
Role of the particle’s stepping cycle in a TASEP:
a model of mRNA translation

Luca Ciandrini

Institute for Complex Systems and Mathematical Biology,
University of Aberdeen

Edinburgh, 9th December 2011



Outline

1 Introduction: mRNA translation for dummies

2 Particle’s stepping cycle: two-state model

3 Non-localised traffic jams

4 Back to Biology: what can I do with that?

5 Conclusions and further developments



Outline

1 Introduction: mRNA translation for dummies

2 Particle’s stepping cycle: two-state model

3 Non-localised traffic jams

4 Back to Biology: what can I do with that?

5 Conclusions and further developments



The central dogma of molecular biology

DNA
transcription−−−−−−−→ mRNA

mRNA translation−−−−−−−−−−→ proteins



TASEP has been introduced to mimic mRNA translation
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=
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C. T. MacDonald, J. H. Gibbs, A. C. Pipkin. Biopolymers, 6(1):1–5, 1968



The ribosome’s stepping cycle can be rather complicated...

Zouridis H, Hatzimanikatis V, Biophys J. 2007;92(3).
A model for protein translation: polysome self-organization leads to maximum protein synthesis rates.



The ribosome’s stepping cycle can be rather complicated...

Sharma AK, Chowdhury D, Phys. Biol. 2011;8(2).
Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding.
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Two-state model
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S. Klumpp, Y. Chai, and R. Lipowsky, Phys. Rev. E, 78:041909, 2008

L. Ciandrini, I. Stansfield, and M. C. Romano, Phys. Rev. E, 81:051904, 2010



Occupation numbers and densities

The occupation number of site i is ni = 0, 1, 2 ( , #,  ).

The dynamical rules can be written as

1→ 2 with rate ki

20→ 01 with rate γ.

And we introduce the densities:
li = ni (2− ni ) si =

ni (ni − 1)

2

λi = 〈li 〉 σi = 〈si 〉
ρi = λi + σi .



Mean-field (MF) equations

The flow equations (MF) for the densities are:
dλi

dt
= σi−1(1− λi − σi )γ − kλi

dσi

dt
= kλi − σi (1− λi+1 − σi+1)γ

+ steady state (
dλi

dt
=

dσi

dt
= 0).

The incoming and outgoing currents at site i are:

J i+ = σi−1(1− λi − σi )γ, J i− = σi (1− λi+1 − σi+1)γ .

Our mean-field assumes 〈si sj〉 ' 〈si 〉〈sj〉 and 〈li sj〉 ' 〈li 〉〈sj〉, which
is different than simply 〈ninj〉 ' 〈ni 〉〈nj〉



Periodic Boundary Conditions (PBC)


dλ

dt
= σ(1− λ− σ)γ − kλ

dσ

dt
= kλ− σ(1− λ− σ)γ

↓
J = σ(1− λ− σ)γ

λ =
J

k

σ = ρ− λ = ρ− J

k

w := k/γ

J = k
ρ(1− ρ)

w + (1− ρ)

λ =
ρ(1− ρ)

w + (1− ρ)

σ = w

[
ρ

w + (1− ρ)

]

L. Ciandrini, I. Stansfield, and M. C. Romano, Phys. Rev. E, 81:051904, 2010
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Comparison between simulations (- -) and MF (–)

For small k the MF underestimates transitions toward the state 2
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The current is simply J = kλ.



Periodic Boundary Conditions (PBC) - MC densities

Where the value of ρ for which the current is maximal is

ρ∗ = 1− χ ,
and the maximal value of the densities are

λ∗ = 1− 2χ , σ∗ = χ .

w := k/γ

χ := w(
√

1 + 1/w − 1)



Open Boundary Conditions (OBC)


dλi

dt
= σi−1(1− λi − σi )γ − kλi

dσi

dt
= kλi − σi (1− λi+1 − σi+1)γ

+ boundary conditions:

dλ1

dt
= α(1− λ1 − σ1)− kλ1

dσL

dt
= kλL − βσL

→

we can write a recursive
map for the density σi :

σi+1 = 1− J(
1

k
+

1

γσi
)
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Maximal Current Principle in OBC

The boundaries are substituted by reservoirs of particles and the
dynamics between the reservoir and the lattice is assumed to be the
same as in the bulk. J. Krug, Phys. Rev. Lett., 67:1882, 1991

The Maximal Current Principle states that J in the MC regime is
given by

JMC = max
ρ∈[ρL+1,ρ0]

JPBC(ρ),

where ρ0 and ρL+1 are respectively the densities of the reservoirs
of particles at the left and the right boundaries and are chosen to
realize the injection and depletion parameters α and β.

ρ0 = λ0 + σ0 ,

α = σ0γ , β = γ(1− ρL+1)



The Maximal Current Principle locates the critical points

The critical points are obtained by equating σ0 with σ∗ and ρL+1

with ρ∗ . [w := k/γ, χ := w(
√

1 + 1/w − 1)]

Low Density (LD) phase [α < β , α < γ χ]

ρ =
α(k + γ)

γ(k + α)
, J = α

k(γ − α)

γ(k + α)

High Density (HD) phase [β < α , β < γ χ]

ρ = 1− β

γ
, J = β

k(γ − β)

γ(k + β)

Maximal Current (MC) phase [α, β > γ χ]

ρ = 1− χ , J = k(1− 2χ)

[σ∗ = χ, ρ∗ = 1− χ]



The critical points αc and βc depend on w = k/γ, but in the limit
w →∞ (particles with only one state) we find the well known
TASEP results.
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In the limit w →∞ we recover the TASEP

The critical points αc and βc depend on w = k/γ, but in the limit
w →∞ (particles with only one state) we find the well known
TASEP results.
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Two-state model is intrinsically different from the TASEP
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The two-state model cannot be mapped onto a TASEP with
effective hopping rates.
Critical points and steady-state quantities depend on the internal
dynamics, but there are dynamical effects too...
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Non-localised traffic jams

Starting point: deviation MF-theory for small k/γ
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Work in progress...
(manuscript in preparation)

with M C Romano and A Parmeggiani (Université de Montpellier II)



Kymographs of the two-state model

The kymographs show non-localised traffic jams...



Kymographs of the two-state model

The kymographs show non-localised traffic jams...

...and the presence of shocks in the density σ.



A more quantitative overview on the clustering

C (n) = probability of finding a cluster of n particles
∆(n) = difference between two-state model and TASEP
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Simulations of S.cerevisiae genome

The final aim of this project is to predict the transcriptome-proteome
relation and thereby to gain a deeper understanding of the physical
and biological processes underlying translation.

We estimate all the necessary parameters (γ,{ki}, β) and simulate
the entire genome of S.cerevisiae (∼ 6000 sequences). This allows
us to:

- Classify the genes into two main types according to ρ(α) and J(α):
significant correlation to biological functions.

- Estimate of the “operative” injection rates α for each mRNA (for
the first time), which is experimentally not possible.



Classification of mRNA sequences in smooth/abrupt...
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...and correlation with biological functions of encoded proteins.
L. Ciandrini, I. Stansfield, and M. C. Romano, (to be submitted)



Genome-wide estimates of α and biological functions
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Conclusions...

To summarise, the two-state model condenses the particle’s stepping
cycle into two steps: internal transition (k) and translocation (γ).

The emerging dynamics substantially differs from the TASEP
(e.g., no particle-hole symmetry, the phase diagram cannot be
reproduced with effective rates, non-localised traffic jams);

it recovers the TASEP in the limit w →∞ (but biologically
w � 1);

it allows direct application to genome-wide protein synthesis
databases;

the fundamental dynamics is also applicable to other
biological processes (e.g., molecular motors).



...and further developments

Competition for resources:
• A mixed population of competing TASEPs with a shared

reservoir of particles, P Greulich†, L Ciandrini†, R J Allen∗, M C Romano∗,
submitted [arXiv:1111.1775].

• Multiple phase transitions in a system of exclusion
processes with limited reservoirs of particles and fuel
carriers, C A Brackley, L Ciandrini, M C Romano, to be submitted.

Multiple phase transitions in an ASEP with limited particles and fuel carriers 3

Figure 1. Schematic diagrams describing the various systems. (a) The TASEP
with open boundaries its most simple form. Particles enter at fixed rate α, hop
at fixed rate k and leave with rate β. (b) A finite number of fuel carriers can be
introduced. When a particle hops, fuel from one carrier is used. (c) Complete
model with finite fuel carrier and finite particles. The entry rate depends on the
number of particles in the reservoir, and the hopping rate depends on the number
of loaded fuel carriers.

has often been described using a domain wall (DW) theory [30]. Due to the free
diffusion of the DW a time average of the density in SP gives ρSP = 1/2, but the
current depends on the density in either the LD or HD regions of the lattice, i.e.
JSP = α(1 − α/k) = β(1 − β/k).

In this paper we consider several TASEPs which share a common finite pool of
both particles and fuel carriers. The injection rate, which is the same for each TASEP,
depends on the availability of particles in a common pool (i.e., particles which are not
involved with any lattice). A model describing several TASEPs sharing a common pool
of particles has been introduced and thoroughly studied in [9–11], where the authors
use the DW theory along with known exact results, and focus particularly on the
SP[is this true?]. In this paper we use an alternative recent mean-field (MF) approach
that allows us to simplify the calculations [12]. Importantly, we combine this with a
model for a finite pool of fuel carriers [13; 14] which, as noted above, can be viewed
as carriers providing the energy which drives the motion, i.e. allowing the particles to
hop. Although we consider a fixed number of fuel carriers, we suppose that it takes a
finite time to “refuel” them with their cargo once it has been used. Figure 1(b) shows a
schematic representation of this model. In section 2 we summarise the previous results
for the two models separately, before describing in section 3 a mean-field model for
a system with both a finite pool of particles and fuel carriers which are refuelled at
a finite rate. Figure 1(c) shows a schematic of this complete model. Section 4 shows

Folding TASEP
(in preparation, with F Turci, A Parmeggiani, E Pitard and M C Romano)
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Thank you!



We find the general term of the recursion: σi = σi(σ1, J)

σi+1 = 1− J(
1

k
+

1

γσi
)

which fixed points are

σ± =
1

2

[
(1− J

k
)±

√
(1− J

k
)2 − 4J

γ

]
.

The general term is given by:

σi =
− σ−σ+(σi−1

+ − σi−1
− ) + σ1(σi+ − σi−)

−σ−σ+(σi−2
+ − σi−2

− ) + σ1(σi−1
+ − σi−1

− )
.



Reasoning on the iterative map [B. Derrida, E. Domany, and D. Mukamel,Journal of

Statistical Physics, 69(3-4):667–687, 1992] we are able to obtain the MF solutions

Low Density (LD) phase [α < β , α 6 k(
√

1 + γ/k − 1)]

ρ =
α(k + γ)

γ(k + α)
, J = α

k(γ − α)

γ(k + α)

High Density (HD) phase [β < α , β 6 k(
√

1 + γ/k − 1)]

ρ = 1− β

γ
, J = β

k(γ − β)

γ(k + β)

Maximal Current (MC) phase [α, β > k(
√

1 + γ/k − 1)]

ρ = 1− k

γ

(√
1 + γ/k − 1

)
, J = k

[
1− 2

k

γ

(√
1 + γ/k − 1

)]
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