−1ψ̄(~r3) + tψ̄(~r4)

]
, (6.14)

where t = −ieiθ, and we have defined

ψ(~r) = e−iα(~r)/2J(~r) , ψ̄(~r) = e+iα(~r)/2J(~r) . (6.15)

In the RHS of (6.14), the sum of coefficients multiplying the ψ̄’s is (−4ip sin θ). Since the area of
the plaquette is sin θ, the relation (6.14) is thus a discrete version of the massive Dirac equation
with mass m = 4p ∼ k2/4:

∂̄ψ = −im ψ̄ . (6.16)

Moreover, note that at θ = π/2 we have t = 1, we recover the simple form of [19]:

δz1 ψ(~r1) + δz2 ψ(~r2) + δz3 ψ(~r3) + δz4 ψ(~r4) = −ip
[
ψ̄(~r1) + ψ̄(~r2) + ψ̄(~r3) + ψ̄(~r4)

]
. (6.17)

Finally, if we use the linear relations for the e0 and e1 currents instead of ē0 and ē1, we find the
second part of the Dirac equations, ∂ψ̄ = im ψ.

7 Conclusions

We have constructed the quasi-local operators associated to the Uq(ŝl2) symmetry underlying the
chiral Potts model, for any choice of integrable Boltzmann weights. The half-currents associated
with these operators, when dressed with suitable local phase factors, satisfy “twisted” discrete
Cauchy-Riemann equations (5.13) of the form

eiφr/Nδz1 O(~r1) + eiφs/Nδz2 O(~r2)e
−iφr/Nδz3 O(~r3) + e−iφs/Nδz4 O(~r4) = 0 ,

where φr and φs are the functions (2.7) of the spectral parameters r and s along the two
directions of the lattice. At the isotropic critical point (FZ clock model), we have exhibited the
algebraic origin of the lattice ZN -parafermions of [18]. In the generic case N ≥ 3, and in the
vicinity of the FZ point, we have shown that the above equation actually encodes (a discrete
version of) the modified current conservation relation induced by a chiral perturbation of the
ZN -parafermionic CFT. In the Ising case, this equation also allows us to recover the discrete
massive Dirac equation of [19].

Thus, in the framework of the chiral Potts model, we have shown that the quantum group
symmetry can be exploited to construct off-critical discrete parafermions and to probe the nature
of the underlying perturbed conformal field theory.
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