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Physical situation
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Physical situation
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Observables supported on a finite region



Scaling limit: (relativistic) QFT

Linear dispersion relation: CFT
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Relativistic dispersion relation: QFT
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Description of the steady state
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Operator Y :

® Commutes with the Hamiltonian H

o «Asymptotically looks like» 3 H' + 3, H"

* Formal definition first proposed by Hershfield (PRL 1993) (case
where both femperatures are the same and something else is
flowing, like a charge)

* Studied widely for charge transfer in impurity systems



Description of the steady state
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Y= Bl/ dOEyA(0)T A(0) + Br/ dOEyA(0)TA(9)
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The energy current

J = <p1 (x)>ness
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The energy current

Using the fact that the energy is unchanged under change
of sign of a momentum component:

J:f(ﬁl) _f(ﬁfr)

At the conformal (gapless) point:

J=a(f " - 67)




ID: the CFT central charge
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ID: the CFT central charge

Using the fact that




ID: the CFT central charge

Hence:
, 1 d
J = f(B) — F(Br), $(B) = lim —-zlog Z(B)
where

7(8) = Tr (e—¥%)
and we can use

Z(B) ~ N 12



Fluctuations of the energy transfer

We want to measure the fluctuations of the transfer of
energy, whose «charge» can be taken as:
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Fluctuations of the energy transfer
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An expected fluctuation relation

F(A) = F(i(f1 = Br) — A)

Equivalent to:
P(q,t — o0) = ePr=Pr)ap(_q t — o)

Such a relation was argued for first measurement at ? = %o

Jarzynski, Wojcik (PRL 2004) See the nice review by: Esposito,
Harbola, Mukamel (RMP 2009)

More rigorous proof given in:
Andrieux, Gaspard, Monnai, Tasaki (2008)



The full counting statistics in CFT

Recall:
P(At) = Z el LT (PQO+Q€—ZHtPQOIOneSSPQO 62hﬁthoJrq)

Use Z f(@P; = f(Q) and Py /d,u e Q=)
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The full counting statistics in CFT

Parenthesis: charge transfer in free-fermion systems

® Large-deviation function known in terms of transmission
matrix: Lesovik-Levitov formula (1993,1994) (also: Klich,
Schonhammer, DB & BD, . . .)

® It is observed that the same result is obtained with any
fixed

-

Hence we expect to get the same result with:
Ty (,00 (t()) eiAQ(t)e—iAQ)
Tr po(to)




The full counting statistics in CFT
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Supported on a finite region

Finitely-supported observable, can use Y-operator, get
factorization:
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The full counting statistics in CFT
[DB & BD]

Using dimensional analysis, unique solution to:

@ Factorization F'(A) = f(A, Bi) + fF(—A, 5r)
@ Leading behaviour F()\) = O(\)

@ Fluctuation relation



A stochastic interpretation

Independent Poisson processes for jumps of every energy E,
positive or negative, with intensity
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