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I Definition of Totally Asymmetric Exclusion
Process

TASEP

Usually consider 1d lattice of Length N, ZN

at most one particle per site (exclusion)
particles hop forward with rate p (totally asymmetric hopping)

Boundary conditions:

a) on ring (periodic boundary conditions)
b) or on open lattice
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Motivation

The ASEP was first introduced in 1968 as a model for RNA
translation by ribosomes
(MacDonald, Gibbs and Pipkin, Biopolymers 1968)

Now a general model for traffic (both vehicular and biophysical)

It is a nonequilibrium system, since a current always flows —
stationary state not known a priori

Exhibits phase transitions in 1 dimension
(Krug, Phys. Rev. Lett. 1991)

Exactly solvable model
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Correlation functions

Use indicator variable τi = 1,0 for particle, hole respectively
Then

d
dt
〈τi〉 = p〈τi−1(1− τi)〉 − p〈τi(1− τi+1)〉

〈τi(t)〉 is the density at site i at time t

Ji,i+1 = p〈τi(1− τi+1)〉 is the current from site i to i + 1

Hierarchy of correlation functions e.g.

d
dt
〈τi(1−τi+1)〉 = −p〈τi(1−τi+1)〉+p〈τi−1(1−τi)(1−τi+1)〉+p〈τiτi+1(1−τi+2)〉

... difficult to solve generally

N. B. take p = 1 from now on
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II Exact Solution of Stationary State

Matrix Product Solution for Open Boundariesz
— → D and — → E where D,E are matrices

e.g. Prob
[ z z

— — — —

]
=
〈W |EDED|V 〉

Z4

where

ZN = 〈W |CN |V 〉 C = D + E

Necessary and Sufficient Conditions

DE = D + E

βD|V 〉 = |V 〉

α〈W |E = 〈W |

(Derrida, Evans,
Hakim, Pasquier 1993)
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Form of matrices
Several possible representations are possible, for example :

D =


1 1 0 0 · · ·
0 1 1 0
0 0 1 1
0 0 0 1
...

. . .

 E =


1 0 0 0 · · ·
1 1 0 0
0 1 1 0
0 0 1 1
...

. . .



〈W | = κ
(

1, a, a2 . .
)

|V 〉 = κ


1
b
b2

.

.

 ,

where a =
1− α
α

b =
1− β
β

and κ2 = (α+ β − 1)/αβ

• matrices generally (semi) infinite except along α+ β = 1
• calculation of matrix product elements corresponds to enumeration
of lattice paths
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Exact Solution of Stationary State
Calculation of the Current

JN = α〈(1− τ1)〉 = 〈τi(1− τi+1)〉 = β〈τN〉

= α
〈W |ECN−1|V 〉

ZN
=
〈W |C i−1DECN−i−1|V 〉

ZN
= β
〈W |CN−1D|V 〉

ZN

=
ZN−1

ZN
ratio of nonequilibrium partition functions

Calculation of the ZN

C0 = 1 , C1 = D + E , C2 = D2 + E2 + ED + D + E , . . .

CN =
∑
n,m

an,mEnDm 〈W |CN |V 〉 =
∑
n,m

an,m
1
αn

1
βm

for large N, 〈W |CN |V 〉 ∼ cNN−λ so

J → 1
c
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Stationary Phase Diagram

2
1

2
1 α

β

LD MC

HD

HD - high density phase controlled by right boundary
ρ = β, J = β(1− β)

LD - low density phase controlled by left boundary
ρ = α, J = α(1− α)

MC - maximal current phase ρ = 1/2, J = 1/4
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First-order line and domain wall dynamics

α = β < 1/2 is first-order transition line
Along first-order line stationary state is superposition of shocks

(domain walls)
α

1−β

which generates an exact linear average profile.

Extending this picture to regime HD I/ LD I gives an effective
description of dynamics in terms of domain walls moving

stochastically with bias velocity vs =
β(1− β)− α(1− α)

1− β − α
= β − α

ld
α

1−β

hd
α

1−β

(Dudzinsky, Schütz 2000)
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Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram
(de Gier and Essler 2005)

0 0.5 1
0

0.5

1

LDI′

LDII′

HDII′

HDI′

MC

α

β

Stationary Phase Diagram
(Derrida, Evans, Hakim, Pasquier 1993),
(Schütz, Domany 1993)

2
1

2
1

β

α

HD−I

LD−I

HD−II

MCLD−II

Explanation?

It’s a mystery!
but deGE line does exist (Proeme, Blythe, Evans 2011)
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Stationary Phase Diagram: Lee Yang Theory

• Consider normalisation as a nonequilibrium partition function

ZN =
N∑

p=1

p!(2N − 1− p)!

N!(N − p)!

(1/β)p+1 − (1/α)p+1

(1/β)− (1/α)

• Generalise real rates α, β to complex parameters and consider
zeros of ZN in e.g. the complex α plane

• Phase transitions occur when complex zeros of ZN
‘pinch’ the real axis as N →∞

first order line: finite density of zeros pinch at angle π/2

second order line: vanishing density of zeros pinch at angle π/4

• lim
N→∞

1
N

ln ZN = ln J so current plays role of free energy
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Stationary Phase Diagram: Lee Yang Theory

Zeros of ZN(α, β) in complex alpha plane

-0.2 0 0.2 0.4 Re α

-0.2

-0.1

0

0.1

0.2

Im α

β=1

β=1/3
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II Partial Asymmetry
α βp pq q q

γ δ
21 NN−1

quadratic algebra

DE − qED = D + E

(βD − δE)|V 〉 = |V 〉

〈W |(αE − γD) = 〈W |

Let D =
1

1− q
+

â
(1− q)1/2 E =

1
1− q

+
â†

(1− q)1/2

⇒ ââ† − qâ†â = 1 q-deformed harmonic oscillator
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III Partial Asymmetry: Results for γ = δ = 0
•q < 1 (forward bias)

1+q
q(1−q)

2
1−q

2
1−q

1+q
q(1−q)

MC

β

α

HD−II

LD
−I

HD−I

LD
−I

I

HD−III

LD
−I

II

Sasamoto 2000

•q > 1 (reverse bias)

J '
(

αβ(q − 1)2

(q − 1 + α)(q − 1 + β)

)1/2

q−N/2+1/4

Blythe, Evans, Calaori, Essler 2000

•q = 1 (symmetric) linear profile and J ' 1
N
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IV Many Species: 2 species ASEP

• Motion of an excess particle

• Second class particle dynamics

1 0→ 0 1
2 0→ 0 2
1 2→ 2 1

• Second class particle moves forward in low density environment,
moves backward in high density environment. It therefore tracks
‘shocks’ (discontinuities in density profile)
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2-ASEP: Matrix Solution on Ring

τi = 0,1,2, let there be P1 first class, P2 second class and
P0 = N − P1 − P2 holes

Stationary measure Derrida, Janowsky, Lebowtiz and Speer 1993

Prob({τi}) =
Tr
[∏N

i=1 Xτi

]
Z (P0,P1,P2)

matrices now X0 = E , X1 = D, X2 = A

Quadratic algebra

DE = D + E

DA = A

AE = A

Where

A = |0〉〈0|

is a projector
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Multispecies TASEP

Multispecies TASEP: ‘n-TASEP’

n Classes of particle and vacancies

K 0→ 0 K for n ≥ K ≥ 1
K J → J K for n ≥ J > K ≥ 1

e.g. n= 3

1 0→ 0 1
2 0→ 0 2
3 0→ 0 3
1 2→ 2 1
1 3→ 3 1
2 3→ 3 2
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Matrix Solution for 3-TASEP

X1 = 1⊗ 1⊗ D + δ ⊗ ε⊗ A + δ ⊗ 1⊗ E
X2 = A⊗ 1⊗ A + A⊗ δ ⊗ E
X3 = A⊗ A⊗ E
X0 = 1⊗ 1⊗ E + 1⊗ ε⊗ A + ε⊗ 1⊗ D

where
δ = D − 1 ε = E − 1

.

Example of algebraic conditions

X1X2 = X2X̂1 − X̂2X1

−X1X2 = X1X̂2 − X̂1X2

Example of hat matrix: X̂1 = (1− δ)⊗ 1⊗ 1

M. R. Evans The Asymmetric Exclusion Process



Hierarchical Solution for n-TASEP

Hierarchical Solution for n-TASEP Evans, Ferrari, Mallick 2009

X (n)
K =

n−1∑
M=0

a(n)
KM ⊗ X (n−1)

M for 1 ≤ K ≤ n .

X (n)
0 = −X (n)

0 +
n−1∑
M=0

a(n)
0M ⊗ X (n−1)

M

X (n)
K : the lower index K denotes the class of the particle; the upper

index n gives the number of classes in the system.

a(n)
JM themselves tensor products of fundamental matrices A,D,E ,1

Algebraic Conditions[
X (n)

j , X̂ (n)
j

]
= 0 0 ≤ J ≤ n

X (n)
J X (n)

K = X̂ (n)
J X (n)

K − X (n)
J X̂ (n)

K J < K

= X̂ (n)
K X (n)

J − X (n)
K X̂ (n)

J or K = 0
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Structure of ‘Matrices’

dim(n) = no. fundamental matrices D,E ,1 in tensor product =
(

n
2

)
n dim(n)
1 0 scalars
2 1 matrices
3 3

What is the interpretation?

no. queue counters required for n − 1 priority queue system =
n−1∑
i=1

i =

(
n
2

)
= dim(n)
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Queueing Interpretation: 2- TASEP
Recall

D =
∑
n=0

|n〉 [〈n|+ 〈n + 1|] E =
∑
n=0

[|n〉+ |n − 1〉] 〈n| A = |0〉〈0|

Think of |n〉 as state of a queue (no. customers waiting).
t(i) = N − i is discrete time

τi = 0 no service
τi = 1 used service
τi = 2 unused service

Weight of config. {τi} = no. queue trajectories consistent with {τi}

τi = 0 E |n〉 = |n〉+ |n + 1〉
no arrival new arrival

τi = 1 D|n〉 = |n − 1〉+ |n〉

τi = 2 A|n〉 = |0〉δn,0 queue must be empty
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Queueing Interpretation: 3- TASEP
Now think of 2 tandem queues:
q1 contains first class customers which get served and go to q2
q2 contains first class customers arriving from q1 and second class
customers arriving from outside

State of queues is |l〉|m〉|n〉
where l is no. first class in q2, m is no. second class in q2,
n is no. first class in q1

τi = 0 no service in q2
τi = 1 first class service in q2
τi = 2 second class service in q2
τi = 3 unused service in q2

e.g. τi = 3 unused service in q2⇒ l = m = 0;
possible arrival at q1⇒ n→ n or n→ n + 1

X3|l〉|m〉|n〉 = δl,0|l〉δm,0|m〉 [|n〉+ |n + 1〉] = A|l〉A|m〉E |n〉
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Conclusions

A fundamental class of nonequilibrium stationary states may be
solved exactly as a matrix product.
Algebraic proof of stationary measure requires quadratic
algebras and generalisations
Construct stationary measure hierarchically from (n−1)-TASEP
stationary measure
The ‘Matrices’ act on space of queue counters
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What I’ve left out

Algebraic proof of stationary measure
Simple mean field theory correctly predicts phase diagram and is
first recourse for many systems
Biophysical systems imply generalisations to dynamically
extending 1d lattices and coupled one lattices
Current fluctuations and large deviations

. . . and much, much more
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