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TASEP and Tranlsation

® TASEP has been originally proposed
for mMRNA translation.[I]

® mRNA is complex : secondary
structures exists regulating the
translation.

® Such regions can be active or not,
depending on their folding status.

~ folded -y inhibited translation.
~ unfolded -> translation is allowed.

< If a ribosome is initiating the
translation, the secondary
strucrure stays unfolded.

[1] MacDonald CT, Gibbs JH, Pipkin AC. Biopolymers. [968;6:1-25.
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Totally Asymmetric Simple Exclusion Process

® |[f the folding/unfolding process Is not present, we can model the process as a TASEP:
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X [ ] For instance B Derrida et al. Journal of Physics A (1993) vol. 26 pp. 1493
e exact results 0 [2] Chou et al. Reports on Progress in Physics (201 1) vol. 74 pp. | 16601

e paradigm for non equilibrium physics and biological processes 2]
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Introducing a foldin

® |localisation of an extended defect
< Internal dynamics

~ coupling with particles presence.

~

® Eflects on the dynamics

< periodic boundaries

~ open boundaries
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Periodic Boundaries



® Ring of L sites; @ >

® N particles fixing the density p=N/L

® 1 site with internal dynamics

® Simulations performed using the Gillespie
Algorithm.
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Finite-Segment Mean Field approach

® [he folding region Is a defect:

- slows down the dynamics

< the system is split In two phases

* High density prp before the defect X

* |[ow density pio after

~ by spatial continuity of the current through the
boundary pro (I-prp)=pio (I-pLb)

* If we have a splitting -> pr=1-pwo

similar to Janowsky et Lebowitz Physical Review A (1992) vol. 45 (2) pp.618
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Finite-Segment Mean Field approach

o’=y(1-p) W B'=y(1-p) ' »
p.=1-p. P, pR=_£;s d ’

® The folding site s has density ps and makes incoming particles wait before It.

® the system is analysed in three parts , conserving the current spatial
continuity:
~  high density |-ps (LEFT)

-~ the folding region + one site before it (MIDDLE) : decoupling the folding process and the
injection of particles.

<~ low density ps (RIGHT)

® The MIDDLE region Is governed by an exact transition matrix W for the
Probability P({ns,ns}). W depends ps.fuy.

*] ] Dong et al 2009 J. Phys. A: Math.Theor. 42 015002
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Finite-Segment Mean Field approach

® ) sites - 6 possible states : {empty, full}x{empty & open, full & open, closed}

,53 =1 - Ps
([ —f = vbs u 0 0 ps 0\
f —U — YPs O O O 0
W = 7168 0 _f — U 0 7/58
0 ’7/53 f —u 0 0
0 0 y 0 —2vps O
\ 0 0 0 0 VPs —YPs )

® Stationary state: WP — ()
~ one obtains the probability P(ns=1) as a function of ps,Y,uf.

- solve P(ns=1) = ps
< get ps(y.uf).

< The corresponding value for the current Is Jmax= Ps(|-pPs)
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Periodic Boundaries

Results
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Mean field and simulation comparison
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the system is split in two phases non flat profiles, non diffusive shocks dynamics
(= MF hypothesis) (#+ MF hypothesis)
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Results

I foIdJing site,L=500,f=1

L1 1 1
|w_

—40.1
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“'-- mean field

s i [ASEP
u 10
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u=0.0l,f=1,y=100

L = 4000
L = 1000
L =500
o L =200
cec p(I-p)

o + +
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L-dependent |(p) at very large Y/u

~  strong correlations

* enhanced particles

flow at high density
(>0.5)

* reduced particle flow
at low density (<0.5)

* slow convergence to
L -> 00 plateaux

-- mean field
e« TASEP
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Mean field failure for highly correlated density profiles

d=1latx=250, L=500,f=1,u=0.01,y=1
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the system is split in two phases non flat profiles, non diffusive shocks dynamics
(= MF hypothesis) (#+ MF hypothesis)



Periodic
Boundaries

unfolding rates lead to intermittency

time
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Passage times distributions

S0,f=1,u=0.0l

<~ Distr. of the time lag |
between two successive
particles passing

through a control site 1072
* two typical times
| _ 107
* high Y/u increase the 5
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Large folding regions have stronger effects

Periodic Boundaries - 5 folding sites
f=1u=001I,y=1

® d>| Lo

~ more particles configurations
leading to an open folding
region

* higher currents for a given
set {ufy}

® d>|  finitelL

~  strong correlations

* enhanced particles flow at
high density (>0.5)

* reduced particle flow at
low density (<0.5)

* slow convergence to L -»
o0 plateaux

e complex domain wall
diffusion within the lattice



Some Open Boundaries

Results




Finite size effects depend on the size of the LD part
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Open Boundaries - L = 100, 5 sites folding region

f= l,y=1,u=0.0l
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Finite size effects depend on the size of the LD part
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Open Boundaries - 5 sites folding region

B=1-%f=1,y=1,u=00l
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Conclusions

® MF description of the homogeneous flow
regime.

® |ntermittent dynamics at high Y/u :

- 2 typical warting times -> 2 typical microscopic currents

® Current enhancement/reduction depending on
the extension of the LD phase.

~ strong size effects;

= relevant for biology : mRNA length 102 -103 bases ~ 107
of codons.

< long range density profiles tails

22



