The Asymmetric Exclusion Process: an exactly solvable nonequilibrium system

Martin R. Evans

SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.

December 8, 2011

Collaborators: R. A. Blythe, F. Calaori, B. Derrida, F. H. L. Essler, P. A. Ferrari, V Hakim, K. Mallick, V. Pasquier, S. Prolhac, A. Proeme, K.E.P. Sugden

Plan: Asymmetric Exclusion Process

Plan

- I Definition of model
- II Solution by matrix approach
- III q-deformed generalisations
- IV multi species generalisations

Review:

R. A. Blythe and M.R.Evans, Nonequilibrium steady states of matrix-product form: a solver's guide, J. Phys. A.: Math. Theor. **40** R333-R441

I Definition of Totally Asymmetric Exclusion Process

TASEP

Usually consider 1d lattice of Length N, \mathbb{Z}_N

- at most one particle per site (exclusion)
- particles hop forward with rate p (totally asymmetric hopping)

I Definition of Totally Asymmetric Exclusion Process

TASEP

Usually consider 1d lattice of Length N, \mathbb{Z}_N

- at most one particle per site (exclusion)
- particles hop forward with rate p (totally asymmetric hopping)

Boundary conditions:

a) on ring (periodic boundary conditions)b) or on open lattice

- The ASEP was first introduced in 1968 as a model for RNA translation by ribosomes (MacDonald, Gibbs and Pipkin, *Biopolymers* 1968)
- Now a general model for traffic (both vehicular and biophysical)
- It is a nonequilibrium system, since a current always flows stationary state not known a priori
- Exhibits phase transitions in 1 dimension (Krug, *Phys. Rev. Lett.* 1991)
- Exactly solvable model

Use indicator variable $\tau_i = 1, 0$ for particle, hole respectively Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \tau_i \rangle = \boldsymbol{\rho} \langle \tau_{i-1}(1-\tau_i) \rangle - \boldsymbol{\rho} \langle \tau_i(1-\tau_{i+1}) \rangle$$

Use indicator variable $\tau_i = 1, 0$ for particle, hole respectively Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \tau_i \rangle = \boldsymbol{\rho} \langle \tau_{i-1}(1-\tau_i) \rangle - \boldsymbol{\rho} \langle \tau_i(1-\tau_{i+1}) \rangle$$

 $\langle \tau_i(t) \rangle$ is the density at site *i* at time *t* $J_{i,i+1} = p \langle \tau_i(1 - \tau_{i+1}) \rangle$ is the current from site *i* to *i* + 1

Use indicator variable $\tau_i = 1, 0$ for particle, hole respectively Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \tau_i \rangle = \rho \langle \tau_{i-1}(1-\tau_i) \rangle - \rho \langle \tau_i(1-\tau_{i+1}) \rangle$$

 $\langle \tau_i(t) \rangle$ is the density at site *i* at time *t* $J_{i,i+1} = p \langle \tau_i(1 - \tau_{i+1}) \rangle$ is the current from site *i* to *i* + 1

Hierarchy of correlation functions e.g.

 $\frac{\mathrm{d}}{\mathrm{d}t}\langle\tau_i(1-\tau_{i+1})\rangle = -\boldsymbol{p}\langle\tau_i(1-\tau_{i+1})\rangle + \boldsymbol{p}\langle\tau_{i-1}(1-\tau_i)(1-\tau_{i+1})\rangle + \boldsymbol{p}\langle\tau_i\tau_{i+1}(1-\tau_{i+2})\rangle$

... difficult to solve generally

Use indicator variable $\tau_i = 1, 0$ for particle, hole respectively Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \tau_i \rangle = \rho \langle \tau_{i-1}(1-\tau_i) \rangle - \rho \langle \tau_i(1-\tau_{i+1}) \rangle$$

 $\langle \tau_i(t) \rangle$ is the density at site *i* at time *t* $J_{i,i+1} = p \langle \tau_i(1 - \tau_{i+1}) \rangle$ is the current from site *i* to *i* + 1

Hierarchy of correlation functions e.g.

 $\frac{\mathrm{d}}{\mathrm{d}t}\langle\tau_i(1-\tau_{i+1})\rangle = -p\langle\tau_i(1-\tau_{i+1})\rangle + p\langle\tau_{i-1}(1-\tau_i)(1-\tau_{i+1})\rangle + p\langle\tau_i\tau_{i+1}(1-\tau_{i+2})\rangle$

... difficult to solve generally

N. B. take p = 1 from now on

II Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

•
$$\rightarrow D$$
 and $\rightarrow E$ where D, E are matrices
e.g. Prob $\left[\begin{array}{c} \bullet \\ Z_4 \end{array} \right] = \frac{\langle W|EDED|V \rangle}{Z_4}$
where

 $Z_N = \langle W | C^N | V \rangle$ C = D + E

II Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

•
$$\rightarrow D$$
 and $\rightarrow E$ where D, E are matrices
e.g. Prob $\left[\begin{array}{c} \bullet \\ - \end{array} \right] = \frac{\langle W | EDED | V \rangle}{Z_4}$
where

 $Z_N = \langle W | C^N | V \rangle$ C = D + E

Necessary and Sufficient Conditions DE = D + E $\beta D | V \rangle = | V \rangle$ $\alpha \langle W | E = \langle W |$

(Derrida, Evans, Hakim, Pasquier 1993)

Form of matrices

Several possible representations are possible, for example :

$$D = \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \vdots & & \ddots & \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ \vdots & & \ddots & \end{pmatrix}$$
$$\langle W | = \kappa \left(1, a, a^2 & \cdots \right) \qquad |V\rangle = \kappa \begin{pmatrix} 1 \\ b \\ b^2 \\ \vdots \\ \vdots \end{pmatrix},$$

where $a = \frac{1 - \alpha}{\alpha}$ $b = \frac{1 - \beta}{\beta}$ and $\kappa^2 = (\alpha + \beta - 1)/\alpha\beta$

• matrices generally (semi) infinite except along $\alpha + \beta = 1$

• calculation of matrix product elements corresponds to enumeration of lattice paths

Exact Solution of Stationary State

Calculation of the Current

$$J_{N} = \alpha \langle (1 - \tau_{1}) \rangle = \langle \tau_{i}(1 - \tau_{i+1}) \rangle = \beta \langle \tau_{N} \rangle$$
$$= \alpha \frac{\langle W | EC^{N-1} | V \rangle}{Z_{N}} = \frac{\langle W | C^{i-1} DEC^{N-i-1} | V \rangle}{Z_{N}} = \beta \frac{\langle W | C^{N-1} D | V \rangle}{Z_{N}}$$
$$= \frac{Z_{N-1}}{Z_{N}} \quad \text{ratio of nonequilibrium partition functions}$$

Exact Solution of Stationary State

Calculation of the Current

$$J_{N} = \alpha \langle (1 - \tau_{1}) \rangle = \langle \tau_{i}(1 - \tau_{i+1}) \rangle = \beta \langle \tau_{N} \rangle$$
$$= \alpha \frac{\langle W|EC^{N-1}|V \rangle}{Z_{N}} = \frac{\langle W|C^{i-1}DEC^{N-i-1}|V \rangle}{Z_{N}} = \beta \frac{\langle W|C^{N-1}D|V \rangle}{Z_{N}}$$
$$= \frac{Z_{N-1}}{Z_{N}} \quad \text{ratio of nonequilibrium partition functions}$$

Calculation of the Z_N

 $C^{0} = 1 , \quad C^{1} = D + E , \quad C^{2} = D^{2} + E^{2} + ED + D + E , \quad \dots$ $C^{N} = \sum_{n,m} a_{n,m} E^{n} D^{m} \qquad \langle W | C^{N} | V \rangle = \sum_{n,m} a_{n,m} \frac{1}{\alpha^{n}} \frac{1}{\beta^{m}}$ for large *N*, $\langle W | C^{N} | V \rangle \sim c^{N} N^{-\lambda}$ so

 $J \rightarrow \frac{1}{2}$

Stationary Phase Diagram

HD - high density phase controlled by right boundary $\rho = \beta$, $J = \beta(1 - \beta)$

LD - low density phase controlled by left boundary $\rho = \alpha$, $J = \alpha(1 - \alpha)$

MC - maximal current phase $\rho = 1/2$, J = 1/4

First-order line and domain wall dynamics

 $\alpha = \beta < 1/2$ is first-order transition line Along first-order line stationary state is superposition of shocks (domain walls) which generates an exact linear average profile.

Extending this picture to regime HD I/ LD I gives an *effective* description of dynamics in terms of domain walls moving $\frac{q(1-q)}{q} = \frac{q(1-q)}{q}$

stochastically with bias velocity $v_s = \frac{\beta(1-\beta) - \alpha(1-\alpha)}{1-\beta-\alpha} = \beta - \alpha$

Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram

(de Gier and Essler 2005)

Stationary Phase Diagram

(Derrida, Evans, Hakim, Pasquier 1993), (Schütz, Domany 1993)

Dynamical Phase Diagram - de Gier-Essler Line

Stationary Phase Diagram

(Derrida, Evans, Hakim, Pasquier 1993),

Dynamical Phase Diagram

(de Gier and Essler 2005)

(Schütz, Domany 1993) β LDII' MC LD-II MC ß 0.5 $\frac{1}{2}$ LDI'HDII' LD-I HDI' HD–I HD-II α 0.5 $\frac{1}{2}$ α Explanation? It's a mystery!

but deGE line does exist (Proeme, Blythe, Evans 2011)

Stationary Phase Diagram: Lee Yang Theory

Consider normalisation as a nonequilibrium partition function

$$Z_{N} = \sum_{p=1}^{N} \frac{p!(2N-1-p)!}{N!(N-p)!} \frac{(1/\beta)^{p+1} - (1/\alpha)^{p+1}}{(1/\beta) - (1/\alpha)}$$

• Generalise real rates α , β to complex parameters and consider zeros of Z_N in e.g. the complex α plane

• Phase transitions occur when complex zeros of Z_N 'pinch' the real axis as $N \to \infty$

first order line: finite density of zeros pinch at angle $\pi/2$

second order line: vanishing density of zeros pinch at angle $\pi/4$

•
$$\lim_{N\to\infty} \frac{1}{N} \ln Z_N = \ln J$$
 so current plays role of free energy

Stationary Phase Diagram: Lee Yang Theory

Zeros of $Z_N(\alpha, \beta)$ in complex alpha plane

quadratic algebraDE - qED = D + E $(\beta D - \delta E)|V\rangle = |V\rangle$ $\langle W|(\alpha E - \gamma D) = \langle W|$

quadratic algebraDE - qED = D + E $(\beta D - \delta E)|V\rangle = |V\rangle$ $\langle W|(\alpha E - \gamma D) = \langle W|$

Let
$$D = \frac{1}{1-q} + \frac{\hat{a}}{(1-q)^{1/2}}$$
 $E = \frac{1}{1-q} + \frac{\hat{a}^{\dagger}}{(1-q)^{1/2}}$

quadratic algebraDE - qED = D + E $(\beta D - \delta E)|V\rangle = |V\rangle$ $\langle W|(\alpha E - \gamma D) = \langle W|$

Let
$$D = \frac{1}{1-q} + \frac{\hat{a}}{(1-q)^{1/2}}$$
 $E = \frac{1}{1-q} + \frac{\hat{a}^{\dagger}}{(1-q)^{1/2}}$

$$\Rightarrow \qquad \hat{a}\hat{a}^{\dagger} - q\hat{a}^{\dagger}\hat{a} = 1$$

q-deformed harmonic oscillator

III Partial Asymmetry: Results for $\gamma = \delta = 0$

•q < 1 (forward bias)

•q > 1 (reverse bias)

$$J \simeq \left(rac{lpha eta (q-1)^2}{(q-1+lpha)(q-1+eta)}
ight)^{1/2} q^{-N/2+1/4}$$

Blythe, Evans, Calaori, Essler 2000

•q = 1 (symmetric) linear profile and $J \simeq \frac{1}{N}$

IV Many Species: 2 species ASEP

• Motion of an excess particle

IV Many Species: 2 species ASEP

• Motion of an excess particle

Second class particle dynamics

 $1 \begin{array}{l} 0 \rightarrow 0 \end{array} 1 \\ 2 \begin{array}{l} 0 \rightarrow 0 \end{array} 2 \\ 1 \begin{array}{l} 2 \rightarrow 2 \end{array} 1 \end{array}$

• Second class particle moves forward in low density environment, moves backward in high density environment. It therefore **tracks** '**shocks**' (discontinuities in density profile)

2-ASEP: Matrix Solution on Ring

 $\tau_i = 0, 1, 2$, let there be P_1 first class, P_2 second class and $P_0 = N - P_1 - P_2$ holes

Stationary measure Derrida, Janowsky, Lebowtiz and Speer 1993

$$\mathsf{Prob}(\{\tau_i\}) = \frac{\mathsf{Tr}\left[\prod_{i=1}^N X_{\tau_i}\right]}{Z(P_0, P_1, P_2)}$$

matrices now
$$X_0 = E$$
, $X_1 = D$, $X_2 = A$

Quadratic algebra		
DE =	D + E	
DA =	A	
AE =	Α	

Where

 $A = |0
angle\langle 0|$

is a projector

Multispecies TASEP: 'n-TASEP'

n Classes of particle and vacancies

 $K \ 0 \rightarrow 0 \ K$ for $n \ge K \ge 1$ $K \ J \rightarrow J \ K$ for $n \ge J > K \ge 1$

e.g. **n= 3**

 $\begin{array}{c} 1 \hspace{0.1cm} 0 \rightarrow 0 \hspace{0.1cm} 1 \\ 2 \hspace{0.1cm} 0 \rightarrow 0 \hspace{0.1cm} 2 \\ 3 \hspace{0.1cm} 0 \rightarrow 0 \hspace{0.1cm} 3 \\ 1 \hspace{0.1cm} 2 \rightarrow 2 \hspace{0.1cm} 1 \\ 1 \hspace{0.1cm} 3 \rightarrow 3 \hspace{0.1cm} 1 \\ 2 \hspace{0.1cm} 3 \rightarrow 3 \hspace{0.1cm} 2 \end{array}$

Matrix Solution for 3-TASEP

$$X_{1} = \mathbf{1} \otimes \mathbf{1} \otimes D + \delta \otimes \epsilon \otimes A + \delta \otimes \mathbf{1} \otimes E$$

$$X_{2} = A \otimes \mathbf{1} \otimes A + A \otimes \delta \otimes E$$

$$X_{3} = A \otimes A \otimes E$$

$$X_{0} = \mathbf{1} \otimes \mathbf{1} \otimes E + \mathbf{1} \otimes \epsilon \otimes A + \epsilon \otimes \mathbf{1} \otimes D$$

where

.

 $\delta = D - 1$ $\epsilon = E - 1$

Example of algebraic conditions

 $X_1 X_2 = X_2 \hat{X}_1 - \hat{X}_2 X_1$ $-X_1 X_2 = X_1 \hat{X}_2 - \hat{X}_1 X_2$

Example of hat matrix: $\hat{X}_1 = (\mathbf{1} - \delta) \otimes \mathbf{1} \otimes \mathbf{1}$

Hierarchical Solution for *n*-TASEP

Hierarchical Solution for n-TASEP Evans, Ferrari, Mallick 2009

$$X_{K}^{(n)} = \sum_{M=0}^{n-1} a_{KM}^{(n)} \otimes X_{M}^{(n-1)} \text{ for } 1 \le K \le n$$
$$X_{0}^{(n)} = -X_{0}^{(n)} + \sum_{M=0}^{n-1} a_{0M}^{(n)} \otimes X_{M}^{(n-1)}$$

 $X_{K}^{(n)}$: the lower index *K* denotes the class of the particle; the upper index *n* gives the number of classes in the system.

 $a_{JM}^{(n)}$ themselves tensor products of fundamental matrices A, D, E, 1

Algebraic Conditions

$$\begin{bmatrix} X_{j}^{(n)}, \hat{X}_{j}^{(n)} \end{bmatrix} = 0 \quad 0 \le J \le n$$
$$X_{J}^{(n)}X_{K}^{(n)} = \hat{X}_{J}^{(n)}X_{K}^{(n)} - X_{J}^{(n)}\hat{X}_{K}^{(n)} \quad J < K$$
$$= \hat{X}_{K}^{(n)}X_{J}^{(n)} - X_{K}^{(n)}\hat{X}_{J}^{(n)} \quad \text{or } K = 0$$

Structure of 'Matrices'

dim(n) = no. fundamental matrices D, E, **1** in tensor product = $\binom{n}{2}$

n	dim(<i>n</i>)	
1	0	scalars
2	1	matrices
3	3	

What is the interpretation?

Structure of 'Matrices'

dim(n) = no. fundamental matrices $D, E, \mathbf{1}$ in tensor product = $\binom{n}{2}$

n	dim(<i>n</i>)	
1	0	scalars
2	1	matrices
3	3	

What is the interpretation?

no. queue counters required for n - 1 priority queue system = $\sum_{i=1}^{n-1} i = \binom{n}{2} = \dim(n)$

Queueing Interpretation: 2- TASEP

Recall

$$D = \sum_{n=0} |n\rangle \left[\langle n| + \langle n+1| \right] \quad E = \sum_{n=0} \left[|n\rangle + |n-1\rangle \right] \langle n| \quad A = |0\rangle \langle 0|$$

Queueing Interpretation: 2- TASEP

Recall

$$D = \sum_{n=0} |n\rangle \left[\langle n| + \langle n+1| \right] \quad E = \sum_{n=0} \left[|n\rangle + |n-1\rangle \right] \langle n| \quad A = |0\rangle \langle 0|$$

Think of $|n\rangle$ as state of a queue (no. customers waiting).

t(i) = N - i is discrete time

- $\tau_i = 0$ no service
- $\tau_i = 1$ used service
- $\tau_i = 2$ unused service

Queueing Interpretation: 2- TASEP

Recall

$$D = \sum_{n=0} |n\rangle \left[\langle n| + \langle n+1| \right] \quad E = \sum_{n=0} \left[|n\rangle + |n-1\rangle \right] \langle n| \quad A = |0\rangle \langle 0|$$

Think of $|n\rangle$ as state of a queue (no. customers waiting).

t(i) = N - i is discrete time

$ au_{i}$	=	0	no service
$ au_i$	=	1	used service
$ au_i$	=	2	unused service

Weight of config. $\{\tau_i\}$ = no. queue trajectories consistent with $\{\tau_i\}$

$$\begin{aligned} \tau_i &= 0 \qquad E|n\rangle &= & |n\rangle + |n+1\rangle \\ & \text{no arrival new arrival} \\ \tau_i &= 1 \qquad D|n\rangle &= & |n-1\rangle + |n\rangle \\ \tau_i &= 2 \qquad A|n\rangle &= & |0\rangle\delta_{n,0} \quad \text{queue must be empty} \end{aligned}$$

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:

q1 contains first class customers which get served and go to q2 q2 contains first class customers arriving from q1 and second class customers arriving from outside

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:

q1 contains first class customers which get served and go to q2 q2 contains first class customers arriving from q1 and second class customers arriving from outside

State of queues is $|l\rangle |m\rangle |n\rangle$

where *l* is no. first class in q^2 , *m* is no. second class in q^2 , *n* is no. first class in q^1

$ au_i$	=	0	no service in <i>q</i> 2
$ au_i$	=	1	first class service in q2
$ au_i$	=	2	second class service in q2
τi	=	3	unused service in <i>a</i> 2

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:

q1 contains first class customers which get served and go to q2 q2 contains first class customers arriving from q1 and second class customers arriving from outside

State of queues is $|l\rangle |m\rangle |n\rangle$

where *l* is no. first class in q^2 , *m* is no. second class in q^2 , *n* is no. first class in q^1

$ au_i$	=	0	no service in <i>q</i> 2
$ au_i$	=	1	first class service in q2
$ au_i$	=	2	second class service in q2
$ au_i$	=	3	unused service in q2

e.g. $\tau_i = 3$ unused service in $q2 \Rightarrow l = m = 0$; possible arrival at $q1 \Rightarrow n \rightarrow n$ or $n \rightarrow n + 1$

 $X_{3}|l\rangle|m\rangle|n\rangle = \delta_{l,0}|l\rangle\delta_{m,0}|m\rangle\left[|n\rangle + |n+1\rangle\right] = A|l\rangle A|m\rangle E|n\rangle$

- A fundamental class of nonequilibrium stationary states may be solved exactly as a matrix product.
- Algebraic proof of stationary measure requires quadratic algebras and generalisations
- Construct stationary measure hierarchically from (n-1)-TASEP stationary measure
- The 'Matrices' act on space of queue counters

- Algebraic proof of stationary measure
- Simple mean field theory correctly predicts phase diagram and is first recourse for many systems
- Biophysical systems imply generalisations to dynamically extending 1d lattices and coupled one lattices
- Current fluctuations and large deviations

- Algebraic proof of stationary measure
- Simple mean field theory correctly predicts phase diagram and is first recourse for many systems
- Biophysical systems imply generalisations to dynamically extending 1d lattices and coupled one lattices
- Current fluctuations and large deviations
- ... and much, much more