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Master Equation for classical non-equilibrium systems

C = configurations of a system of classical particles
P(C,t) = prob. for system to be in configuration C at time t

Time evolution described by Master Equation:

“Transition rates” from C to C’

Given P(C,t) one can calculate average of observable O by
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Equilibrium (T1=T2): Peq(C) = Z-1 e-βE(C)

System

Heat Bath 1 Heat Bath 2T1 T2

Non-Equilibrium Steady States

Non-equilibrium (T1≠T2):

Pstat(C) = ??
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Some Questions to ask:

- What is Pstat(C) for a given system?

- Calculate stationary averages 

- Late time behaviour: how does P(C,t) approach Pstat(C) ?
- Probability distributions of observables at late times ?

Saturday, 10 December 2011



Definition of the PASEP

Hard core particles hopping along 1D lattice of L sites.

site j empty
occupied{ ⇒  τj = { 0

1

2L configurations C=(τ1,..., τL); Prob. distr. P(τ1,..., τL,t)

Transition Rates:

Other moves
blocked:

“Exclusion”
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PASEP with open boundaries

Particle 
Extraction:

Particle number not conserved!

Particle 
Injection:

Special case (“TASEP”):  γ=δ=q=0.
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Mapping to non-Hermitian Quantum Spin Chain

● 2L dim Hilbert space with basis states |τ1,...,τL〉
● Probability distr. → State

● Master eqn. → imaginary time Schrödinger eqn

M = non-Hermitian
      “Hamiltonian”

● left eigenstates different from right eigenstates

● stationary state: eigenstate with eigenvalue E0=0:

left: 

● Averages:

(Alcaraz, 
Droz, Henkel&
Rittenberg ‘94)

≠QM!

∂|P (t)�
∂t

= M |P (t)�
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Stationary State Properties of the TASEP

● Can be worked out by matrix product state techniques
● Several Phases depending on boundary rates α,β
⇒ “boundary-induced phase transitions”

(Derrida, Evans, Hakim & Pasquier ‘93; Schütz/Domany ‘93)

Sandov ’95, Essler/Rittenberg ’96, Sasamoto ‘99 Blythe et al ‘00PASEP:
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Approach to Stationarity

Master Eqn:

M diagonalizable  ⇒  M |Pn〉= -En |Pn〉, Re(En)≥0.

Eigenvalues with smallest real parts → approach to 
stationarity

→ Calculate “leading” En 

∂|P (t)�
∂t

= M |P (t)�

� �O(t)� = �0| �O|P (t)� =
�

n

e−Ent
�0| �O|Pn��Pn|P (0)�
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Relation to spin-1/2 Heisenberg XXZ “Ferromagnet”

B1 and BL break particle number conservation.
5 free parameters: α,β,γ,δ,λ (spectrum indep. of λ)

Sandow ’95, Essler/Rittenberg ‘96
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Integrability of the open spin-1/2 XXZ Chain

H is integrable: ∃ infinite number of local 
integrals of motion [H,In]=0, [Im,In]=0.

Sklyanin ’88
deVega&Gonzales-Ruiz ‘93

Bethe Ansatz ???

(Nepomechie ’03, ’04; Cao et al’04)

6 free parameters (general boundary fields)

Algebraic Bethe Ansatz/Functional Eqns

if the boundary fields satisfy a constraint!

Since then lots of work on general case
Murgan&Nepomechie, Yang et al, Galleas, Baseilhac, Simon, Frahm et al, 
Crampe et al,...
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Bethe Ansatz Eqns for the PASEP deGier/Essler ’05 

Eigenvalues of H parametrized by L-1 complex numbers {z1,..., zL-1}

Bethe Ansatz Equations:

checked for small systems that these are complete!
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Solution of the BAE for large L

Take log of BAE ⇒

YL(z) = “counting function”

Programme: 

 set of int.
 {Ij} 

corresp.
YL(z) 

Eigenvalue
E
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Solution of the BAE for large L

A. Numerics for L≤14: distributions {Ij} for “low lying states”

Ij consecutive integers!

L=160
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Solution of the BAE for large L

B. Consider large-L limit of these distributions {Ij}

BAE → Integro-differential eqns for YL(z)
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Solution of the BAE for large L

B. Consider large-L limit of these distributions {Ij}

Key to solution: YL(z) analytic close to contour

Expand in powers of L-1:

⇒ System of linear integro-differential eqns
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Explicit results for the counting functions:

q-Pochhammer symbol

a,b,c,d,zc,λ1,ω1 known elementary fns of α,β,γ,δ.

Given YL(z) can calculate eigenvalues E.
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“Dynamical” Phase Diagram

TASEP:

Explicit answers except in max current phase (numerics)
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“Dynamical” Phase Diagram

TASEP:

Non-analytic jump in E1 ⇒ change in relaxational mechanism
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Effective Domain Wall Theory Derrida, Evans & Mallick ‘95
Schütz et al ’98, ‘00

Recall stationary 
state phase diagram:

Assumption: relaxation 
due to diffusion of 
domain walls between 
high and low-density 
phases

ρ-=α

ρ+=α

D±(ρ+-ρ-)=j±
= ρ± (1-ρ±)
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Effective Domain Wall Theory

Consider a single diffusing domain wall with reflecting boundaries

TASEP:

Master eqn:

Solution:

Relaxation rates ε agree with exact results for small α,β!

Derrida, Evans & Mallick ‘95
Schütz et al ’98, ‘00
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Some Open Questions on this Part

• Analytic calculation of E1=3.578 L3/2+... in the MC phase

• What is the relaxational mechanism in general?
  modified DW diffusion (boundary conditions?)? something else?

• Full correlation functions through “form factors”?

Saturday, 10 December 2011



Current Fluctuations Derrida et al ‘98-’11 

● ● ● 
1 2

. . . ● ● ● 
L

α

γ

Q1(t): net # of particles crossing the dashed line up to time t

Q1(t)∼ j1t for t→∞ j1=average current on first site

Goal: calculate �eλQ1(t)� cumulants of Q1(t)
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Previously Known Results

lim
t→∞

�Q1(t)�
t

= (p − q)ρ(1 − ρ)

lim
t→∞

�Q2
1� − �Q1�2

t
= (p − q)ρ(1 − ρ)(1 − 2ρ) Derrida, Evans

& Mallick ‘95

Derrida, Evans, Hakim & Pasquier ‘93; 
Schütz/Domany ‘93

Average Current:

Diffusion Constant:
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Relation to Spectrum of M Derrida &Lebowitz ‘98

Modify Boundary Term in XXZ:

B1 =
α + γ + (α− γ)σz

1 − 2ασ−1 − 2γσ+
1

2√pq

B1 =
α + γ + (α− γ)σz

1 − 2αeλσ−1 − 2γe−λσ+
1

2√pq

Then lim
t→∞

�eλQ1(t)� = eE0(λ)t
E0(λ)= eigenvalue

of M(λ)with smallest
 real part
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Great! Problem reduced to calculating an energy.

Problem: model remains integrable, but can no longer fulfil 
constraint that allows for BA solution.

Way out:
�
qL/2+k − eλ

� �
αβeλ − qL/2−k−1γδ

�
= 0Constraint

k ∈ Z , |k| ≤ L

2

λ(1)
n = n ln(q)

λ(2)
n = ln

�
γδqn−1/αβ

� E(λ(j)
n )

Sequence I:

Sequence II:

n=0,1,...,L 

n=0,1,...,L 

� calculate

Try to restore full λ dependence 
from these two sequences
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Results for the PASEP

E(λ) = (p− q)
a(eλ − 1)

(1 + a)(eλ + a)

E(λ) = (p− q)
b(eλ − 1)

(1 + b)(eλ + b)

a =
p− q − α+ γ ±

�
(p− q − α+ γ)2 + 4αγ

2α

density

a

b

1

1

CL

Maximum
Current

high density

low

b =
p− q − β + δ ±

�
(p− q − β + δ)2 + 4βδ

2β

These are the leading 
terms for L➝∞

???
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Results for the PASEP

E(λ) = (p− q)
a(eλ − 1)

(1 + a)(eλ + a)

E(λ) = (p− q)
b(eλ − 1)

(1 + b)(eλ + b)

a =
p− q − α+ γ ±

�
(p− q − α+ γ)2 + 4αγ

2α

density

a

b

1

1

CL

Maximum
Current

high density

low

b =
p− q − β + δ ±

�
(p− q − β + δ)2 + 4βδ

2β

???

Lazarescu
& Mallick ‘11

Confirmed by
completely different 

approach (giving 
more results):
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Some Open Questions on this Part

• Direct calculation from Bethe Ansatz: need solution for
   arbitrary λ

• Finite-size corrections from Bethe Ansatz (have some results).

• Maximum Current Phase using Bethe Ansatz?

Q1(t) ∼ j1t +O
�
t1/3

�

What can we say about the t1/3 contribution?
→ Tracy-Widom
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Summary

• Obtained Bethe Ansatz Equations for PASEP with most general
   open boundary conditions.

• Derived analytic expressions for eigenvalues of “Hamiltonian” with
  smallest real part → describes relaxation to stationary state.

• Obtained “Dynamical Phase Diagram”

• Calculated eigenvalues of “excited states”.

• Used Bethe Ansatz to compute current fluctuations.

• Full correlation functions through “Lehmann rep.”??
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