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The central dogma of molecular biology
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TASEP has been introduced to mimic mRNA translation
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The ribosome's stepping cycle can be rather complicated...
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Zouridis H, Hatzimanikatis V, Biophys J. 2007;92(3).

A model for protein translation: polysome self-organization leads to maximum protein synthesis rates.
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The ribosome's stepping cycle can be rather complicated...

Sharma AK, Chowdhury D, Phys. Biol. 2011;8(2).

Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding.
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Two-state model
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Occupation numbers and densities

The occupation number of site i is n; =0,1,2 (_, O, @).

The dynamical rules can be written as

1—2 with rate k;
20— 01 with rate 7.
And we introduce the densities:
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Mean-field (MF) equations

O state 1 irI position i . state 2 hI position
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The flow equations (MF) for the densities are:
d\;
T = O','_l(]. — )\,' — 0',')’}/ — k)\,'
do;
e kXi —oi(1 — Xiy1 — 0ip1)y

teady stat dAi = doi =0
+ steady state e ).

The incoming and outgoing currents at site / are:

Our mean-field assumes (s;s;) =~ (s;)(s;) and (/;s;) =~ (;)(s;), which
is different than simply (njn;) ~ (n;)(n;)



Periodic Boundary Conditions (PBC)
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Periodic Boundary Conditions (PBC)
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Comparison between simulations (- -) and MF (-)

For small k the MF underestimates transitions toward the state 2
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Periodic Boundary Conditions (PBC) - MC densities

Where the value of p for which the current is maximal is
pr=1-x,
and the maximal value of the densities are

A =1-2y, ot =x.

w = k/vy

X =w(y/1+1/w—-1)



Open Boundary Conditions (OBC)
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+ boundary conditions:
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Open Boundary Conditions (OBC)
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Maximal Current Principle in OBC

The boundaries are substituted by reservoirs of particles and the
dynamics between the reservoir and the lattice is assumed to be the
same as in the bulk. J krug, Phys. Rev. Lett., 67:1882, 1001

The Maximal Current Principle states that J in the MC regime is
given by

Juc = max  Jesc(p),
PE[pL+1,p0]

where po and p;y1 are respectively the densities of the reservoirs
of particles at the left and the right boundaries and are chosen to
realize the injection and depletion parameters « and (5.

po = Ao+ 0o,
a =097, B =71~ pry1)



The Maximal Current Principle locates the critical points

The critical points are obtained by equating gg with o and p; 1

with p* . [w:=k/v, x = w(/1+1/w —1)]

Low Density (LD) phase [a < B, a<yX]

[B<a,B<vx]

Maximal Current (MC) phase

[o* =x, p* =1-x]



The critical points « and . depend on w = k/~, but in the limit
w — oo (particles with only one state) we find the well known
TASEP results.
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The critical points « and . depend on w = k/~, but in the limit
w — oo (particles with only one state) we find the well known
TASEP results.
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The critical points « and . depend on w = k/~, but in the limit
w — oo (particles with only one state) we find the well known
TASEP results.

—_—

1l p| Me

0.4 -

02 7 H D

0% 02 04 06 08 1

oy

L. Ciandrini, I. Stansfield, and M. C. Romano, Phys. Rev. E, 81:051904, 2010

B/




In the limit w — oo we recover the TASEP

The critical points a and . depend on w = k/~, but in the limit
w — oo (particles with only one state) we find the well known
TASEP results.
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In the limit w — oo we recover the TASEP

The critical points a and . depend on w = k/~, but in the limit
w — oo (particles with only one state) we find the well known
TASEP results.
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Two-state model is intrinsically different from the TASEP

0.8
<0-6 TASEP with hopping rate
X, p=ky/(k+7), k/y=01
two-state k/y=0.1
0.2
TASEP p=kv/(k+7)

0% 02 04 06 08 1

a/y

The two-state model cannot be mapped onto a TASEP with
effective hopping rates.

Critical points and steady-state quantities depend on the internal
dynamics, but there are dynamical effects too...
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Non-localised traffic jams

Starting point: deviation MF-theory for small k/~
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Work in progress...
(manuscript in preparation)
with M C Romano and A Parmeggiani (Université de Montpellier I1)
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The kymographs show non-localised traffic jams...
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Kymographs of the two-state model

The kymographs show non-localised traffic jams...
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...and the presence of shocks in the density o.



A more quantitative overview on the clustering

C(n) = probability of finding a cluster of n particles
A(n

) = difference between two-state model and TASEP
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" WE CAN SEE HERE THAT THE
AGREEMENT wiTH THEOKLY 1S ExcEWENT "

B2000 Tom Swanson



Simulations of S.cerevisiae genome

The final aim of this project is to predict the transcriptome-proteome
relation and thereby to gain a deeper understanding of the physical
and biological processes underlying translation.

We estimate all the necessary parameters (v,{k;}, 3) and simulate
the entire genome of S.cerevisiae (~ 6000 sequences). This allows
us to:

- Classify the genes into two main types according to p(«) and J(«):
significant correlation to biological functions.

- Estimate of the “operative” injection rates o for each mRNA (for
the first time), which is experimentally not possible.



Classification of mRNA sequences in smooth /abrupt...
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...and correlation with blologlcal functions of encoded proteins.
L. Ciandrini, |. Stansfield, and M. C. Romano, (to be submitted)



Genome-wide estimates of a and biological functions
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Conclusions...

To summarise, the two-state model condenses the particle’s stepping
cycle into two steps: internal transition (k) and translocation ().

m The emerging dynamics substantially differs from the TASEP
(e.g., no particle-hole symmetry, the phase diagram cannot be
reproduced with effective rates, non-localised traffic jams);

m it recovers the TASEP in the limit w — oo (but biologically
w <L 1);

m it allows direct application to genome-wide protein synthesis
databases;

m the fundamental dynamics is also applicable to other
biological processes (e.g., molecular motors).



...and further developments

m Competition for resources:

o A mixed population of competing TASEPs with a shared

reservoir of particles, P Greulich®, L Ciandrinit, R J Allen*, M C Romano*,
submitted [arXiv:1111.1775].

o Multiple phase transitions in a system of exclusion
processes with limited reservoirs of particles and fuel
Carriers, c A Brackley, L Ciandrini, M C Romano, to be submitted.

| —

i-1 4 i+1 -1 4 i+1

» Folding TASEP
(in preparation, with F Turci, A Parmeggiani, E Pitard and M C Romano)
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Thank you!



We find the general term of the recursion: o; = g;(01, J)

oy
1 1
o Oj+1 = 1— J(

k Yo

which fixed points are

1 J 4J
= |1-3)£4 /1 ->2)2-—|.
oi= [( D fa-r-t ]
The general term is given by:

—o_oi(oTt =0 + o1(0f — ol) }

R or(0h? =02 +oy(aiTt =0T




Reasoning on the iterative map [B. Derrida, E. Domany, and D. Mukamel,Journal of
Statistical Physics, 69(3-4):667-687, 1092] We are able to obtain the MF solutions

Low Density (LD) phase [a < 5, a < k(y/1+7v/k —1)]

Maximal Current (MC) phase [a, 8 > k(1/1+v/k —1)]
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Function

Process struct. const. of the ribosome
translation structural molecule activity
regulation of cellular process o
reg. of transcription, DNA-dependent binding

regulation of RNA metabolic process nucleic acid binding TF activity
RNA biosynthetic process

transcription, DNA-dependent

regulation of gene expression

reg. of nitrogen compound metabolic proc. .3520-10 0

reg. of metabolic process -log(p-value) Component

reg. of cellular metabolic proc. .

reg. of primary metabolic proc. ribosome
reg. of cellular macromolecule biosynt. proc. cytosol
reg. of macromolecule biosynthetic proc. nucleus

unannotated
helicase activity

unannotated
cell cycle
nucleobase-containing compound met. proc.

ribonucleoprotein complex
unannotated

-15 -10 -5 0

chromosome
-log(p-value)

-30-20-10 0
-log(p-value)
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