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Scaling limit: (relativistic) QFT
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Commutes with the Hamiltonian

«Asymptotically looks like»

Description of the steady state
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Operator Y :
H

★ Formal definition first proposed by Hershfield (PRL 1993) (case 
where both temperatures are the same and something else is 
flowing, like a charge)
★ Studied widely for charge transfer in impurity systems



Description of the steady state
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The energy current
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The energy current

J = f(βl)− f(βr)

Using the fact that the energy is unchanged under change 
of sign of a momentum component:

J = α(β−d−1
l − β−d−1

r )

At the conformal (gapless) point:



1D: the CFT central charge
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1D: the CFT central charge

Using the fact that

h±(x) =
hl
±(x) (x < 0)
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1D: the CFT central charge

Hence:

J = f(βl)− f(βr), f(β) = − lim
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Fluctuations of the energy transfer

We want to measure the fluctuations of the transfer of 
energy, whose «charge» can be taken as:
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Fluctuations of the energy transfer
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An expected fluctuation relation

F (λ) = F (i(βl − βr)− λ)

See the nice review by: Esposito, 
Harbola, Mukamel (RMP 2009)

Jarzynski, Wojcik (PRL 2004)

P (q, t → ∞) = e(βl−βr)qP (−q, t → ∞)

Equivalent to:

Such a relation was argued for first measurement at t = t0

Andrieux, Gaspard, Monnai, Tasaki (2008)

More rigorous proof given in:



The full counting statistics in CFT
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The full counting statistics in CFT

Parenthesis: charge transfer in free-fermion systems

• Large-deviation function known in terms of transmission 
matrix: Lesovik-Levitov formula (1993,1994) (also: Klich, 
Schonhammer, DB & BD, . . .)
• It is observed that the same result is obtained with any 
fixed µ
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�
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Hence we expect to get the same result with:



The full counting statistics in CFT

eiλQ(t)e−iλQ = eiλQ+iλ
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Supported on a finite region

Finitely-supported observable, can use Y-operator, get 
factorization:
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The full counting statistics in CFT

Factorization

Leading behaviour

Fluctuation relation

F (λ) =
iλπc

12

�
1

βr(βr − iλ)
− 1

βl(βl + iλ)

�

Using dimensional analysis, unique solution to:

F (λ) = f(λ,βl) + f(−λ,βr)

F (λ) = O(λ)

[DB & BD]



A stochastic interpretation

Independent Poisson processes for jumps of every energy E, 
positive or negative, with intensity

dE e−βlE (E > 0)

dE eβrE (E < 0)


