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We consider the effects of interactions on the nature of spinon excitations in Heisenberg spin-1/2
chains. We explicitly compute the two-spinon part of the longitudinal structure factor of the infinite
chain in zero field for all values of anisotropy in the gapless antiferromagnetic regime, via an exact
algebraic approach. Our results allow us to quantitatively describe the behaviour of these funda-
mental excitations for cases ranging from free to fully coupled chains, thereby explicitly mapping
the effects of ‘turning on the interactions’ in a strongly-correlated system.

I. INTRODUCTION

The effects of interactions in one-dimensional (1d) sys-
tems are known to be overwhelming, in that constituent
particles lose their individual identity and become locked
into a collective quantum liquid state. Low-energy exci-
tations then typically take the form of hydrodynamic-like
modes, the system falling in the Tomonaga-Luttinger liq-
uid universality class [1] characterized by critical (mass-
less) excitations with a linear spectrum.

While the ‘universal’ physics of 1d systems is by now
phenomenologically well understood [2], it almost always
remains impossible to precisely track the effects of ‘turn-
ing on the interactions’ on the constituent particles, as
one does for Fermi liquids [3] (where bare fermions are
adiabatically connected to Landau quasiparticles). On
the other hand, 1d systems can sometimes be treated by
nonperturbative methods based on the exact solution of
the underlying microscopic model. One of the fundamen-
tal systems belonging to this category is the Heisenberg
spin-1/2 anisotropic chain [4,5], whose Hamiltonian is

H = J

N∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1

)
. (1)

This system falls in the gapless Tomogana-Luttinger liq-
uid universality class for anisotropy values ∆ in the range
−1 < ∆ ≤ 1 (in zero field; we take J > 0). At the ∆ = 0
point, the model is equivalent to a theory of free fermions
via the Jordan-Wigner transformation. At the isotropic
point ∆ = 1, the fundamental excitations are spinons [6],
spin-1/2 fractionalized objects which can be interpreted
as domain walls dressed by quantum fluctuations.

A way to probe the nature of excitations is to deter-
mine how they carry observable correlations, an interest-
ing example here being the longitudinal structure factor

Szz(k, ω) =
1

N

∑
j,j′

e−ik(j−j′)
∫ ∞
−∞

dteiωt〈Szj (t)Szj′(0)〉.

(2)
At the ∆ = 0 point, this can simply be written
as a density-density correlator for the Jordan-Wigner
fermions. Only single particle-hole excitations con-

tribute, and the exact structure factor becomes porpor-
tional to their density of states. For any ∆ > 0, this
simple picture breaks down [7] and interactions lead to
nonperturbative corrections.

It is the purpose of this paper to track in detail the
effects of ‘turning on’ the interaction term on the spinon
quasiparticles, throughout the gapless antiferromagnetic
regime 0 ≤ ∆ ≤ 1. We will do so exactly, and more-
over directly in the thermodynamic limit N → ∞. In
this limit the model is amenable to the ‘vertex operator
approach’ described in detail in [8]. This approach was
developed originally for the case ∆ ≥ 1 for which the
Hamiltonian of the model commutes with the action of
the quantum group Uq(ŝl2). The representation theory
of this quantum group then leads to explicit expressions
for states, physical operators and their matrix elements
[8], providing the necessary building blocks for the recon-
struction of correlations in terms of contributions from in-
termediate states made up of increasing numbers of pairs
of spinon excitations, Szz(k, ω) =

∑∞
m=1 S

zz
(2m)(k, ω).

The case of the isotropic XXX antiferromagnet is par-
ticularly interesting since it is the most readily realized
experimentally (for recent experimental work on gapless
XXX and XXZ systems, see e.g. [9,10]), but also be-
cause it sits at the boundary between the gapless and
gapped regimes. It has been first treated within the ver-
tex operator approach of [8] in [11] and [12], in which
the two-spinon contribution to the structure factor was
obtained, showing that almost three quarters of the cor-
relation weight is carried by these states. The building
blocks for the four-spinon contribution at the isotropic
point were obtained in [13], and compiled into the ac-
tual four-spinon part of the structure factor in [14], the
combination of two and four-spinon parts being shown
to yield about 99% overall accuracy. The ∆ > 1 regime,
in which spinons have a mass gap, in fact comes more
naturally out of the vertex operator approach but was
treated only later than the isotropic point in view of the
latter’s more common relevance to real compounds. In
the anisotropic case, the two-spinon part of the trans-
verse structure factor was considered in [15,16]. The gap-
less regime remains however largely unexplored by these
exact thermodynamic methods.
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Spinon excitations – The ground state of the gapless
XXZ antiferromagnet supports basic excitations in the
form of spinons [6]. The dispersion relation of a spinon
is exactly given at zero field by

e(p) = vF | sin p|, p ∈ [−π, 0], (3)

where the Fermi velocity is in this case

vF (∆) =
πJ

2

√
1−∆2

acos∆
. (4)

Spinons however always appear in pairs, so the simplest
set of excitations over the ground state which contribute
to the structure factor are made of 2 spinons. Parametriz-
ing their momentum by p1 and p2, momentum and energy
conservation constraints impose that

k = −p1 − p2, ω = e(p1) + e(p2). (5)

The two-spinon states therefore form a continuum in the
k-ω plane defined by the lower and upper boundaries

ω2,l(k) = vF | sin k|, ω2,u(k) = 2vF sin k/2. (6)

Matrix elements via vertex operator approach – The
vertex operator approach is also applicable, albeit indi-
rectly, to the gapless region 0 ≤ ∆ ≤ 1. The strat-
egy [17,18] is to first generalize the problem to the
completely anisotropic Heisenberg model

∑
j

(JxS
x
j S

x
j+1 +

JyS
y
j S

y
j+1 + JzS

z
j S

z
j+1) in the so called principal regime

|Jy| ≤ Jx ≤ Jz [19] for which matrix elements of local
operators between the vacuum and excited states can be
computed exactly using the variant of the vertex oper-
ator approach developed in [20–23]. These results can
then be mapped to the disordered regime |Jz| ≤ Jy ≤ Jx
[18,24] before taking the Jx → Jy limit to reconstruct
the matrix elements for the gapless Hamiltonian (1) with
0 ≤ ∆ ≤ 1. In this way we find (details will be pub-
lished elsewhere) the following exact expression for the
two-spinon contribution to Szz(k,w):

Szz2 (k, ω) =
Θ(ω2,u(k)− ω)Θ(ω − ω2,l(k))√

ω2
2,u(k)− ω2

×(1 + 1/ξ)2 e−Iξ(ρ(k,ω))

cosh 2πρ(k,ω)
ξ + cos πξ

(7)

in which ξ = π
acos∆ −1, Θ is the Heaviside function, and

Iξ(ρ) ≡
∫ ∞

0

dt

t

sinh(ξ + 1)t

sinh ξt

cosh(2t) cos(4ρt)− 1

cosh t sinh(2t)
(8)

in which the parameter ρ is defined as

cosh(πρ(k, ω)) =

√
ω2

2,u(k)− ω2
2,l(k)

ω2 − ω2
2,l(k)

. (9)

II. RESULTS

In Fig. 1, we give plots of the two-spinon part of the
longitudinal structure factor (7) for values of anisotropy
interpolating between weak and strong coupling. A few
striking things are worth mentioning when observing how
increasing interactions influence the two-spinon part of
the correlations. Most noticeably, the divergence at the
upper threshold disappears immediately upon turning in-
teractions on. Also, the correlation weight starts flowing
around the edges of the continuum, mostly via the wings
at k ' 0, 2π (see the ∆ = 0.2 plot), and thereafter starts
accumulating at the antiferromagnetic point k = π (see
the ∆ = 0.4 plot). The divergence at the lower thresh-
old starts carrying more correlation weight from ∆ ' 0.5
onwards, and becomes increasingly sharp as one moves
towards the isotropic point.

Within the two-spinon continuum, so away from the
thresholds, two things can be noticed. First of all, the
weight within the bulk of this continuum quickly changes
shape as ∆ is turned on: from a pure [ω2,u(k) − ω]−1/2

form at ∆ = 0, it becomes almost uniform in frequency
for ∆ ' 0.2, and then becomes a rapidly decreasing func-
tion of frequency for higher interactions. Turning inter-
actions on therefore leads to a remarkable collapse of cor-
relation weight from high to low energies.

Sum rules – To quantify the importance of the two-
spinon contribution to the full structure factor, we use
two useful sum rules, namely the integrated intensity

Izz =

∫ 2π

0

dk

2π

∫ ∞
0

dω

2π
S(k, ω) = 1/4, (10)

and the f-sumrule (at fixed momentum) [25],

Izz1 (k) =

∫ 2π

0

dω

2π
ωS(k, ω) = −2Xx(1− cos k) (11)

where Xx ≡ 〈Sxj Sxj+1〉 is the ground state expectation
value of the in-plane exchange term. This can be ob-
tained from the ground-state energy density e0 [26] and
its derivative, namely Xx = 1

2J (1−∆ ∂
∂∆ )e0, with

e0 =
−J(ξ + 1)

2π
sin

[
π

ξ+1

] ∫ ∞
−∞
dt

(
1− tanh t

tanh[(ξ + 1)t]

)
.

(12)
We provide the explicit values of the sum rule saturations
coming from two-spinon contributions in Table I (for the
f-sumrule, the saturation is the same at all momenta).
The two-spinon states carry the totality of the correlation
at ∆ = 0, and this remains approximately true up to
surprisingly large values of interactions ∆ ∼ 0.8, above
which four, six, ... spinon states become noticeable.

Threshold behaviour – The behaviour of the longitu-
dinal structure factor in the vicinity of the excitation
thresholds can be determined from the analytic expres-
sions we have obtained.
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FIG. 1: Two-spinon part of the longitudinal structure factor of the infinite Heisenberg chain, for different values of the anisotropy
parameter ∆. For ∆ → 0, the correlation follows the density of states, and has a square root singularity at the upper threshold
for all values of momenta. Increasing the anisotropy shifts the weight progressively towards the lower boundary. The lower
boundary becomes increasingly sharp as the ∆ → 1 limit is approached.
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∆ Izz2sp/I
zz Izz1,2sp/I

zz
1 ∆ Izz2sp/I

zz Izz1,2sp/I
zz
1

0 1 1 0.6 0.9778 0.9743

0.1 0.9997 0.9997 0.7 0.9637 0.9578

0.2 0.9986 9.9984 0.8 0.9406 0.9314

0.3 0.9964 9.9959 0.9 0.8980 0.8844

0.4 0.9927 0.9917 0.99 0.7918 0.7748

0.5 0.9869 0.9849 0.999 0.7494 0.7331

TABLE I: Sum rule saturations as a function of anisotropy:
two-spinon contribution to the integrated intensity Izz (10)
and first frequency moment Izz1 (11).

a. The structure factor near the upper threshold.
The upper threshold ω → ω2,u(k) is approached by the
limit ρ→ 0 as can be seen from (9). A careful evaluation
shows that the integral (8) then behaves according to

Iξ(ρ) −−−−→
ρ→0

− 2 ln ρ+ O(1). (13)

We thus have (using ρ ∼
√
ω2,u(k)− ω from (9)) that

the structure factor vanishes as a square root,

Szz2 (k, ω) −−−−−−−→
ω→ω2,u(k)

O(1)
√
ω2,u(k)− ω. (14)

This anisotropy-independent result (for 0 < ∆ ≤ 1)
matches the same limit known to apply for the XXX
case [12]. For the ∆ → 0 limit (so ξ → 1) however, we
have to work more carefully, since the cosh 2πρ

ξ +cos πξ in

the denominator of the structure factor (7) now vanishes
when ρ → 0. Overall, in this case one rather obtains a
square-root divergence,

Szz2 (k, ω) −−−−−−−→
ω→ω2,u(k)

O(1)√
ω2,u(k)− ω

, ∆ = 0 (15)

which follows the singularity of the density of states since
the matrix elements are then energy independent.

b. The structure factor near the lower threshold.
The lower threshold ω → ω2,l(k) is obtained by taking
ρ→∞. A careful evaluation of (8) in this limit yields

Iξ(ρ) −−−−−→
ρ→∞ − π

(
1 +

1

ξ

)
ρ+ O(1). (16)

We thus have (using ρ ∼ 1
2π ln( 1

ω−ω2,l(k) ) from (9)) that

the structure factor obeys a nontrivial power law,

Szz2 (k, ω) −−−−−−−→
ω→ω2,l(k)

O(1)

[ω − ω2,l(k)]
1
2 (1−1/ξ)

, (17)

as expected from the detailed asymptotic conformal field
theory predictions (see [2,24] and references therein).
Once again, the ∆ → 0 limit (so ξ → 1) yields the ex-
pected behaviour,

Szz2 (k, ω) −−−−−−−→
ω→ω2,l(k)

O(1), ∆ = 0. (18)

Conclusions – In this paper, we have tracked how the
spinon excitations in Heisenberg antiferromagnets con-
tribute to a fundamental observable, namely the longitu-
dinal spin structure factor (2), as a function of anisotropy
(i.e. interaction). We have obtained the two-spinon part
of this correlator exactly in the zero-field, infinite-size
chain throughout the gapless antiferromagnetic regime,
by exploiting the vertex operator approach to express
states and correlators in a purely algebraic language.
This has allowed us to track in detail how the correla-
tions carried by these excitations are affected by interac-
tions. Our results show that while the correlation func-
tion behaves at first glance smoothly as the anisotropy is
tuned from zero to its full value at the boundary of the
gapless regime, detailed features including the threshold
behaviour display remarkable modifications highlighting
the nonperturbative nature of interaction effects in this
one-dimensional system. Our results provide an accurate
characterization of these effects, which should be observ-
able in e.g. inelastic neutron scattering experiments.
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