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Introduction

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics.
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Systems far from equilibrium

No fundamental theory is yet available.

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

Example: Stationary driven systems in contact with reservoirs.

R1

J

R2
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Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with
probability 1/2. Their sum is denoted by SN =

∑N
1 εk .

• The Law of Large Numbers implies that SN/N → 0 a.s.

• The Central Limit Theorem implies that SN/
√

N converges towards
a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Pr

(
SN

N
= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = 0.

The function Φ(r) is a Large Deviation Function: it encodes the
probability of rare events.
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Density fluctuations in a gas

V, T

N

v
n

Mean Density ρ0 = N
V

In a volume v s. t. 1� v � V
〈 nv 〉 = ρ0

The local density varies around ρ0 . Typical fluctuations scale as
√

v/V .

The probability of observing large fluctuations is given by

Pr
(n

v
= ρ
)
∼ e−v Φ(ρ) with Φ(ρ0) = 0
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Thermodynamic Free Energy as a L. D. F.

The Large Deviation Function for density fluctuations is given by

Φ(ρ) = f (ρ,T )− f (ρ0,T )− (ρ− ρ0)
∂f

∂ρ0

where f = − log Z (ρ,T ) is the free energy per unit volume in units of kT .

The Free Energy of Thermodynamics can be viewed as a Large Deviation
Function

Conversely, large deviation functions may play the role of potentials in
non-equilibrium statistical mechanics.

Large deviation functions obey remarkable identities that remain valid far
from equilibrium: Fluctuation Theorem of Gallavotti and Cohen.
In the vicinity of equilibrium the Fluctuation Theorem yields the
fluctuation-dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).
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Outline

1. Spectral Properties of the Exclusion Process
(O. Golinelli)

2. Large deviations of the current in a closed ring: Bethe Ansatz
(S. Prolhac)

3. Fluctuations of the current in an open system
(A. Lazarescu)
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1. The Exclusion Process:

Spectral Properties
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ASEP

q p p pq

Asymmetric Exclusion Process. A paradigm for non-equilibrium
Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian
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ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.
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Markov Equation for the ASEP on a ring

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

Master Equation for the Probability Pt(x1, . . . , xN) of being in
configuration 1 ≤ x1 < . . . < xN ≤ L at time t.

dPt

dt
=

∑
i

′ [Pt(x1, . . . , xi − 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)]

+ x
∑
i

′ [Pt(x1, . . . , xi + 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)] .

The sum being restricted to admissible configurations.
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Spectrum

Complex Eigenvalues Mψ = Eψ with <(E ) ≤ 0 (Perron-Frobenius)

• Ground State E = 0 corresponds to the stationary state.

• Excited States → relaxation times.
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ASEP: An Integrable System

MAPPING TO A NON-HERMITIAN SPIN CHAIN

M =
L∑

l=1

(
S+
l S−l+1 + xS−l S+

l+1 +
1 + x

4
Sz
l Sz

l+1 −
1 + x

4

)

Complex Eigenvalues Mψ = Eψ :

• Ground State : E = 0 , P = Ω−1 (non-degenerate).

• Excited States : <(E ) < 0 (Perron-Frobenius).

Excitations correspond to relaxation times.

TASEP : x = 0
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Integrability of ASEP: Bethe Ansatz

Eigenvector ψ of M written as a linear combination of plane waves, with
pseudo-momenta given by z1, . . . zN :

ψ(x1, . . . , xN) =
∑
σ∈ΣN

Aσ
N∏
i=1

zxi
σ(i)

The Bethe Equations provide us with the quantification of the zi ’s:

zL
i = (−1)N−1

N∏
j=1

xzizj − (1 + x)zi + 1

xzizj − (1 + x)zj + 1

The corresponding eigenvalue is given by

E (z1, z2 . . . zN) =
N∑
i=1

1

zi
+ x

N∑
i=1

zi − N(1 + x) .
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The special case of TASEP

Eigenvectors of M as linear combinations of plane waves, with
pseudo-momenta given by z1, . . . zN :

ψ(x1, . . . , xN) = det
(2xj (zi + 1)j−xj

(zi − 1)j

)
for 1 ≤ i , j ≤ N

• ψ is an eigenfunction with eigenvalue E = 1
2 (−N +

∑
j zj).

• Cancellation of the two-particle collision terms (xk−1 = xk − 1).

• Bethe Equations

(1− zi)
N(1 + zi)

L−N = −2L
N∏

j=1

zj − 1

zj + 1
for i = 1, . . .N

Note that the r.h.s. is a constant independent of i : DECOUPLING.
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Procedure for solving the TASEP Bethe Equations

• For any given value of Y , SOLVE (1− zi )
N(1 + zi )

L−N = Y . The
roots are located on Cassini Ovals

• CHOOSE N roots zc(1), . . . zc(N) amongst the L available roots,
with a choice set c : {c(1), . . . , c(N)} ⊂ {1, . . . , L} .

• SOLVE the self-consistent equation Ac(Y) = Y where

Ac(Y ) = −2L
N∏
j=1

zc(j) − 1

zc(j) + 1
.

• DEDUCE from the value of Y , the zc(j)’s and the energy
corresponding to the choice set c :

2Ec(Y ) = −N +
N∑
j=1

zc(j).

K. Mallick Current fluctuations in the Exclusion Process



Labelling the roots of the Bethe Equations

The loci of the roots (for x = 0) are remarkable curves: The Cassini
Ovals

−1 1

Z1

Z2

ZN−1

ZN
ZN+1

ZL−1
ZL

1−2ρ
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Calculation of the GAP

The first excited state is solution of a transcendental equation. For a
density ρ:

E1 = −2
√
ρ(1− ρ)

6.509189337 . . .

L3/2
± 2iπ(2ρ− 1)

L
.

RELAXATION OSCILLATIONS

• Non-diffusive: Largest relaxation time T ∼ Lz with z = 3/2 (D. Dhar,
L.H. Gwa and H. Spohn, D. Kim).

• Oscillations → Traveling waves probed by dynamical correlations (M.
Barma, S. Majumdar, P. Krapivsky).

• Classification of higher excitations (J. de Gier and F.H.L. Essler, 2006).
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2. Current Fluctuations

on a ring
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Large Deviations of the Current

Statistics of the total current Yt : total distance covered by all the N
particles, hopping on a ring of size L, between time 0 and time t.

Let Pt(C,Y ) be the joint probability of being at time t in configuration C
with Yt = Y . The time evolution of this joint probability can be deduced
from the original Markov equation, by splitting the Markov operator

M = M0 + M+ + M−

The Laplace transform of Pt(C,Y ) with respect to Y , defined as
P̂t(C, µ) =

∑
Y eµY Pt(C,Y ), satisfies a dynamical equation governed by

the deformation of the Markov Matrix M, obtained by adding a
jump-counting fugacity µ:

dP̂t

dt
= M(µ)P̂t

with
M(µ) = M0 + eµM+ + e−µM−
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Cumulant generating function

In the long time limit, t →∞〈
eµYt

〉
' eE(µ)t

where E (µ) is the eigenvalue of M(µ) with maximal real part.
Equivalently, Φ(j), the large deviation function of the current

P

(
Yt

t
= j

)
∼e−tΦ(j)

is related to E (µ) by a Legendre transform

E (µ) = maxj (µj − Φ(j))

The current statistics is reduced to an eigenvalue problem, solvable by
Bethe Ansatz.
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Bethe Ansatz for current statistics

The Bethe Equations are given by

zL
i = (−1)N−1

N∏
j=1

xe−µzizj − (1 + x)zi + eµ

xe−µzizj − (1 + x)zj + eµ

The eigenvalues of M(µ) are

E (µ; z1, z2 . . . zN) = eµ
N∑
i=1

1

zi
+ xe−µ

N∑
i=1

zi − N(1 + x) .

The Bethe equations do not decouple unless x = 0
(This case was solved by B. Derrida and J. L. Lebowitz, 1998).
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TASEP CASE (Derrida Lebowitz 1998)

E (µ) is calculated by Bethe Ansatz to all orders in µ, thanks to the
decoupling property of the Bethe equations.
The structure of the solution is given by a parametric representation of
the cumulant generating function E (µ):

µ = −1

L

∞∑
k=1

[kL]!

[kN]! [k(L− N)]!

Bk

k
,

E = −
∞∑
k=1

[kL− 2]!

[kN − 1]! [k(L− N)− 1]!

Bk

k
.

Mean Total current:

J = lim
t→∞

〈Yt〉
t

=
N(L− N)

L− 1

Diffusion Constant:

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
=

LN(L− N)

(L− 1)(2L− 1)

C 2N
2L(

CN
L

)2

Exact formula for the large deviation function.
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Functional Bethe Ansatz for the General Case

After a change of variable, yi = 1−e−µzi
1−xe−µzi

, the Bethe equations read

eLµ
(

1− yi
1− xyi

)L

= −
N∏
j=1

yi − xyj
xyi − yj

for i = 1 . . .N .

Let T be auxiliary variable playing a symmetric role w.r.t. all the yi :

eLµ
(

1− T

1− xT

)L

= −
N∏
j=1

T − xyj
xT − yj

for i = 1 . . .N .

i .e.P(T ) = eLµ(1− T )L
N∏
j=1

(xT − yj) + (1− xT )L
N∏
j=1

(T − xyj) = 0.

But P(yi ) = 0 (Bethe Eqs.). Thus, Q(T ) =
N∏
i=1

(T − yi ) divides P(T ) :

Q(T ) DIVIDES eLµ(1− T )LQ(xT ) + (1− xT )LxNQ(T/x).
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Functional Bethe Ansatz

There exist two polynomials Q(T ) and R(T ) such that

Q(T )R(T ) = eLµ(1− T )LQ(xT ) + xN(1− xT )LQ(T/x)

where Q(T ) of degree N vanishes at the Bethe roots.
Functional Bethe Ansatz (Baxter’s TQ equation): Restatement of the
Bethe Ansatz as a purely algebraic problem. This equation is solved
perturbatively w.r.t. µ.

Knowing Q(T ), we obtain an expansion of E (µ). This provides the full
statistics of the current and its large deviations.
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Cumulants of the Current

• Mean Current: J = (1− x)N(L−N)
L−1 ∼ (1− x)Lρ(1− ρ) for L→∞

• Diffusion Constant: D = (1− x) 2L
L−1

∑
k>0 k2 CN+k

L

CN
L

CN−k
L

CN
L

(
1+xk

1−xk

)

D ∼ 4φLρ(1− ρ)

∫ ∞
0

du
u2

tanhφu
e−u

2

when L→∞ and x → 1 with fixed value of φ =
(1−x)
√

Lρ(1−ρ)

2 .

• Third cumulant (Skewness):

E3

φ(ρ(1− ρ))3/2L5/2
' − 4π

3
√

3
+

12

∫ ∞
0

dudv
(u2 + v 2)e−u

2−v2 − (u2 + uv + v 2)e−u
2−uv−v2

tanhφu tanhφv

→ Non Gaussian fluctuations. TASEP limit for φ→∞:

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3
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E3

6L2
=

1− x

L− 1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4

(i2 + j2)
1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2 + ij + j2

2

1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2 + ij + j2

2

1 + x i

1− x i

1 + x j

1− x j

− 1− x

L− 1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1 + x i

1− x i

)2

+ (1− x)
N(L− N)

4(L− 1)(2L− 1)

C 2N
2L

(CN
L )2

− (1− x)
N(L− N)

6(L− 1)(3L− 1)

C 3N
3L

(CN
L )3
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The weakly symmetric case

For large system sizes, L→∞, in the scaling limit x = 1− ν
L , the

cumulant generating function is given by

E
(µ

L

)
' ρ(1− ρ)(µ2 + µν)

L
− ρ(1− ρ)µ2ν

2L2
+

1

L2
ψ[ρ(1− ρ)(µ2 + µν)]

with ψ(z) =
∞∑
k=1

B2k−2

k!(k − 1)!
zk

The Bj ’s are Bernoulli Numbers.

Leading order (in 1/L): Gaussian fluctuations.

Subleading (in 1/L2) : Non-Gaussian correction.

Phase transition (predicted by T. Bodineau and B. Derrida) when

ν ≥ νc =
2π√

ρ(1− ρ)
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Behaviour of the large deviation function
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The General Case (S. Prolhac, 2010)

The function E (µ) is again obtained in a parametric form:

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− x)

∑
k≥1

Dk
Bk

k

Ck and Dk are combinatorial factors enumerating some tree structures.
There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

such that Ck and Dk are given by complex integrals along a small
contour that encircles 0 :

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

The function WB(z) contains the full information about the statistics of
the current.
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The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2
∑∞

k=1
xk

1−xk

{(
z1

z2

)k
+
(

z2

z1

)k}
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Solving this Functional Bethe Ansatz equation to all orders enables us to
calculate cumulant generating function. For x = 0, the TASEP result is
readily retrieved.

The function WB(z) also contains information on the 6-vertex model
associated with the ASEP.

From the Physics point of view, the solution allows one to

Classify the different universality classes (KPZ, EW).

Study the various scaling regimes.

Investigate the hydrodynamic behaviour.
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3. Current Fluctuations

in the open TASEP
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The total Current in the Open System

The fundamental paradigm

R1

J

R2

The totally asymmetric exclusion model with open boundaries

α β1
1

1 L

RESERVOIR RESERVOIR
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The total Current in the Open System

The fundamental paradigm

R1

J

R2

The totally asymmetric exclusion model with open boundaries

α β1
1

1 L

RESERVOIR RESERVOIR
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The Matrix Ansatz (DEHP, 1993)

The stationary probability of a configuration C is given by

P(C) =
1

ZL
〈α|

L∏
i=1

(τiD + (1− τi )E ) |β〉 .

where τi = 1 (or 0) if the site i is occupied (or empty).

The normalization constant is ZL = 〈α| (D + E )L |β〉

The operators D and E , the vectors 〈α| and |β〉 satisfy

D E = D + E

D |β〉 =
1

β
|β〉

〈α|E =
1

α
〈α|
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Phase Diagram

= β (1 −β)

ρ = 1 − β

J

ρ = α

 = α(1−α)J

ρ = 1/2

J = 1/4

HIGH   DENSITY

LOW DENSITY

α

β
MAXIMAL  CURRENT

K. Mallick Current fluctuations in the Exclusion Process



Large Deviations of the Current: Framework

Let Nt be the TOTAL (time-integrated) current through the system
between 0 and t. When a particle enters the system:

Nt = Nt + 1

Expectation value: limt→∞
〈Nt〉
t = J(α, β, L) = ZL−1

ZL

Variance: limt→∞
〈N2

t 〉−〈Nt〉2
t = ∆(α, β, L)

Cumulant Generating Function: 〈exp(µNt)〉 ' exp(E (µ)t)

The Large-Deviation Function Φ(j) of the total current

P

(
Nt

t
= j

)
∼e−tΦ(j)

is the Legendre transform of the Cumulant Generating Function E (µ).
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Full Current Statistics

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Full Current Statistics

For arbitrary (α, β), the parametric representation of E (µ) is

µ = −
∞∑
k=1

Ck(α, β)
Bk

2k

E = −
∞∑
k=1

Dk(α, β)
Bk

2k

with

Ck(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

z
and Dk(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

(1 + z)2

where

F (z) =
−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b)
, a =

1− α
α

, b =
1− β
β
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Some explicit expressions

Mean Current: (Same expression as in DEHP)

J =
D1(α, β)

C1(α, β)

Fluctuations: (an expression more compact than the one of 1995)

∆ =
D1 C2 − D2 C1

C 3
1

Saddle point analysis in the low density phase: (ρ = α)

E1 = ρ(1− ρ)

E2 = ρ(1− ρ)(1− 2ρ)

E3 = ρ(1− ρ)(1− 6ρ+ 6ρ2)

E4 = ρ(1− ρ)(1− 2ρ)(1− 12ρ+ 12ρ2)

E5 = ρ(1− ρ)(1− 30ρ+ 150ρ2 − 240ρ3 + 120ρ4) ...
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Behaviour in the TASEP Phase Diagram

In the limit L→∞ of systems of large size, we have

Maximal Current phase α > 1/2 and β > 1/2: Cumulants are
independent from α and β and are the same as for α = β = 1:

Ek ∼ π(πL)k/2−3/2 for k ≥ 2

Low Density phase α < min(β, 1/2): Use saddle-point and
Lagrange Inversion Formula to obtain

E (µ) =
a

a + 1

eµ − 1

eµ + a

Agrees with Bethe Ansatz (Essler and de Gier) and with
Macroscopic Fluctuation Theory.

High Density phase is symmetrical to Low Density via α↔ β.

Along the shock line α = β ≤ 1/2:

Ek ' εkα(1− α)(1− 2α)k−1Lk−2 for k ≥ 2

The coefficients ε2 = 2/3, ε3 = −1/30, ε4 = 2/315,
ε5 = −1/1890..., can be calculated by Domain Wall Theory.
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DMRG Results ( M. Gorissen, C. Vanderzande)
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Fourth Cumulant (DMRG)
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Relation to the Macroscopic Fluctuation Theory

By Legendre Transform of the cumulant generating function, the Large
Deviation Function of the current is found. In the limit of very large
systems (Low Density Phase):

Φ(j) = α− r + r(1− r) ln

(
1− α
α

r

1− r

)
where the current j is parametrized as j = r(1− r). This expression is
consistent with the one derived from the Macroscopic Fluctuation
Theory of Jona-Lasinio et al. (cf T. Bodineau and B. Derrida).

In the Macroscopic Fluctuation Theory, the hydrodynamic limit of
the ASEP is a stochastic Burgers equation (in the weakly
asymmetric regime).

This allows one to define a probability measure on density profiles
and currents.

The optimal profile that generates the atypical current j is found by
solving a variational problem.

The probability of occurrence of this optimal profile allows one to
calculate Φ(j).
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Outline of the calculation

• The function E (µ) is expressed as the dominant eigenvalue of a
deformation of the Markov Matrix: M(µ) = M + (eµ − 1)M1

• E (µ) and its corresponding eigenvector are developed perturbatively
w.r.t. µ.

• Construction of a Matrix Ansatz at each order k with (2k + 1)
Tensor Products of quadratic algebras as in the multispecies
exclusion process.

• k-th Matrix Ansatz → k-th term in the expansion of E (µ).

• The formula is checked against exact calculations on systems of
sizes ≤ 10 for arbitrary rational values of (α, β).

• Large system size limits and known special cases are recovered.

• DMRG results of M. Gorissen and C. Vanderzande.
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Current fluctuations in the general ASEP

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

For arbitrary values of (α, β, γ, δ), and for any system size L the
parametric representation of E (µ) is given by

µ=−
∞∑
k=1

Ck(α, β, γ, δ, L)
Bk

2k
and E =−

∞∑
k=1

Dk(α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are generated by contour integrals in the
complex plane.
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The key function F (z) is now given by

(1 + z)L(1 + z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± are simple functions of the
boundary rates.

The complex integrals are taken along a small contour in the complex
plane that encircles the points 0, qka+, q

ka−, q
kb+ and qkb− for all

integers k ≥ 0.

The function F (z) must be convoluted with the same kernel as in the
closed ASEP problem

K (z1, z2) = 2
∑∞

k=1
qk

1−qk

{(
z1

z2

)k
+
(

z2

z1

)k}
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This structure was obtained using the Tensor Matrix Ansatz. These
results are of combinatorial nature. They are valid for arbitrary
values of the parameters and for any system size with no restrictions.

At first order, the formula for the mean current in the open ASEP
(Sasamoto et al.) is retrieved.

At second order, an expression of the Diffusion Constant that
generalizes the old TASEP result is obtained.

In the limit of large system sizes, the expression of the cumulant
generating function becomes

E (µ) = (1− q)
a+

a+ + 1

eµ − 1

eµ + a+

Agrees with Bethe Ansatz results of Essler and de Gier and with
Macroscopic Fluctuation Theory.

Scaling limits, Weakly Asymmetric regime are under investigation.

There is an underlying Functional Bethe Ansatz structure. The
relevant WB(z) has been found.
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Conclusion

Exact solutions of the asymmetric exclusion process are paradigms for the
behaviour of systems far from equilibrium in low dimensions: Dynamical
phase transitions, Non-Gibbsean measures, Large deviations, Fluctuations
Theorems...

Tensor products of quadratic algebras provides us with an efficient tool to
solve very challenging problems: multispecies models; current fluctuations
in the open TASEP.

The large deviation functions (LDF) appear as the right generalization of
the thermodynamic potentials: convex, optimized at the stationary state,
and non-analytic features can be interpreted as phase transitions.
Besides, the LDF’s satisfy remarkable identities (Gallavotti-Cohen) valid
far away from equilibrium. The LDF’s are very likely to play a key-role in
the future of non-equilibrium statistical mechanics.
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