The Asymmetric Exclusion Process: an exactly solvable nonequilibrium system

Martin R. Evans

SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.
December 8, 2011

Collaborators:
R. A. Blythe, F. Calaori, B. Derrida, F. H. L. Essler, P. A. Ferrari, V Hakim, K. Mallick, V. Pasquier, S. Prolhac, A. Proeme, K.E.P. Sugden

Plan: Asymmetric Exclusion Process

Plan

> I Definition of model
> II Solution by matrix approach
> III q-deformed generalisations
> IV multi species generalisations

Review:

R. A. Blythe and M.R.Evans, Nonequilibrium steady states of matrix-product form: a solver's guide, J. Phys. A.: Math. Theor. 40 R333-R441

I Definition of Totally Asymmetric Exclusion Process

TASEP

Usually consider 1d lattice of Length N, \mathbb{Z}_{N}

- at most one particle per site (exclusion)
- particles hop forward with rate p (totally asymmetric hopping)

I Definition of Totally Asymmetric Exclusion Process

TASEP

Usually consider 1d lattice of Length N, \mathbb{Z}_{N}

- at most one particle per site (exclusion)
- particles hop forward with rate p (totally asymmetric hopping)

Boundary conditions:

a) on ring (periodic boundary conditions)
b) or on open lattice

(b)

- The ASEP was first introduced in 1968 as a model for RNA translation by ribosomes (MacDonald, Gibbs and Pipkin, Biopolymers 1968)
- Now a general model for traffic (both vehicular and biophysical)
- It is a nonequilibrium system, since a current always flows stationary state not known a priori
- Exhibits phase transitions in 1 dimension (Krug, Phys. Rev. Lett. 1991)
- Exactly solvable model

Correlation functions

Use indicator variable $\tau_{i}=1,0$ for particle, hole respectively Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tau_{i}\right\rangle=p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\right\rangle-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle
$$

Correlation functions

Use indicator variable $\tau_{i}=1,0$ for particle, hole respectively Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tau_{i}\right\rangle=p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\right\rangle-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle
$$

$\left\langle\tau_{i}(t)\right\rangle$ is the density at site i at time t
$J_{i, i+1}=p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle$ is the current from site i to $i+1$

Correlation functions

Use indicator variable $\tau_{i}=1,0$ for particle, hole respectively Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tau_{i}\right\rangle=p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\right\rangle-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle
$$

$\left\langle\tau_{i}(t)\right\rangle$ is the density at site i at time t
$J_{i, i+1}=p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle$ is the current from site i to $i+1$
Hierarchy of correlation functions e.g.
$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle=-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle+p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\left(1-\tau_{i+1}\right)\right\rangle+p\left\langle\tau_{i} \tau_{i+1}\left(1-\tau_{i+2}\right)\right\rangle$
... difficult to solve generally

Correlation functions

Use indicator variable $\tau_{i}=1,0$ for particle, hole respectively Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\tau_{i}\right\rangle=p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\right\rangle-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle
$$

$\left\langle\tau_{i}(t)\right\rangle$ is the density at site i at time t
$J_{i, i+1}=p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle$ is the current from site i to $i+1$
Hierarchy of correlation functions e.g.
$\frac{\mathrm{d}}{\mathrm{d} t}\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle=-p\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle+p\left\langle\tau_{i-1}\left(1-\tau_{i}\right)\left(1-\tau_{i+1}\right)\right\rangle+p\left\langle\tau_{i} \tau_{i+1}\left(1-\tau_{i+2}\right)\right\rangle$
... difficult to solve generally
N. B. take $p=1$ from now on

II Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

$$
\begin{aligned}
& -\rightarrow D \text { and } \quad \rightarrow E \text { where } D, E \text { are matrices } \\
& \text { e.g. } \operatorname{Prob}\left[-\longrightarrow-\quad=\frac{\langle W| E D E D|V\rangle}{Z_{4}}\right.
\end{aligned}
$$

where

$$
Z_{N}=\langle W| C^{N}|V\rangle \quad C=D+E
$$

II Exact Solution of Stationary State

Matrix Product Solution for Open Boundaries

$$
\begin{aligned}
& -\rightarrow D \text { and } \quad \rightarrow E \text { where } D, E \text { are matrices } \\
& \text { e.g. } \operatorname{Prob}\left[-\longrightarrow \quad-\quad \frac{\langle W| E D E D|V\rangle}{Z_{4}}\right.
\end{aligned}
$$

where

$$
Z_{N}=\langle W| C^{N}|V\rangle \quad C=D+E
$$

Necessary and Sufficient Conditions

$$
\begin{aligned}
D E & =D+E \\
\beta D|V\rangle & =|V\rangle \\
\alpha\langle W| E & =\langle W|
\end{aligned}
$$

(Derrida, Evans,
Hakim, Pasquier 1993)

Several possible representations are possible, for example :

$$
\begin{array}{r}
D=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & \cdots \\
0 & 1 & 1 & 0 & \\
0 & 0 & 1 & 1 & \\
0 & 0 & 0 & 1 & \\
\vdots & & & & \ddots
\end{array}\right) \quad E=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \\
0 & 0 & 1 & 1 & \\
\vdots & & & & \ddots
\end{array}\right) \\
\\
\langle W|=\kappa\left(\begin{array}{lllll}
1, & a, & a^{2} & .
\end{array}\right) \quad|V\rangle=\kappa\left(\begin{array}{c}
1 \\
b \\
b^{2} \\
. \\
.
\end{array}\right),
\end{array}
$$

where $a=\frac{1-\alpha}{\alpha} \quad b=\frac{1-\beta}{\beta}$ and $\kappa^{2}=(\alpha+\beta-1) / \alpha \beta$

- matrices generally (semi) infinite except along $\alpha+\beta=1$
- calculation of matrix product elements corresponds to enumeration of lattice paths

Exact Solution of Stationary State

Calculation of the Current

$$
\begin{aligned}
J_{N} & =\alpha\left\langle\left(1-\tau_{1}\right)\right\rangle=\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle=\beta\left\langle\tau_{N}\right\rangle \\
& =\alpha \frac{\langle W| E C^{N-1}|V\rangle}{Z_{N}}=\frac{\langle W| C^{i-1} D E C^{N-i-1}|V\rangle}{Z_{N}}=\beta \frac{\langle W| C^{N-1} D|V\rangle}{Z_{N}} \\
& =\frac{Z_{N-1}}{Z_{N}} \quad \text { ratio of nonequilibrium partition functions }
\end{aligned}
$$

Exact Solution of Stationary State

Calculation of the Current

$$
\begin{aligned}
J_{N} & =\alpha\left\langle\left(1-\tau_{1}\right)\right\rangle=\left\langle\tau_{i}\left(1-\tau_{i+1}\right)\right\rangle=\beta\left\langle\tau_{N}\right\rangle \\
& =\alpha \frac{\langle W| E C^{N-1}|V\rangle}{Z_{N}}=\frac{\langle W| C^{i-1} D E C^{N-i-1}|V\rangle}{Z_{N}}=\beta \frac{\langle W| C^{N-1} D|V\rangle}{Z_{N}} \\
& =\frac{Z_{N-1}}{Z_{N}} \quad \text { ratio of nonequilibrium partition functions }
\end{aligned}
$$

Calculation of the Z_{N}

$$
\begin{aligned}
C^{0}=1, & C^{1}=D+E, \quad C^{2}=D^{2}+E^{2}+E D+D+E, \quad \ldots \\
C^{N} & =\sum_{n, m} a_{n, m} E^{n} D^{m} \quad\langle W| C^{N}|V\rangle=\sum_{n, m} a_{n, m} \frac{1}{\alpha^{n}} \frac{1}{\beta^{m}}
\end{aligned}
$$

for large $N,\langle W| C^{N}|V\rangle \sim c^{N} N^{-\lambda}$ so

$$
J \rightarrow \frac{1}{c}
$$

Stationary Phase Diagram

HD - high density phase controlled by right boundary

$$
\rho=\beta, J=\beta(1-\beta)
$$

LD - low density phase controlled by left boundary

$$
\rho=\alpha, \boldsymbol{J}=\alpha(1-\alpha)
$$

MC - maximal current phase $\rho=1 / 2, J=1 / 4$

First-order line and domain wall dynamics

$\alpha=\beta<1 / 2$ is first-order transition line
Along first-order line stationary state is superposition of shocks
(domain walls)
 which generates an exact linear average profile.
Extending this picture to regime HD I/ LD I gives an effective description of dynamics in terms of domain walls moving stochastically with bias velocity $v_{s}=\frac{\beta(1-\beta)-\alpha(1-\alpha)}{1-\beta-\alpha}=\beta-\alpha$

(Dudzinsky, Schütz 2000)

Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram

(de Gier and Essler 2005)

Explanation?

Stationary Phase Diagram

(Derrida, Evans, Hakim, Pasquier 1993),
(Schütz, Domany 1993)

Dynamical Phase Diagram - de Gier-Essler Line

Dynamical Phase Diagram

(de Gier and Essler 2005)

Explanation? It's a mystery!

Stationary Phase Diagram: Lee Yang Theory

- Consider normalisation as a nonequilibrium partition function

$$
Z_{N}=\sum_{p=1}^{N} \frac{p!(2 N-1-p)!}{N!(N-p)!} \frac{(1 / \beta)^{p+1}-(1 / \alpha)^{p+1}}{(1 / \beta)-(1 / \alpha)}
$$

- Generalise real rates α, β to complex parameters and consider zeros of Z_{N} in e.g. the complex α plane
- Phase transitions occur when complex zeros of Z_{N} 'pinch' the real axis as $N \rightarrow \infty$ first order line: finite density of zeros pinch at angle $\pi / 2$ second order line: vanishing density of zeros pinch at angle $\pi / 4$
- $\lim _{N \rightarrow \infty} \frac{1}{N} \ln Z_{N}=\ln J$ so current plays role of free energy

Stationary Phase Diagram: Lee Yang Theory

Zeros of $Z_{N}(\alpha, \beta)$ in complex alpha plane

II Partial Asymmetry

II Partial Asymmetry

quadratic algebra

$$
\begin{aligned}
D E-q E D & =D+E \\
(\beta D-\delta E)|V\rangle & =|V\rangle \\
\langle W|(\alpha E-\gamma D) & =\langle W|
\end{aligned}
$$

II Partial Asymmetry

quadratic algebra

$$
\begin{aligned}
D E-q E D & =D+E \\
(\beta D-\delta E)|V\rangle & =|V\rangle \\
\langle W|(\alpha E-\gamma D) & =\langle W|
\end{aligned}
$$

Let $\quad D=\frac{1}{1-q}+\frac{\hat{a}}{(1-q)^{1 / 2}} \quad E=\frac{1}{1-q}+\frac{\hat{a}^{\dagger}}{(1-q)^{1 / 2}}$

II Partial Asymmetry

quadratic algebra

$$
\begin{aligned}
D E-q E D & =D+E \\
(\beta D-\delta E)|V\rangle & =|V\rangle \\
\langle W|(\alpha E-\gamma D) & =\langle W|
\end{aligned}
$$

Let $\quad D=\frac{1}{1-q}+\frac{\hat{a}}{(1-q)^{1 / 2}} \quad E=\frac{1}{1-q}+\frac{\hat{a}^{\dagger}}{(1-q)^{1 / 2}}$
$\Rightarrow \quad \hat{a}^{a^{\dagger}}-q \hat{a}^{\dagger} \hat{a}=1 \quad q$-deformed harmonic oscillator

III Partial Asymmetry: Results for $\gamma=\delta=0$

- $q<1$ (forward bias)

Sasamoto 2000

- $q>1$ (reverse bias)

$$
J \simeq\left(\frac{\alpha \beta(q-1)^{2}}{(q-1+\alpha)(q-1+\beta)}\right)^{1 / 2} q^{-N / 2+1 / 4}
$$

Blythe, Evans, Calaori, Essler 2000
$\bullet q=1$ (symmetric) linear profile and $J \simeq \frac{1}{N}$

IV Many Species: 2 species ASEP

- Motion of an excess particle

IV Many Species: 2 species ASEP

- Motion of an excess particle

- Second class particle dynamics

$$
\begin{aligned}
& 10 \rightarrow 01 \\
& 20 \rightarrow 02 \\
& 12 \rightarrow 21
\end{aligned}
$$

- Second class particle moves forward in low density environment, moves backward in high density environment. It therefore tracks 'shocks' (discontinuities in density profile)

2-ASEP: Matrix Solution on Ring

$\tau_{i}=0,1,2$, let there be P_{1} first class, P_{2} second class and
$P_{0}=N-P_{1}-P_{2}$ holes
Stationary measure Derrida, Janowsky, Lebowtiz and Speer 1993

$$
\operatorname{Prob}\left(\left\{\tau_{i}\right\}\right)=\frac{\operatorname{Tr}\left[\prod_{i=1}^{N} X_{\tau_{i}}\right]}{Z\left(P_{0}, P_{1}, P_{2}\right)}
$$

matrices now $X_{0}=E, X_{1}=D, X_{2}=A$

Quadratic algebra

$$
\begin{aligned}
D E & =D+E \\
D A & =A \\
A E & =A
\end{aligned}
$$

Where

$$
A=|0\rangle\langle 0|
$$

is a projector

Multispecies TASEP

Multispecies TASEP: ‘ n-TASEP’

n Classes of particle and vacancies

$$
\begin{array}{lll}
K 0 \rightarrow 0 K & \text { for } & n \geq K \geq 1 \\
K J \rightarrow J K & \text { for } & n \geq J>K \geq 1
\end{array}
$$

e.g. $\mathbf{n}=\mathbf{3}$
$10 \rightarrow 01$
$20 \rightarrow 02$
$30 \rightarrow 03$
$12 \rightarrow 21$
$13 \rightarrow 31$
$23 \rightarrow 32$

Matrix Solution for 3-TASEP

$$
\begin{aligned}
& X_{1}=\mathbf{1} \otimes \mathbf{1} \otimes D+\delta \otimes \epsilon \otimes A+\delta \otimes \mathbf{1} \otimes E \\
& X_{2}=A \otimes \mathbf{1} \otimes A+A \otimes \delta \otimes E \\
& X_{3}=A \otimes A \otimes E \\
& X_{0}=\mathbf{1} \otimes \mathbf{1} \otimes E+\mathbf{1} \otimes \epsilon \otimes A+\epsilon \otimes \mathbf{1} \otimes D
\end{aligned}
$$

where

$$
\delta=D-\mathbf{1} \quad \epsilon=E-\mathbf{1}
$$

Example of algebraic conditions

$$
\begin{aligned}
X_{1} X_{2} & =X_{2} \hat{X}_{1}-\hat{X}_{2} X_{1} \\
-X_{1} X_{2} & =X_{1} \hat{X}_{2}-\hat{X}_{1} X_{2}
\end{aligned}
$$

Example of hat matrix: $\hat{X}_{1}=(1-\delta) \otimes 1 \otimes 1$

Hierarchical Solution for -TASEP

Hierarchical Solution for n-TASEP Evans, Ferrari, Mallick 2009

$$
\begin{aligned}
& X_{K}^{(n)}=\sum_{M=0}^{n-1} a_{K M}^{(n)} \otimes X_{M}^{(n-1)} \text { for } 1 \leq K \leq n . \\
& X_{0}^{(n)}=-X_{0}^{(n)}+\sum_{M=0}^{n-1} a_{0 M}^{(n)} \otimes X_{M}^{(n-1)}
\end{aligned}
$$

$X_{K}^{(n)}$: the lower index K denotes the class of the particle; the upper index n gives the number of classes in the system.
$a_{J M}^{(n)}$ themselves tensor products of fundamental matrices $A, D, E, 1$ Algebraic Conditions

$$
\begin{aligned}
{\left[X_{j}^{(n)}, \hat{X}_{j}^{(n)}\right] } & =0 \quad 0 \leq J \leq n \\
X_{J}^{(n)} X_{K}^{(n)} & =\hat{X}_{J}^{(n)} X_{K}^{(n)}-X_{J}^{(n)} \hat{X}_{K}^{(n)} \quad J<K \\
& =\hat{X}_{K}^{(n)} X_{J}^{(n)}-X_{K}^{(n)} \hat{X}_{J}^{(n)} \quad \text { or } K=0
\end{aligned}
$$

Structure of 'Matrices’

$\operatorname{dim}(n)=$ no. fundamental matrices $D, E, \mathbf{1}$ in tensor product $=\binom{n}{2}$
$n \quad \operatorname{dim}(n)$
10 scalars
21 matrices
3 3

What is the interpretation?

Structure of 'Matrices’

$\begin{array}{ccc}\operatorname{dim}(n)= & \text { no. fundamental matrices } D, E, \mathbf{1} \text { in tensor product }=\binom{n}{2} \\ n & \operatorname{dim}(n) & \\ 1 & 0 & \text { scalars } \\ 2 & 1 & \text { matrices } \\ 3 & 3 & \end{array}$
What is the interpretation?
no. queue counters required for $n-1$ priority queue system $=$
$\sum_{i=1}^{n-1} i=\binom{n}{2}=\operatorname{dim}(n)$

Queueing Interpretation: 2- TASEP

Recall

$$
D=\sum_{n=0}|n\rangle[\langle n|+\langle n+1|] \quad E=\sum_{n=0}[|n\rangle+|n-1\rangle]\langle n| \quad A=|0\rangle\langle 0|
$$

Queueing Interpretation: 2- TASEP

Recall

$$
D=\sum_{n=0}|n\rangle[\langle n|+\langle n+1|] \quad E=\sum_{n=0}[|n\rangle+|n-1\rangle]\langle n| \quad A=|0\rangle\langle 0|
$$

Think of $|n\rangle$ as state of a queue (no. customers waiting). $t(i)=N-i$ is discrete time

$$
\begin{array}{rll}
\tau_{i} & =0 & \\
\text { no service } \\
\tau_{i} & =1 & \\
\text { used service } \\
\tau_{i}=2 & & \text { unused service }
\end{array}
$$

Queueing Interpretation: 2- TASEP

Recall

$$
D=\sum_{n=0}|n\rangle[\langle n|+\langle n+1|] \quad E=\sum_{n=0}[|n\rangle+|n-1\rangle]\langle n| \quad A=|0\rangle\langle 0|
$$

Think of $|n\rangle$ as state of a queue (no. customers waiting). $t(i)=N-i$ is discrete time

$$
\begin{array}{lll}
\tau_{i}=0 & & \text { no service } \\
\tau_{i}=1 & & \text { used service } \\
\tau_{i}=2 & & \text { unused service }
\end{array}
$$

Weight of config. $\left\{\tau_{i}\right\}=$ no. queue trajectories consistent with $\left\{\tau_{i}\right\}$

$$
\begin{array}{rllc}
\tau_{i}=0 & E|n\rangle & = & |n\rangle+|n+1\rangle \\
& & & \text { no arrival new arrival } \\
\tau_{i}=1 & D|n\rangle & = & |n-1\rangle+|n\rangle \\
\tau_{i}=2 & A|n\rangle & = & |0\rangle \delta_{n, 0} \quad \text { queue must be empty }
\end{array}
$$

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:
q1 contains first class customers which get served and go to q2 q2 contains first class customers arriving from q1 and second class customers arriving from outside

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:
q1 contains first class customers which get served and go to q2
q2 contains first class customers arriving from q1 and second class customers arriving from outside

State of queues is $|\lambda\rangle|m\rangle|n\rangle$ where I is no. first class in $q 2, m$ is no. second class in $q 2$, n is no. first class in q1

$$
\begin{array}{lll}
\tau_{i}=0 & \text { no service in } q 2 \\
\tau_{i}=1 & \text { first class service in } q 2 \\
\tau_{i}=2 & \text { second class service in } q 2 \\
\tau_{i}=3 & \text { unused service in } q 2
\end{array}
$$

Queueing Interpretation: 3- TASEP

Now think of 2 tandem queues:
q1 contains first class customers which get served and go to q2
q2 contains first class customers arriving from q1 and second class customers arriving from outside

State of queues is $|\lambda\rangle|m\rangle|n\rangle$
where I is no. first class in $q 2, m$ is no. second class in $q 2$, n is no. first class in q1

$$
\begin{array}{lll}
\tau_{i}=0 & \text { no service in } q 2 \\
\tau_{i}=1 & \text { first class service in q2 } \\
\tau_{i}=2 & \text { second class service in } q 2 \\
\tau_{i}=3 & \text { unused service in } q 2
\end{array}
$$

e.g. $\tau_{i}=3$ unused service in $q 2 \Rightarrow I=m=0$; possible arrival at $q 1 \Rightarrow n \rightarrow n$ or $n \rightarrow n+1$

$$
\left.X_{3}|\lambda\rangle|m\rangle|n\rangle=\delta_{l, 0}|/\rangle \delta_{m, 0}|m\rangle[|n\rangle+|n+1\rangle]=A|\lambda A| m\right\rangle E|n\rangle
$$

Conclusions

- A fundamental class of nonequilibrium stationary states may be solved exactly as a matrix product.
- Algebraic proof of stationary measure requires quadratic algebras and generalisations
- Construct stationary measure hierarchically from ($n-1$)-TASEP stationary measure
- The 'Matrices' act on space of queue counters

What l've left out

- Algebraic proof of stationary measure
- Simple mean field theory correctly predicts phase diagram and is first recourse for many systems
- Biophysical systems imply generalisations to dynamically extending 1d lattices and coupled one lattices
- Current fluctuations and large deviations

What l've left out

- Algebraic proof of stationary measure
- Simple mean field theory correctly predicts phase diagram and is first recourse for many systems
- Biophysical systems imply generalisations to dynamically extending 1d lattices and coupled one lattices
- Current fluctuations and large deviations
- ... and much, much more

