Bethe Ansatz Results for the Partially Asymmetric Exclusion Process with Open Boundaries

Fabian Essler (Oxford)

Jan de Gier (Melbourne)

$$
\begin{gathered}
\text { PRL 95, } 240601 \text { (2005), JSTAT P12011 (2006), J. Phys A41, } 485002 \text { (2008), } \\
\text { PRL 107, } 010602 \text { (2011) }
\end{gathered}
$$

EPSRC Engineering and Physical Sciences

Edinburgh, December 2011

Outline

A. Introduction

Stochastic processes/Definition of the PASEP/Mapping to nonHermitian Quantum Spin Chains/Stationary State Phase Diagram

B. Relaxation Rates at Late Times

Definition/Bethe Ansatz/"Dynamical" Phase Diagram

C. Current Fluctuations

Setup/Bethe Ansatz/Results for "gapped" phases

Master Equation for classical non-equilibrium systems

$C=$ configurations of a system of classical particles
$P(C, t)=$ prob. for system to be in configuration C at time \dagger

Time evolution described by Master Equation:

$$
P(\mathbf{C}, t+d t)=P(\mathbf{C}, t)+\left[\sum_{\mathbf{C}^{\prime} \neq \mathbf{C}} M_{\mathbf{C}^{\prime} \rightarrow \mathbf{C}} P\left(\mathbf{C}^{\prime}, t\right)-M_{\mathbf{C} \rightarrow \mathbf{C}^{\prime}} P(\mathbf{C}, t)\right] d t
$$

$M_{\mathrm{C} \rightarrow \mathrm{C}^{\prime}}$ "Transition rates" from C to C^{\prime}

Given $P(C, t)$ one can calculate average of observable O by

$$
\langle\mathcal{O}\rangle=\sum_{\mathbf{C}} P(\mathbf{C}, t) \mathcal{O}(\mathbf{C})
$$

Non-Equilibrium Steady States

$$
P_{e q}(C)=z^{-1} e^{-\beta E(C)}
$$

Non-equilibrium ($\mathrm{T}_{1} \neq \mathrm{T}_{2}$):

$$
\lim _{t \rightarrow \infty} P(\mathbf{C}, t)=P_{\text {stat }}(\mathbf{C}), \quad \frac{d P_{\text {stat }}(\mathbf{C})}{d t}=0 .
$$

$$
P_{\text {stat }}(C)=? ?
$$

Some Questions to ask:

- What is $P_{\text {stat }}(C)$ for a given system?
- Calculate stationary averages $\langle\mathcal{O}\rangle_{\text {stat }}=\sum_{\mathbf{C}} P_{\text {stat }}(\mathbf{C}) \mathcal{O}(\mathbf{C})$.
- Late time behaviour: how does $P(C, t)$ approach $P_{\text {stat }}(C)$?
- Probability distributions of observables at late times?

Definition of the PASEP

Hard core particles hopping along ID lattice of L sites.
site $j\left\{\begin{array}{l}\text { empty } \\ \text { occupied }\end{array} \Rightarrow T_{j}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.\right.$
$2^{\text {L }}$ configurations $C=\left(T_{1, \ldots,}, T_{L}\right)$; Prob. distr. $P\left(T_{1, \ldots, \ldots}, T_{L}, t\right)$

Transition Rates:

Other moves blocked:
"Exclusion"

PASEP with open boundaries

Particle
 Extraction:

Particle Injection:

Particle number not conserved!

Special case ("TASEP"): $\gamma=\delta=q=0$.

Mapping to non-Hermitian Quantum Spin Chain

- $2^{\text {L }}$ dim Hilbert space with basis states $\left|T_{1, \ldots, T_{L}}\right\rangle$
- Probability distr. \rightarrow State $|P(t)\rangle=\sum_{\tau_{j}} P\left(\tau_{1}, \ldots, \tau_{L}, t\right)\left|\tau_{1}, \ldots, \tau_{L}\right\rangle$.
- Master eqn. \rightarrow imaginary time Schrödinger eqn

$$
\frac{\partial|P(t)\rangle}{\partial t}=M|P(t)\rangle
$$

$M=$ non-Hermitian "Hamiltonian"

- left eigenstates different from right eigenstates
- stationary state: eigenstate with eigenvalue $\mathrm{E}_{0}=\mathrm{O}$:

$$
\text { left: } \quad\langle 0|=\sum_{\tau_{j}}\left\langle\tau_{1}, \ldots, \tau_{L}\right| .
$$

- Averages:

$$
\neq \mathrm{QM}!
$$

$$
\langle\mathcal{O}(t)\rangle=\sum_{\left\{\tau_{j}\right\}} \mathcal{O}\left(\tau_{1}, \ldots, \tau_{L}\right) P\left(\tau_{1}, \ldots, \tau_{L}\right)=\langle 0| \widehat{\mathcal{O}}|P(t)\rangle
$$

Stationary State Properties of the TASEP

(Derrida, Evans, Hakim \& Pasquier '93; Schütz/Domany '93)

- Can be worked out by matrix product state techniques
- Several Phases depending on boundary rates α, β
\Rightarrow "boundary-induced phase transitions"

PASEP

Approach to Stationarity

Master Eqn:

$$
\frac{\partial|P(t)\rangle}{\partial t}=M|P(t)\rangle
$$

M diagonalizable $\Rightarrow M\left|P_{n}\right\rangle=-E_{n}\left|P_{n}\right\rangle, \operatorname{Re}\left(E_{n}\right) \geq 0$.

Eigenvalues with smallest real parts \rightarrow approach to stationarity

$$
\langle\widehat{\mathcal{O}}(t)\rangle=\langle 0| \widehat{\mathcal{O}}|P(t)\rangle=\sum_{n} e^{-E_{n} t}\langle 0| \widehat{\mathcal{O}}\left|P_{n}\right\rangle\left\langle P_{n} \mid P(0)\right\rangle
$$

\rightarrow Calculate "leading" E_{n}

Relation to spin-1/2 Heisenberg XXZ "Ferromagnet"

Sandow '95, Essler/Rittenberg '96
Similarity Transformation: $\widehat{M}=\sqrt{p q} U_{\lambda} \hat{H} U_{\lambda}^{-1}$

$$
\begin{gathered}
\widehat{H}=-\frac{1}{2} \sum_{j=1}^{L-1}\left[\sigma_{j}^{\mathrm{x}} \sigma_{j+1}^{\mathrm{x}}+\sigma_{j}^{\mathrm{y}} \sigma_{j+1}^{\mathrm{y}}-\Delta \sigma_{j}^{\mathrm{z}} \sigma_{j+1}^{\mathrm{z}}+h\left(\sigma_{j+1}^{\mathrm{z}}-\sigma_{j}^{\mathrm{z}}\right)+\Delta\right]+B_{1}+B_{L} . \\
\Delta=-\frac{1}{2}\left(Q+Q^{-1}\right), \quad h=\frac{1}{2}\left(Q-Q^{-1}\right), \quad Q=\sqrt{\frac{q}{p}} \\
B_{L}=\frac{\beta+\delta-(\beta-\delta) \sigma_{L}^{\mathrm{z}}-\frac{2 \beta}{\lambda Q^{L-1}} \sigma_{L}^{+}-2 \delta \lambda Q^{L-1} \sigma_{L}^{-}}{2 \sqrt{p q}} \\
B_{1}=\frac{\alpha+\gamma+(\alpha-\gamma) \sigma_{1}^{\mathrm{z}}-2 \alpha \lambda \sigma_{1}^{-}-\frac{2 \gamma}{\lambda} \sigma_{1}^{+}}{2 \sqrt{p q}} .
\end{gathered}
$$

B_{1} and B_{L} break particle number conservation. 5 free parameters: $\alpha, \beta, \gamma, \delta, \lambda$ (spectrum indep. of λ)

Integrability of the open spin-1/2 XXZ Chain

H is integrable: \exists infinite number of local
Sklyanin '88 integrals of motion $\left[H, I_{n}\right]=0,\left[I_{m}, I_{n}\right]=0$.

6 free parameters (general boundary fields)
Bethe Ansatz ???
(Nepomechie '03, '04; Cao et al'04)

Algebraic Bethe Ansatz/Functional Eqns
if the boundary fields satisfy a constraint!
Since then lots of work on general case
Murgan\&Nepomechie, Yang et al, Galleas, Baseilhac, Simon, Frahm et al, Crampe et al,...

Bethe Ansatz Eqns for the PASEP

Eigenvalues of H parametrized by $\mathrm{L}-1$ complex numbers $\left\{\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{L}-1}\right\}$

$$
E=\alpha+\beta+\gamma+\delta+\sum_{j=1}^{L-1} \frac{\left(Q^{2}-1\right)^{2} z_{j}}{\left(Q-z_{j}\right)\left(Q z_{j}-1\right)}
$$

Bethe Ansatz Equations:

$$
\begin{gathered}
{\left[\frac{z_{j} Q-1}{Q-z_{j}}\right]^{2 L} K\left(z_{j}, \alpha, \gamma\right) K\left(z_{j}, \beta, \delta\right)=\prod_{l \neq j}^{L-1} \frac{z_{j} Q^{2}-z_{l}}{z_{j}-z_{l} Q^{2}} \frac{z_{j} z_{l} Q^{2}-1}{z_{j} z_{l}-Q^{2}}, j=1, \ldots, L-1 .} \\
K(z, \alpha, \gamma)=\frac{-\alpha z^{2}+Q z\left(Q^{2}-1+\alpha-\gamma\right)+\gamma Q^{2}}{\gamma Q^{2} z^{2}+Q z\left(Q^{2}-1+\alpha-\gamma\right)-\alpha} .
\end{gathered}
$$

checked for small systems that these are complete!

Solution of the BAE for large L

Take log of $B A E \Rightarrow$

$$
Y_{L}\left(z_{j}\right)=\frac{2 \pi}{L} I_{j},\left(I_{j} \text { integers }\right) \quad j=1, \ldots, L-1
$$

$Y_{\mathrm{L}}(\mathrm{z})=$ "counting function" $\quad i Y_{L}(z)=g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\frac{1}{L} \sum_{l=1}^{L-1} K\left(z_{l}, z\right)$,

$$
\begin{aligned}
g(z) & =\ln \left[\frac{z(1-Q z)^{2}}{(z-1)^{2}}\right], \quad K(w, z)=-\ln \left[\frac{w-Q z}{1-Q w / z} \frac{1-Q^{2} z w}{1-w z}\right], \\
g_{\mathrm{b}}(z) & =\ln \left[\frac{z\left(1-Q^{2} z^{2}\right)}{1-z^{2}}\right]+\ln \left[\frac{z+a}{1+Q a z} \frac{1+c / z}{1+Q c z}\right]+\ln \left[\frac{z+b}{1+Q b z} \frac{1+d / z}{1+Q d z}\right] .
\end{aligned}
$$

Programme:

$$
\begin{gathered}
\text { set of int. } \\
\left\{I_{j}\right\}
\end{gathered} \longrightarrow \begin{gathered}
\text { corresp. } \\
Y_{L}(z)
\end{gathered} \longrightarrow \quad \begin{gathered}
\text { Eigenvalue } \\
E
\end{gathered}
$$

Solution of the BAE for large L

A. Numerics for $L \leq 14$: distributions $\left\{I_{j}\right\}$ for "low lying states"

I_{j} consecutive integers!

$$
\begin{aligned}
& \mathrm{L}=160 \\
& p=\gamma=\delta=0, \alpha=\beta=0.2
\end{aligned}
$$

Solution of the BAE for large L

B. Consider large-L limit of these distributions $\left\{I_{j}\right\}$ $B A E \rightarrow$ Integro-differential eqns for $Y_{L}(z)$

$$
\begin{aligned}
& i Y_{L}(z)=g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} \frac{d w}{2 \pi} K(w, z) Y_{L}^{\prime}(w) \\
& \quad+\int_{C_{1}} \frac{d w}{2 \pi} \frac{K(w, z) Y_{L}^{\prime}(w)}{1-e^{-i L Y_{L}(w)}}+\int_{C_{2}} \frac{d w}{2 \pi} \frac{K(w, z) Y_{L}^{\prime}(w)}{e^{i L Y_{L}(w)}-1}
\end{aligned}
$$

Endpoints fixed, e.g. $Y_{L}\left(\xi^{*}\right)=-\pi+\frac{\pi}{L}, \quad Y_{L}(\xi)=\pi-\frac{\pi}{L}$.

Solution of the BAE for large L

B. Consider large-L limit of these distributions $\left\{I_{j}\right\}$

$$
\begin{aligned}
& i Y_{L}(z)=g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} \frac{d w}{2 \pi} K(w, z) Y_{L}^{\prime}(w) \\
& \quad+\int_{C_{1}} \frac{d w}{2 \pi} \frac{K(w, z) Y_{L}^{\prime}(w)}{1-e^{-i L Y_{L}(w)}}+\int_{C_{2}} \frac{d w}{2 \pi} \frac{K(w, z) Y_{L}^{\prime}(w)}{e^{i L Y_{L}(w)}-1}
\end{aligned}
$$

Expand in powers of $\mathrm{L}^{-1}: \quad Y_{L}(z)=\sum_{n=0} L^{-n} Y_{n}(z), \quad \xi=z_{\mathrm{c}}+\sum_{n=1} \delta_{n} L^{-n}$
\Rightarrow System of linear integro-differential eqns

Key to solution: $Y_{L}(z)$ analytic close to contour

Explicit results for the counting functions:

$$
Y_{L}(z)=\sum_{n=0} L^{-n} Y_{n}(z)
$$

$$
\begin{aligned}
Y_{0}(z)= & -i \ln \left[-\frac{z}{z_{\mathrm{c}}}\left(\frac{1-z_{\mathrm{c}}}{1-z}\right)^{2}\right], \\
Y_{1}(z)= & \left.-\mathrm{i} \ln \left[-\frac{\mathrm{z}}{\mathrm{z}_{\mathrm{c}}} \frac{1-\mathrm{z}_{\mathrm{c}}^{2}}{1-\mathrm{z}^{2}}\right]+\omega_{1}+\lambda_{1} \ln \left[\frac{(\mathrm{Qz}}{(\mathrm{Qz} / \mathrm{z} ; \mathrm{Q})_{\infty}(\mathrm{Qzz}} ; \mathrm{Q}\right)_{\infty}(\mathrm{Q})_{\infty}^{2} ; \mathrm{Q}\right)_{\infty}^{2} \\
& \left.\frac{\mathrm{z}-\mathrm{z}_{\mathrm{c}}^{-1}}{\mathrm{z}_{\mathrm{c}}-\mathrm{z}_{\mathrm{c}}^{-1}}\right] \\
& -\mathrm{i} \ln \left[\frac{(-\mathrm{c} / \mathrm{z} ; \mathrm{Q})_{\infty}(-\mathrm{cz} ; \mathrm{Q})_{\infty}(-\mathrm{z} / \mathrm{a} ; \mathrm{Q})_{\infty}(-\mathrm{Qaz} ; \mathrm{Q})_{\infty}}{\left(-\mathrm{c} / \mathrm{z}_{\mathrm{c}} ; \mathrm{Q}\right)_{\infty}\left(-\mathrm{cz} \mathrm{z}_{\mathrm{c}} ; \mathrm{Q}\right)_{\infty}\left(-\mathrm{z}_{\mathrm{c}} / \mathrm{a} ; \mathrm{Q}\right)_{\infty}(-\mathrm{Qaz} ; \mathrm{Q})_{\infty}}\right] \\
& -\operatorname{iln}\left[\frac{(-\mathrm{d} / \mathrm{z} ; \mathrm{Q})_{\infty}(-\mathrm{dz} ; \mathrm{Q})_{\infty}(-\mathrm{z} / \mathrm{b} ; \mathrm{Q})_{\infty}(-\mathrm{Qbz} ; \mathrm{Q})_{\infty}}{\left(-\mathrm{d} / \mathrm{z}_{\mathrm{c}} ; \mathrm{Q}\right)_{\infty}\left(-\mathrm{dz} \mathrm{z}_{\mathrm{c}} ; \mathrm{Q}\right)_{\infty}\left(-\mathrm{z}_{\mathrm{c}} / \mathrm{b} ; \mathrm{Q}\right)_{\infty}(-\mathrm{Qbz} ; \mathrm{Q})_{\infty}}\right] \\
Y_{2}(z)= & \ldots
\end{aligned}
$$

$$
(a ; Q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a Q^{k}\right)
$$

q-Pochhammer symbol
$a, b, c, d, z_{c}, \lambda_{1}, \omega_{1}$ known elementary fns of $\alpha, \beta, \gamma, \delta$.

Given $Y_{L}(z)$ can calculate eigenvalues E.

"Dynamical" Phase Diagram

TASEP:

$$
\begin{aligned}
& x=-\sqrt{\frac{\alpha \beta}{(1-\alpha)(1-\beta)}} \\
& x^{\prime}=-\left[\frac{\alpha}{1-\alpha}\right]^{1 / 3} \\
& y=-\left[\frac{\beta}{1-\beta}\right]^{1 / 3} \\
& \text { CL: } E_{1}=\frac{\pi^{2} \alpha(1-\alpha)}{(1-2 \alpha) L^{2}}
\end{aligned}
$$

Explicit answers except in max current phase (numerics)

"Dynamical" Phase Diagram

TASEP:

$$
\begin{aligned}
& x=-\sqrt{\frac{\alpha \beta}{(1-\alpha)(1-\beta)}} \\
& x^{\prime}=-\left[\frac{\alpha}{1-\alpha}\right]^{1 / 3} \\
& y=-\left[\frac{\beta}{1-\beta}\right]^{1 / 3} \\
& \text { CL: } E_{1}=\frac{\pi^{2} \alpha(1-\alpha)}{(1-2 \alpha) L^{2}}
\end{aligned}
$$

Non-analytic jump in $E_{1} \Rightarrow$ change in relaxational mechanism

Effective Domain Wall Theory

Derrida, Evans \& Mallick ‘95 Schütz et al '98, '00

Recall stationary state phase diagram:

Assumption: relaxation due to diffusion of domain walls between
 high and low-density phases

Effective Domain Wall Theory

Derrida, Evans \& Mallick ‘95 Schütz et al '98, '00

Consider a single diffusing domain wall with reflecting boundaries

TASEP:

$$
\begin{aligned}
D^{+} & =\frac{\beta(1-\beta)}{1-\alpha-\beta} . \\
D^{-} & =\frac{\alpha(1-\alpha)}{1-\alpha-\beta}
\end{aligned}
$$

12

Master eqn:

$$
\begin{aligned}
& \frac{\partial}{\partial t} P(x, t)=D^{-} P(x+1, t)+D^{+} P(x-1, t)-\left(D^{+}+D^{-}\right) P(x, t) \\
& \frac{\partial}{\partial t} P(1, t)=D^{-} P(2, t)+D^{+} P(1, t) \\
& \frac{\partial}{\partial t} P(L, t)=D^{+} P(L-1, t)-D^{-} P(L, t) .
\end{aligned}
$$

Solution:

$$
P(t, n)=\sum_{p} A_{p}(0) e^{-\epsilon t}\left[e^{i p n}+B_{p} u^{2 n} e^{-i p n}\right]
$$

Relaxation rates ε agree with exact results for small α, β !

Some Open Questions on this Part

- Analytic calculation of $E_{1}=3.578 L^{3 / 2}+\ldots$ in the MC phase
- What is the relaxational mechanism in general? modified DW diffusion (boundary conditions?)? something else?
- Full correlation functions through "form factors"?

Current Fluctuations

$Q_{1}(t)$: net \# of particles crossing the dashed line up to time t $Q_{1}(t) \sim j_{1} t$ for $t \rightarrow \infty \quad j_{1}=a v e r a g e$ current on first site Goal: calculate $\left\langle e^{\lambda Q_{1}(t)}\right\rangle \longrightarrow$ cumulants of $Q_{1}(\dagger)$

Previously Known Results

Average Current:

$$
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}(t)\right\rangle}{t}=(p-q) \rho(1-\rho)
$$

Derrida, Evans, Hakim \& Pasquier '93; Schütz/Domany '93

Diffusion Constant:

$$
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}^{2}\right\rangle-\left\langle Q_{1}\right\rangle^{2}}{t}=(p-q) \rho(1-\rho)(1-2 \rho)
$$

Derrida, Evans
\& Mallick '95

Relation to Spectrum of M

Modify Boundary Term in XXZ:

$$
\begin{aligned}
& B_{1}=\frac{\alpha+\gamma+(\alpha-\gamma) \sigma_{1}^{z}-2 \alpha \sigma_{1}^{-}-2 \gamma \sigma_{1}^{+}}{2 \sqrt{p q}} \\
& B_{1}=\frac{\alpha+\gamma+(\alpha-\gamma) \sigma_{1}^{z}-2 \alpha e^{\lambda} \sigma_{1}^{-}-2 \gamma e^{-\lambda} \sigma_{1}^{+}}{2 \sqrt{p q}}
\end{aligned}
$$

Then

$$
\lim _{t \rightarrow \infty}\left\langle e^{\lambda Q_{1}(t)}\right\rangle=e^{E_{0}(\lambda) t}
$$

$E_{0}(\lambda)=$ eigenvalue of $M(\lambda)$ with smallest real part

Great! Problem reduced to calculating an energy.
Problem: model remains integrable, but can no longer fulfil constraint that allows for $B A$ solution.

Way out: Constraint $\left[q^{L / 2+k}-e^{\lambda}\right]\left[\alpha \beta e^{\lambda}-q^{L / 2-k-1} \gamma \delta\right]=0$

$$
k \in \mathbb{Z},|k| \leq \frac{L}{2}
$$

$\left.\begin{array}{lll}\text { Sequence I: } & \lambda_{n}^{(1)}=n \ln (q) & \mathrm{n}=0,1, \ldots, \mathrm{~L} \\ \text { Sequence II: } & \lambda_{n}^{(2)}=\ln \left(\gamma \delta q^{n-1} / \alpha \beta\right) & \mathrm{n}=0,1, \ldots, \mathrm{~L}\end{array}\right\} \quad \begin{gathered}\text { calculate } \\ E\left(\lambda_{n}^{(j)}\right)\end{gathered}$
Try to restore full λ dependence from these two sequences

Results for the PASEP

$$
\begin{gathered}
b=\frac{p-q-\beta+\delta \pm \sqrt{(p-q-\beta+\delta)^{2}+4 \beta \delta}}{2 \beta} \\
E(\lambda)=(p-q) \frac{b\left(e^{\lambda}-1\right)}{(1+b)\left(e^{\lambda}+b\right)}
\end{gathered}
$$

These are the leading

$$
a=\frac{p-q-\alpha+\gamma \pm \sqrt{(p-q-\alpha+\gamma)^{2}+4 \alpha \gamma}}{2 \alpha}
$$ terms for $L \rightarrow \infty$

Results for the PASEP

$$
b=\frac{p-q-\beta+\delta \pm \sqrt{(p-q-\beta+\delta)^{2}+4 \beta \delta}}{2 \beta}
$$

$$
E(\lambda)=(p-q) \frac{b\left(e^{\lambda}-1\right)}{(1+b)\left(e^{\lambda}+b\right)}
$$

Confirmed by completely different approach (giving
 more results):

Some Open Questions on this Part

- Direct calculation from Bethe Ansatz: need solution for arbitrary λ
- Finite-size corrections from Bethe Ansatz (have some results).
- Maximum Current Phase using Bethe Ansatz?

$$
Q_{1}(t) \sim j_{1} t+\mathcal{O}\left(t^{1 / 3}\right)
$$

What can we say about the $t^{1 / 3}$ contribution?
\rightarrow Tracy-Widom

Summary

- Obtained Bethe Ansatz Equations for PASEP with most general open boundary conditions.
- Derived analytic expressions for eigenvalues of "Hamiltonian" with smallest real part \rightarrow describes relaxation to stationary state.
- Obtained "Dynamical Phase Diagram"
- Calculated eigenvalues of "excited states".
- Used Bethe Ansatz to compute current fluctuations.
- Full correlation functions through "Lehmann rep."??

