Exact low-energy results for non-equilibrium steady-states

Benjamin Doyon
King's college London

based on work in preparation with Denis Bernard Edinburgh, 9 December 2011

Physical situation

$\frac{R}{v_{F}} \gg t-t_{0} \gg \frac{\hbar \beta_{r, l}}{k_{B}}, \ldots:$

Physical situation

$$
\begin{gathered}
\langle\cdots\rangle_{\text {ness }}=\lim _{t_{0} \rightarrow-\infty} \lim _{R \rightarrow \infty} \frac{\operatorname{Tr}\left(e^{i H t_{0}} \rho_{0} e^{-i H t_{0}} \cdots\right)}{\operatorname{Tr}\left(\rho_{0}\right)} \\
\rho_{0}=e^{-\beta_{l} H^{l}-\beta_{r} H^{r}} \\
H=H^{l}+H^{r}+H_{\text {contact }}
\end{gathered}
$$

Observables supported on a finite region

Scaling limit: (relativistic) QFT

Linear dispersion relation: CFT

Relativistic dispersion relation: QFT
wave number

wave number

Description of the steady state

$$
\langle\cdots\rangle_{\text {ness }}=\frac{\operatorname{Tr}\left(e^{-Y} \cdots\right)}{\operatorname{Tr}\left(e^{-Y}\right)}
$$

Operator Y :

- Commutes with the Hamiltonian H
- «Asymptotically looks like» $\beta_{l} H^{l}+\beta_{r} H^{r}$
* Formal definition first proposed by Hershfield (PRL 1993) (case where both temperatures are the same and something else is flowing, like a charge)
« Studied widely for charge transfer in impurity systems

Description of the steady state

[DB \& BD]
$Y=\beta_{l} \underbrace{\int_{0}^{\infty} d \theta E_{\theta} A(\theta)^{\dagger} A(\theta)}_{\text {Total energy of }}$ right-moving

Total energy of left-moving
asymptotic particles
asymptotic particles

The energy current

$$
\begin{aligned}
& J=\left\langle p^{1}(x)\right\rangle_{\text {ness }} \\
&=\lim _{R \rightarrow \infty} R^{-d} \frac{\operatorname{Tr}_{R}\left(e^{-Y} P^{1}\right)}{\operatorname{Tr}_{R}\left(e^{-Y}\right)} \\
&=\lim _{R \rightarrow \infty} R^{-d} \frac{\operatorname{Tr}_{R}\left(e^{-Y_{+}+P_{+}^{1}}\right)}{\operatorname{Tr}_{R}\left(e^{-Y_{+}}\right)}+\lim _{R \rightarrow \infty} R^{-d} \frac{\operatorname{Tr}_{R}\left(e^{-Y_{-}-P_{-}^{1}}\right)}{\operatorname{Tr}_{R}\left(e^{-Y_{-}}\right)} \\
& \mathcal{H}=\mathcal{H}_{+} \otimes \mathcal{H}_{-} \\
& Y=Y_{+}+Y_{-} \\
& P^{1}=P_{+}^{1}+P_{-}^{1}
\end{aligned}
$$

The energy current

Using the fact that the energy is unchanged under change of sign of a momentum component:

$$
J=f\left(\beta_{l}\right)-f\left(\beta_{r}\right)
$$

At the conformal (gapless) point:

$$
J=\alpha\left(\beta_{l}^{-d-1}-\beta_{r}^{-d-1}\right)
$$

1D: the CFT central charge

[DB \& BD]

$$
J=\frac{\pi(C)}{12}\left(\beta_{l}^{-2}-\beta_{r}^{-2}\right)=\frac{\pi c k_{B}^{2}}{12 \hbar}\left(T_{l}^{2}-T_{r}^{2}\right)
$$

central charge

$$
T(x)=-\frac{c}{24}+\sum_{n \in Z} \underbrace{I_{n} e^{-\frac{2 \pi i n x}{R}}}_{\text {Virasoro }}
$$

$$
\begin{array}{cc}
H=\int d x\left(h_{+}(x)+h_{-}(x)\right) & h_{+}(x)=\frac{2 \pi}{R^{2}} T(x) \\
H^{l, r}=\int d x\left(h_{+}^{l, r}(x)+h_{-}^{l, r}(x)\right) & h_{-}(x)=\frac{2 \pi}{R^{2}} \bar{T}(x) \\
J=\left\langle h_{+}(x)-h_{-}(x)\right\rangle_{\text {ness }} &
\end{array}
$$

1D: the CFT central charge

Using the fact that

$$
\begin{aligned}
& h_{ \pm}(x)=\begin{array}{ll}
h_{ \pm}^{l}(x) & (x<0) \\
h_{ \pm}^{r}(x) & (x>0)
\end{array} \\
& \text { and } \\
& \rho_{0}=e^{-\beta_{l} H^{l}-\beta_{r} H^{r}}
\end{aligned}
$$

we find

$$
Y=\frac{2 \pi \beta_{l}}{R} L_{0}-\frac{2 \pi \beta_{r}}{R} \bar{L}_{0}
$$

1D: the CFT central charge

Hence:

$$
\begin{gathered}
J=f\left(\beta_{l}\right)-f\left(\beta_{r}\right), \quad f(\beta)=-\lim _{R \rightarrow \infty} \frac{1}{R} \frac{d}{d \beta} \log Z(\beta) \\
\text { where }
\end{gathered}
$$

$$
Z(\beta)=\operatorname{Tr}\left(e^{-\frac{2 \pi \beta}{R} L_{0}}\right)
$$

and we can use

$$
Z(\beta) \sim N e^{\frac{\pi c R}{12 \beta}}
$$

Fluctuations of the energy transfer

We want to measure the fluctuations of the transfer of energy, whose «charge» can be taken as:

$$
Q=\frac{1}{2}\left(H^{l}-H^{r}\right)
$$

Fluctuations of the energy transfer

$$
\begin{gathered}
P(q, t)=\sum_{q_{0}} \operatorname{Tr}(P_{q_{0}+q} e^{-i H t} P_{q_{0}} \overbrace{\text { ace }} P_{q_{0}} e^{\frac{e^{-Y}}{\operatorname{TiHt}\left(e^{-Y}\right)}} P_{q_{0}+q}) \\
P(\lambda, t)=\sum_{q} e^{i \lambda q} P(q, t) \\
\log P(\lambda, t) \sim t(\lambda)+O(1) \\
\text { Large-deviation function } \\
=-i \lambda J+\ldots
\end{gathered}
$$

An expected fluctuation relation

$$
F(\lambda)=F\left(i\left(\beta_{l}-\beta_{r}\right)-\lambda\right)
$$

Equivalent to:

$$
P(q, t \rightarrow \infty)=e^{\left(\beta_{l}-\beta_{r}\right) q} P(-q, t \rightarrow \infty)
$$

Such a relation was argued for first measurement at $t=t_{0}$ Jarzynski, Wojcik (PRL 2004) See the nice review by: Esposito, Harbola, Mukamel (RMP 2009)
More rigorous proof given in:
Andrieux, Gaspard, Monnai, Tasaki (2008)

The full counting statistics in CFT

Recall:
$P(\lambda, t)=\sum_{q, q_{0}} e^{i \lambda q} \operatorname{Tr}\left(P_{q_{0}+q} e^{-i H t} P_{q_{0}} \rho_{\text {ness }} P_{q_{0}} e^{i H t} P_{q_{0}+q}\right)$
Use $\sum_{q} f(q) P_{q}=f(Q)$ and $P_{q} \propto \int d \mu e^{i \mu(Q-q)}$

$$
F(\lambda)=\lim _{t \rightarrow \infty} t^{-1} \log \left[\lim _{t_{0} \rightarrow-\infty} \lim _{R \rightarrow \infty} \int d \mu \star\right]
$$

$$
\operatorname{Tr}\left(\rho_{0}\left(t_{0}\right) e^{-i\left(\frac{\lambda}{2}+\mu\right) Q} e^{i \lambda Q(t)} e^{-i\left(\frac{\lambda}{2}-\mu\right) Q}\right)
$$

$$
\operatorname{Tr} \rho_{0}\left(t_{0}\right)
$$

The full counting statistics in CFT

Parenthesis: charge transfer in free-fermion systems

- Large-deviation function known in terms of transmission matrix: Lesovik-Levitov formula $(1993,1994)$ (also: Klich, Schonhammer, DB \& BD, . . .)
- It is observed that the same result is obtained with any fixed μ

Hence we expect to get the same result with:

$$
\frac{\operatorname{Tr}\left(\rho_{0}\left(t_{0}\right) e^{i \lambda Q(t)} e^{-i \lambda Q}\right)}{\operatorname{Tr} \rho_{0}\left(t_{0}\right)}
$$

The full counting statistics in CFT

$$
e^{i \lambda Q(t)} e^{-i \lambda Q}=e^{i \lambda Q+i \lambda} \underbrace{\int_{0}^{d x\left(h_{-}(x)-h_{+}(-x)\right)} e^{-i \lambda Q}}_{\text {Supported on a finite region }}
$$

Finitely-supported observable, can use Y-operator, get factorization:

$$
F(\lambda)=f\left(\lambda, \beta_{l}\right)+f\left(-\lambda, \beta_{r}\right)
$$

$$
f(\lambda, \beta)=\left\langle e^{i \lambda\left(-\frac{\pi}{R}+\frac{2}{R} \sum_{n \in Z} L_{n} \frac{\sin \frac{\pi n t}{n}}{n}\right)}\right\rangle_{\beta-\frac{i \lambda}{2}}\left\langle e^{i \lambda \frac{\pi L_{0}}{R}}\right\rangle_{\beta}
$$

The full counting statistics in CFT

[DB \& BD]

$$
F(\lambda)=\frac{i \lambda \pi c}{12}\left(\frac{1}{\beta_{r}\left(\beta_{r}-i \lambda\right)}-\frac{1}{\beta_{l}\left(\beta_{l}+i \lambda\right)}\right)
$$

Using dimensional analysis, unique solution to:

- Factorization $F(\lambda)=f\left(\lambda, \beta_{l}\right)+f\left(-\lambda, \beta_{r}\right)$
- Leading behaviour $F(\lambda)=O(\lambda)$
- Fluctuation relation

A stochastic interpretation

Independent Poisson processes for jumps of every energy E, positive or negative, with intensity

$$
\begin{array}{ll}
d E e^{-\beta_{l} E} & (E>0) \\
d E e^{\beta_{r} E} & (E<0)
\end{array}
$$

