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| Definition of Totally Asymmetric Exclusion

Process

TASEP

Usually consider 1d lattice of Length N, Zy
@ at most one particle per site (exclusion)
@ particles hop forward with rate p (totally asymmetric hopping)
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@ The ASEP was first introduced in 1968 as a model for RNA
translation by ribosomes
(MacDonald, Gibbs and Pipkin, Biopolymers 1968)

@ Now a general model for traffic (both vehicular and biophysical)

@ It is a nonequilibrium system, since a current always flows —
stationary state not known a priori

@ Exhibits phase transitions in 1 dimension
(Krug, Phys. Rev. Lett. 1991)

@ Exactly solvable model
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Correlation functions

Use indicator variable 7; = 1, 0 for particle, hole respectively
Then d

E<T’> = p(ri-1(1 = 7)) — p(ri(1 — 7i41))
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Correlation functions

Use indicator variable 7; = 1, 0 for particle, hole respectively

Then
d

E<T’> = p(ri-1(1 = 7)) — p(ri(1 — 7i41))

(1i(t)) is the density at site i at time t
Jiiv1 = p{ri(1 — 7i41)) is the current from site i to j + 1
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Correlation functions

Use indicator variable 7; = 1, 0 for particle, hole respectively

Then d
E<T’> = p(ri-1(1 = 7)) — p(ri(1 — 7i41))

(1i(t)) is the density at site i at time t

Jiiv1 = p{ri(1 — 7i41)) is the current from site i to j + 1

Hierarchy of correlation functions e.g.

%<Ti(1*ﬂ+1)> = —p(7i(1=7is1))+P(7i—1 (1 =73) (1 =Ti1)) +P(7iTi1 (1= Tiy2))

... difficult to solve generally
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Correlation functions

Use indicator variable 7; = 1, 0 for particle, hole respectively

Then d
E<T’> = p(ri-1(1 = 7)) — p(ri(1 — 7i41))

(1i(t)) is the density at site i at time t

Jiiv1 = p{ri(1 — 7i41)) is the current from site i to j + 1

Hierarchy of correlation functions e.g.

%<Ti(1*ﬂ+1)> = —p(7i(1=7is1))+P(7i—1 (1 =73) (1 =Ti1)) +P(7iTi1 (1= Tiy2))

... difficult to solve generally

N. B. take p = 1 from now on
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Il Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

! —D and  — E where D, E are matrices
J— — J— —_— Z4
where

Zy=(W|CNlV) C=D+E
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Il Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

! —D and  — E where D, E are matrices
e Pon[ _ @ _ @] WWEDEDW)
- — — 4

where

Zy=(W|CNlV) C=D+E

Necessary and Sufficient Conditions

BE = D5 (Derrida, Evans,
gDoIvy = |V) Hakim, Pasquier 1993)
alWIE = (W]
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Form of matrices

Several possible representations are possible, for example :

11 0 O 1 0 0O
01 10 11 0 0
p-| 00 11 E-| 0110
0 0 0 1 0O 0 1 1

1

b

(Wi=x(1, a & ) Vy=r| P |,

wherea:1;a b:1;ﬂandfez:(a+ﬂ—1)/aﬂ

e matrices generally (semi) infinite except along o + 5 = 1
e calculation of matrix product elements corresponds to enumeration
of lattice paths
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Exact Solution of Stationary State

Calculation of the Current

Iv = (1 —m)) = (i(1 = 7ig1)) = B(TNn)
B <W|ECN*1|V> B <W|C"71DECN*"*1|V> _ﬁ<W|CN*1D|V>
- Zn B 2y B Zn
ZN-1

= ratio of nonequilibrium partition functions
N
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Exact Solution of Stationary State

Calculation of the Current

o= all=m) = @-m) = Blw)
_ AWIECYTV) (WICTTDECN V) (w|Ch1D|V)
= « ZN B 2N = Zn
- qu ratio of nonequilibrium partition functions
N

Calculation of the 2y
c’=1, C'=D+E, C*°=D*°+E?+ED+D+E,

=> a,mE'D™  (W|CN|V) = Zanm e
n,m ﬁ

for large N, (W|CV|V) ~ NN~

1
J— —
Cc
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Stationary Phase Diagram

B
LD MC

HD

a

N

- high density phase controlled by right boundary
p=p5,J=p5(1-p5)

LD - low density phase controlled by left boundary
p=a,Jd=a(1—a)

MC - maximal current phase p =1/2,J =1/4
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First-order line and domain wall dynamics

a = 8 < 1/2 s first-order transition line
Along first-order line stationary state is superposition of shocks
1—B

o

(domain walls)
which generates an exact linear average profile.

Extending this picture to regime HD I/ LD | gives an effective
description of dynamics in terms of domain walls moving

stochastically with bias velocity vs = f—p)—allza) _ B-a

1-0—-«

1-B 1-B
o ( a

id hd
(Dudzinsky, Schiitz 2000)
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Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram Stationary Phase Diagram
(de Gier and Essler 2005) (Derrida, Evans, Hakim, Pasquier 1993),
(Schiitz, Domany 1993)
1
1 B
! LDII
\
‘\
\\\ LD-II MC
3 05 i,
LDT 2
HDIT
\ LD-I
HDI N §
\ HD-1: HD-II
0 D ‘

N[ |

Explanation?
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Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram Stationary Phase Diagram
(de Gier and Essler 2005) (Derrida, Evans, Hakim, Pasquier 1993),
(Schiitz, Domany 1993)
1
1 B
! LDII
\
‘\
\\\ LD-II MC
3 05 i,
LDT 2
HDIT
\ LD-I
HDI N §
\ HD-1: HD-II
0 D
0 0.5 1 1 o
« 2

Explanation? It's a mystery!
but deGE line does exist (Proeme, Blythe, Evans 2011)
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Stationary Phase Diagram: Lee Yang Theory

e Consider normalisation as a nonequilibrium partition function

X pieN 1 p) (18P — (1/a)p
2= NN P (1/3)—(1/a)

p=1
e Generalise real rates «, 3 to complex parameters and consider
zeros of Zy in e.g. the complex « plane

e Phase transitions occur when complex zeros of Zy
‘pinch’ the real axis as N — ~

first order line: finite density of zeros pinch at angle = /2
second order line: vanishing density of zeros pinch at angle 7 /4

o lim 1NInZN:Iano

N—oo
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Stationary Phase Diagram: Lee Yang Theory

Zeros of Zy(«, 8) in complex alpha plane

=
S
555
5
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Il Partial Asymmetry

()¢ ap g

N I =
0 08 __@e.,

2 N-1 N
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Il Partial Asymmetry

quadratic algebra

DE-gED = D+E
(BD-3SE)|V) = V)
(W|(aE —~yD) = (W]
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Il Partial Asymmetry

K
. @ a8 __ae.,

quadratic algebra

DE-gED = D+E
(BD-SE)V) = |V)
(W|(aE —9yD) = (W

1 i 1 &

Let D=

g (G-q” "" 1 q G-g~
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Il Partial Asymmetry

K
. @ a8 __ae.,

quadratic algebra

DE-GED - D+E
(BD—SE)V) = |V)
(W|(aE —9yD) = (W
1 3 1 4
I i e 1—q (1-9)'7
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lll Partial Asymmetry: Results fory=§ =0

eq < 1 (forward bias)

B
L& we
9 9, M
1-q] .
2 - —
aa-a)| DA HD ,,”,, .
SR HD-III
a(1-q) 1-q a
1+q Sasamoto 2000

eq > 1 (reverse bias)

~N/2+1/4

af(q 1) Ve
)

= (G iraa m) °

Blythe, Evans, Calaori, Essler 2000

1
eq = 1 (symmetric) linear profile and J ~ N
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IV Many Species: 2 species ASEP

e Motion of an excess particle

_00__0 0. _00 10 0 _00 _0 0_
000 0 0 000 0 O 000 0 O
Q_0

_ 000 00 00 00 0 000 0 O
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IV Many Species: 2 species ASEP

e Motion of an excess particle

_00__0 0. _00 10 0 _00 _0 0_
000 0 0 000 0 O 000 0 O
Q_0

_0006 00 _00 00 0 _000 0_0_
e Second class particle dynamics

10—01
20—-02
12—-21

e Second class particle moves forward in low density environment,
moves backward in high density environment. It therefore tracks
‘shocks’ (discontinuities in density profile)
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2-ASEP: Matrix Solution on Ring

7 =0,1,2, let there be P; first class, P, second class and
Po =N- P1 — Pg holes

Stationary measure Derrida, Janowsky, Lebowtiz and Speer 1993

Tr |:Hlli1 Xﬂ}

Prob({T/}) = m

matricesnow Xo = E, X; =D, X, = A

Quadratic algebra

DE = D-+E Where
DA = A

A =1[0)(0]
AE = A

is a projector
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Multispecies TASEP

Multispecies TASEP: ‘n-TASEP’

n Classes of particle and vacancies

K0O—0K for n>Kz>1
KJ—-JK for n>J>K>1

e.g.n=3

10—-01
20—-02
30—-03
1221
13—-31
23—-32
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Matrix Solution for 3-TASEP

Xi 119 D+0QeA+IQT1RE

Xo = AR1RA+AQRIQE

Xs = ARAQE

Xo = 1Q1QE+1ReA+e1@D
where

Example of algebraic conditions

X1 Xo = Xo Xy — Xo X
—XiXo = X1 X0 — X1 X
Example of hat matrix: X; = (1 -0) @11
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Hierarchical Solution for -TASEP

Hierarchical Solution for n-TASEP Evans, Ferrari, Mallick 2009

n—1
X" = Zaﬁ%@X,&’””foH <K<n.
M=0
n—1
1
X" = =X+ A e Xy
M—0

X,(("): the lower index K denotes the class of the particle; the upper
index n gives the number of classes in the system.

af,’,B themselves tensor products of fundamental matrices A, D, E ;1
Algebraic Conditions

[X.(”),)A(.‘”)} = 0 0<J<n

XOx0 = XX - x0T U<k
= XX - xMX ork =0



Structure of ‘Matrices’

. n
dim(n) = no. fundamental matrices D, E, 1 in tensor product = <2>

n dim(n)

1 0 scalars
2 1 matrices
3 3

What is the interpretation?
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Structure of ‘Matrices’

. n
dim(n) = no. fundamental matrices D, E, 1 in tensor product = <2>

n dim(n)

1 0 scalars
2 1 matrices
3 3

What is the interpretation?
no. queue counters required for n — 1 priority queue system =

Tii - (g) — dim(n)
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Queueing Interpretation: 2- TASEP

Recall

D= Z|n (nf+(n+1] E= Z[|n In—1](n A=10)(0|

The Asymmetric Exclusion Process



Queueing Interpretation: 2- TASEP

Recall
D=Y"Im[(nl+(n+1] E=>_[In)+[n—1]{n A=]0)0|
n=0 n=0
Think of |n) as state of a queue (no. customers waiting).
t(i) = N — i is discrete time

7 = 0 no service
7 = 1 used service
T o= 2 unused service
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Queueing Interpretation: 2- TASEP

Recall
D=Y"Im[(nl+(n+1] E=>_[In)+[n—1]{n A=]0)0|
n=0 n=0
Think of |n) as state of a queue (no. customers waiting).
t(i) = N — i is discrete time

7 = 0 no service
7 = 1 used service
T o= 2 unused service

Weight of config. {7;} = no. queue trajectories consistent with {7;}

=0 Eln) = In) +[n+1)
7 =1 Din) = [n—1) + |n)
=2 Aln) = |0)0n.0
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Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:

contains which get served and go to g2
contains arriving from g1 and
arriving from outside
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Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:

contains
contains
arriving from outside

which get served and go to g2
arriving from g1 and

State of queues is |/)|m)|n)
where / is no. first class in g2, mis no. second class in g2,

nis no.

Ti
Ti
Ti

Ti
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1
2
3

first class in g1

no service in g2

first class service in g2
second class service in g2
unused service in g2



Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:
contains which get served and go to g2
contains arriving from g1 and
arriving from outside

State of queues is |/)|m)|n)
where / is no. first class in g2, mis no. second class in g2,
nis no. first class in g1

7 = 0 no service in g2

o= 1 first class service in g2

T o= 2 second class service in g2
T = 3 unused service in g2

e.g. 7 = 3 unused service in g2 = [ = m = 0;
possible arrivalat g1 == n—norn— n+1

Xs|l)[m)[n) = 610[)dmolm) [Im) + |0+ 1)] = A[)Alm) E|n)
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Conclusions

@ A fundamental class of nonequilibrium stationary states may be
solved exactly as a matrix product.

@ Algebraic proof of stationary measure requires quadratic
algebras and generalisations

@ Construct stationary measure hierarchically from (n—1)-TASEP
stationary measure

@ The ‘Matrices’ act on space of queue counters
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What I've left out

@ Algebraic proof of stationary measure

@ Simple mean field theory correctly predicts phase diagram and is
first recourse for many systems

@ Biophysical systems imply generalisations to dynamically
extending 1d lattices and coupled one lattices

@ Current fluctuations and large deviations
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What I've left out

@ Algebraic proof of stationary measure

@ Simple mean field theory correctly predicts phase diagram and is
first recourse for many systems

@ Biophysical systems imply generalisations to dynamically
extending 1d lattices and coupled one lattices

@ Current fluctuations and large deviations
@ ... and much, much more
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