TASEP in presence of a localised dynamical constraint

Francesco Turci¹, A. Parmeggiani^{3,} E. Pitard¹, M.C. Romano², L. Ciandrini²

¹Laboratoire Charles Coulomb - Université Montpellier II - CNRS, Montpellier, France

²SUPA, Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, UK

³Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier II - CNRS, Montpellier, France

Edinburgh

December 2011

- Biological motivation
- The model
- Mean Field analysis and results

TASEP and **Tranlsation**

- **TASEP** has been originally proposed for mRNA translation.[1]
- mRNA is complex : secondary structures exists regulating the translation.
- Such regions can be active or not, depending on their folding status.
 - **folded** -> **inhibited** translation.
 - **unfolded** -> translation is **allowed**.
 - if a **ribosome** is **initiating** the \bigcirc translation, the **secondary** strucrure stays unfolded.

Totally Asymmetric Simple Exclusion Process

- exact results [1]
- paradigm for non equilibrium physics and biological processes [2]

Introducing a folding region

- Localisation of an extended defect
 - internal dynamics
 - coupling with particles presence.
- Effects on the dynamics
 - periodic boundaries
 - open boundaries

Periodic Boundaries

1 site long folding region

Ring of L sites;

Boundaries

Periodic

- N particles fixing the density $\rho = N/L$
- 1 site with internal dynamics
- Simulations performed using the Gillespie
 Algorithm.

Finite-Segment Mean Field approach

- The folding region is a defect:
 - slows down the dynamics

Boundaries

Periodic

- the system is split in two phases
 - High density ρ_{HD} before the defect
 - Low density ρ_{LD} after
- by spatial continuity of the current through the boundary $\rho_{HD}(|-\rho_{HD}) = \rho_{LD}(|-\rho_{LD})$
 - if we have a splitting -> $\rho_{H} = |-\rho_{LD}|$

Finite-Segment Mean Field approach

- The folding site **s** has density ρ_s and makes incoming particles wait before it.
- the system is analysed in three parts , conserving the current spatial continuity:
 - high density $I-\rho_s$ (LEFT)

Boundaries

Periodic

- the folding region + one site before it (MIDDLE) : decoupling the folding process and the injection of particles.
- low density ρ_{s} (RIGHT)
- The **MIDDLE** region is governed by an exact transition matrix \mathbb{W} for the Probability P({n_{s-1},n_s}). \mathbb{W} depends $\rho_{s.}, f, u, \gamma$.

*J J Dong et al 2009 J. Phys. A: Math. Theor. 42 015002

Finite-Segment Mean Field approach

2 sites -> 6 possible states : {empty, full}x{empty & open, full & open, closed}

$$\hat{\rho}_{s} = 1 - \rho_{s}$$

$$\mathbb{W} = \begin{pmatrix} -f - \gamma \hat{\rho}_{s} & u & 0 & 0 & \gamma \hat{\rho}_{s} & 0 \\ f & -u - \gamma \hat{\rho}_{s} & 0 & 0 & 0 & 0 \\ \gamma \hat{\rho}_{s} & 0 & -f - \gamma & u & 0 & \gamma \hat{\rho}_{s} \\ 0 & \gamma \hat{\rho}_{s} & f & -u & 0 & 0 \\ 0 & 0 & \gamma & 0 & -2\gamma \hat{\rho}_{s} & 0 \\ 0 & 0 & 0 & 0 & \gamma \hat{\rho}_{s} & -\gamma \hat{\rho}_{s} \end{pmatrix}$$

- Stationary state : $\mathbb{W}P=0$
 - one obtains the probability $P(n_s=I)$ as a function of $\rho_{s,\gamma,u,f}$.
 - solve $P(n_s=I) = \rho_s$
 - get $\rho_{s}(\gamma, u, f)$.

Periodic Boundaries

• The corresponding value for the current is $J_{max} = \rho_s(I - \rho_s)$

Periodic Boundaries Results

Mean field and simulation comparison

the system is split in two phases (= MF hypothesis)

Boundaries

Periodic

non flat profiles, non diffusive shocks dynamics (≠ MF hypothesis) Periodic Boundaries

Results

L-dependent $J(\rho)$ at very large γ/u

Boundaries

Periodic

- strong correlations
 - enhanced particles flow at high density (>0.5)
 - reduced particle flow at low density (<0.5)
 - slow convergence to
 L -> ∞ plateaux

mean field

TASEP

Mean field failure for highly correlated density profiles

the system is split in two phases (= MF hypothesis)

Periodic Boundaries

> non flat profiles, non diffusive shocks dynamics (≠ MF hypothesis)

Small unfolding rates lead to intermittency

L= 500, ρ =0.5 , f = I, γ = I

u = 0.01

<pre>1 I I I I I I I I I I I I I I I I I I I</pre>
en e

u = |

space

Passage times distributions

Boundaries

Periodic

Large folding regions have stronger effects

Boundaries

Periodic

d>I , L -> ∞

- more particles configurations leading to an open folding region
 - higher currents for a given set {u,f,γ}
- d>I , finite L
 - strong correlations
 - **enhanced** particles flow at high density (>0.5)
 - reduced particle flow at low density (<0.5)
 - slow convergence to L ->
 ∞ plateaux
 - complex domain wall diffusion within the lattice

Some Open Boundaries Results

Finite size effects depend on the size of the LD part

Open Boundaries

Finite size effects depend on the size of the LD part

Open Boundaries

21

Conclusions

- MF description of the homogeneous flow regime.
- Intermittent dynamics at high γ/u :
 - 2 typical waiting times -> 2 typical microscopic currents
- Current enhancement/reduction depending on the extension of the LD phase.
 - strong size effects;
 - relevant for biology : mRNA length 10² 10³ bases ~ 10²
 of codons.
 - Iong range density profiles tails