Triangle-generation

in topological D-brane categories

Nils Carqueville
King's College London

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright($ chiral primaries $) \cong($ Jacobi ring $) \cong($ observables in twisted model $)$

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)

- LG/CY correspondence

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)

- LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models

Introduction

closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)

- LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models
\triangleright D-branes described by matrix factorisations

Introduction

\square closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)

- LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models
\triangleright D-branes described by matrix factorisations
\triangleright follow branes in Kähler moduli space, e.g.

$$
\operatorname{MF}(W) \cong \boldsymbol{D}^{\mathrm{b}}\left(\operatorname{coh}\left(\{W=0\} \subset \mathbb{P}^{N}\right)\right.
$$

Introduction

\square closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)
\triangleright LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models
\triangleright D-branes described by matrix factorisations
\triangleright follow branes in Kähler moduli space, e.g.

$$
\operatorname{MF}(W) \cong \boldsymbol{D}^{\mathrm{b}}\left(\operatorname{coh}\left(\{W=0\} \subset \mathbb{P}^{N}\right)\right.
$$

\triangleright deformation theory

Introduction

\square closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)
\triangleright LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models
\triangleright D-branes described by matrix factorisations
\triangleright follow branes in Kähler moduli space, e.g.

$$
\operatorname{MF}(W) \cong \boldsymbol{D}^{\mathrm{b}}\left(\operatorname{coh}\left(\{W=0\} \subset \mathbb{P}^{N}\right)\right.
$$

\triangleright deformation theory
$\triangleright 4 d$ effective superpotential

Introduction

\square closed $\mathcal{N}=(2,2)$ Landau-Ginzburg models
\triangleright believed to flow to $\mathcal{N}=(2,2)$ CFTs in infra-red
$\triangleright \quad($ chiral primaries $) \cong($ Jacobi ring $) \cong$ (observables in twisted model)
\triangleright LG/CY correspondence
\square open $\mathcal{N}=2_{B}$ Landau-Ginzburg models
\triangleright D-branes described by matrix factorisations
\triangleright follow branes in Kähler moduli space, e.g.

$$
\operatorname{MF}(W) \cong \boldsymbol{D}^{\mathrm{b}}\left(\operatorname{coh}\left(\{W=0\} \subset \mathbb{P}^{N}\right)\right.
$$

\triangleright deformation theory
$\triangleright 4 d$ effective superpotential
\triangleright tachyon condensation

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

Open $\mathcal{N}=2_{B}$ LG model with additional boundary action
$\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} x^{0}\left(\psi_{+} \bar{\psi}_{-}+\bar{\psi}_{+} \psi_{-}\right)$

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

Open $\mathcal{N}=2_{B}$ LG model with additional boundary action
$\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} x^{0}\left(\psi_{+} \bar{\psi}_{-}+\bar{\psi}_{+} \psi_{-}\right)-\frac{1}{2} \int_{\partial \Sigma} \mathrm{d}^{2} \theta \mathrm{~d} x^{0} \bar{\Pi} \Pi$

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

Open $\mathcal{N}=2_{B}$ LG model with additional boundary action
$\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} x^{0}\left(\psi_{+} \bar{\psi}_{-}+\bar{\psi}_{+} \psi_{-}\right)-\frac{1}{2} \int_{\partial \Sigma} \mathrm{d}^{2} \theta \mathrm{~d} x^{0} \bar{\Pi} \Pi-\left(\left.\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} \theta \mathrm{d} x^{0} \Pi f(X)\right|_{\bar{\theta}=0}+\right.$ c. c. $)$

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

Open $\mathcal{N}=2_{B}$ LG model with additional boundary action
$\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} x^{0}\left(\psi_{+} \bar{\psi}_{-}+\bar{\psi}_{+} \psi_{-}\right)-\frac{1}{2} \int_{\partial \Sigma} \mathrm{d}^{2} \theta \mathrm{~d} x^{0} \bar{\Pi} \Pi-\left(\left.\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} \theta \mathrm{d} x^{0} \Pi f(X)\right|_{\bar{\theta}=0}+\right.$ c. c. $)$ with conditions

$$
D \Pi=g(X), \quad Q^{2}(X)=W(X) \cdot \mathbb{1}, \quad Q(X)=\left(\begin{array}{cc}
0 & g(X) \\
f(X) & 0
\end{array}\right)
$$

(Topological) supersymmetric Landau-Ginzburg models

Closed $\mathcal{N}=(2,2)$ LG model:

$$
S_{\Sigma}=\int_{\Sigma} \mathrm{d}^{4} \theta \mathrm{~d}^{2} x K(X, \bar{X})+\left(\int_{\Sigma} \mathrm{d}^{2} \theta \mathrm{~d}^{2} x W(X)+\text { c. c. }\right)
$$

Open $\mathcal{N}=2_{B}$ LG model with additional boundary action
$\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} x^{0}\left(\psi_{+} \bar{\psi}_{-}+\bar{\psi}_{+} \psi_{-}\right)-\frac{1}{2} \int_{\partial \Sigma} \mathrm{d}^{2} \theta \mathrm{~d} x^{0} \bar{\Pi} \Pi-\left(\left.\frac{\mathrm{i}}{2} \int_{\partial \Sigma} \mathrm{d} \theta \mathrm{d} x^{0} \Pi f(X)\right|_{\bar{\theta}=0}+\right.$ c. c. $)$ with conditions

$$
D \Pi=g(X), \quad Q^{2}(X)=W(X) \cdot \mathbb{1}, \quad Q(X)=\left(\begin{array}{cc}
0 & g(X) \\
f(X) & 0
\end{array}\right)
$$

Open strings between Q and Q^{\prime} described by $D_{Q Q^{\prime} \text {-cohomology with }}$

$$
D_{Q Q^{\prime}}: \phi \longmapsto Q^{\prime} \phi-\phi Q
$$

D-branes in LG models

D-branes in LG models

tachyon condensate $\left(\begin{array}{cc}0 & g_{\phi} \\ f_{\phi} & 0\end{array}\right)$ with $f_{\phi}=\left(\begin{array}{cc}-g & 0 \\ \phi_{1} & f^{\prime}\end{array}\right), g_{\phi}=\left(\begin{array}{cc}-f & 0 \\ \phi_{0} & g^{\prime}\end{array}\right)$

Triangulated D-brane category MF(W)

D-branes $Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \in \operatorname{ObMF}(W)$ with $Q^{2}=W \cdot \mathbb{1}$

Triangulated D-brane category MF(W)

D-branes $Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \in \operatorname{ObMF}(W)$ with $Q^{2}=W \cdot \mathbb{1}$
\square open strings $\phi=\left(\begin{array}{cc}\phi_{0} & 0 \\ 0 & \phi_{1}\end{array}\right) \in \operatorname{Hom}_{\mathrm{MF}(W)}\left(Q, Q^{\prime}\right):=H_{D_{Q Q^{\prime}}} \equiv H\left(Q, Q^{\prime}\right)$

Triangulated D-brane category MF(W)

D-branes $Q=\left(\begin{array}{ll}0 & g \\ f & 0\end{array}\right) \in \operatorname{ObMF}(W)$ with $Q^{2}=W \cdot \mathbb{1}$$\square$ open strings $\phi=\left(\begin{array}{cc}\phi_{0} & 0 \\ 0 & \phi_{1}\end{array}\right) \in \operatorname{Hom}_{\mathrm{MF}(W)}\left(Q, Q^{\prime}\right):=H_{D_{Q Q^{\prime}}} \equiv H\left(Q, Q^{\prime}\right)$
\square anti-branes described by shift functor $T: Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \longmapsto \bar{Q}=\left(\begin{array}{cc}0 & -f \\ -g & 0\end{array}\right)$

Triangulated D-brane category MF(W)

$\square \quad$ D-branes $Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \in \operatorname{ObMF}(W)$ with $Q^{2}=W \cdot \mathbb{1}$
$\square \quad$ open strings $\phi=\left(\begin{array}{cc}\phi_{0} & 0 \\ 0 & \phi_{1}\end{array}\right) \in \operatorname{Hom}_{\mathrm{MF}(W)}\left(Q, Q^{\prime}\right):=H_{D_{Q Q^{\prime}}} \equiv H\left(Q, Q^{\prime}\right)$
$\square \quad$ anti-branes described by shift functor $T: Q=\left(\begin{array}{c}0 \\ f \\ 0\end{array}\right) \longmapsto \bar{Q}=\left(\begin{array}{cc}0 & -f \\ -g & 0\end{array}\right)$
\square tachyon condensation described by cone $\mathrm{C}(\phi)=\left(\begin{array}{cc}0 & g_{\phi} \\ f_{\phi} & 0\end{array}\right)$ with

$$
f_{\phi}=\left(\begin{array}{cc}
-g & 0 \\
\phi_{1} & f^{\prime}
\end{array}\right), \quad g_{\phi}=\left(\begin{array}{cc}
-f & 0 \\
\phi_{0} & g^{\prime}
\end{array}\right)
$$

Triangulated D-brane category MF(W)

$\square \quad$ D-branes $Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \in \operatorname{ObMF}(W)$ with $Q^{2}=W \cdot \mathbb{1}$
\square open strings $\phi=\left(\begin{array}{cc}\phi_{0} & 0 \\ 0 & \phi_{1}\end{array}\right) \in \operatorname{Hom}_{\mathrm{MF}(W)}\left(Q, Q^{\prime}\right):=H_{D_{Q Q^{\prime}}} \equiv H\left(Q, Q^{\prime}\right)$
\square anti-branes described by shift functor $T: Q=\left(\begin{array}{cc}0 & g \\ f & 0\end{array}\right) \longmapsto \bar{Q}=\left(\begin{array}{cc}0 & -f \\ -g & 0\end{array}\right)$
\square tachyon condensation described by cone $\mathrm{C}(\phi)=\left(\begin{array}{cc}0 & g_{\phi} \\ f_{\phi} & 0\end{array}\right)$ with

$$
f_{\phi}=\left(\begin{array}{cc}
-g & 0 \\
\phi_{1} & f^{\prime}
\end{array}\right), \quad g_{\phi}=\left(\begin{array}{cc}
-f & 0 \\
\phi_{0} & g^{\prime}
\end{array}\right)
$$

Fact. The D-brane category MF (W) of matrix factorisations together with shift functor T and distinguished triangles

$$
Q \xrightarrow{\phi} Q^{\prime} \longrightarrow \mathrm{C}(\phi) \longrightarrow \bar{Q}
$$

is triangulated.

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\mathrm{MF}(W)$ to study topological tachyon condensation in LG models.

$$
\operatorname{tria}\left(\left\{Q_{i}\right\}\right) \stackrel{?}{\ni} \mathcal{Q}_{j}
$$

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

Fact. In a triangulated category $\mathcal{T}, \phi \in \operatorname{Hom}_{\mathcal{T}}\left(Q, Q^{\prime}\right)$ is an isomorphism iff $\mathrm{C}(\phi) \cong 0$, i. e. $\operatorname{End}_{\mathcal{T}}(\mathrm{C}(\phi))=0$.

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

Fact. In a triangulated category $\mathcal{T}, \phi \in \operatorname{Hom}_{\mathcal{T}}\left(Q, Q^{\prime}\right)$ is an isomorphism iff $\mathrm{C}(\phi) \cong 0$, i. e. $\operatorname{End}_{\mathcal{T}}(\mathrm{C}(\phi))=0$.

Double-cone strategy to determine tachyon condensates of Q and Q^{\prime} :

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

theory of fundamental, "easy" branes $Q_{i} \quad$ "complicated" brane systems \mathcal{Q}_{j}
Fact. In a triangulated category $\mathcal{T}, \phi \in \operatorname{Hom}_{\mathcal{T}}\left(Q, Q^{\prime}\right)$ is an isomorphism iff $\mathrm{C}(\phi) \cong 0$, i. e. $\operatorname{End}_{\mathcal{T}}(\mathrm{C}(\phi))=0$.

Double-cone strategy to determine tachyon condensates of Q and Q^{\prime} :
\square compute all $\phi \in H\left(Q, Q^{\prime}\right)$

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

theory of fundamental, "easy" branes Q_{i} "complicated" brane systems \mathcal{Q}_{j}
Fact. In a triangulated category $\mathcal{T}, \phi \in \operatorname{Hom}_{\mathcal{T}}\left(Q, Q^{\prime}\right)$ is an isomorphism iff $\mathrm{C}(\phi) \cong 0$, i. e. $\operatorname{End}_{\mathcal{T}}(\mathrm{C}(\phi))=0$.

Double-cone strategy to determine tachyon condensates of Q and Q^{\prime} :
\square compute all $\phi \in H\left(Q, Q^{\prime}\right)$
\square compute all $\psi \in H\left(\mathrm{C}(\phi), \mathcal{Q}_{\text {other }}\right)$

D-brane generation via tachyon condensation

Aim. Use properties of triangulated structure of $\operatorname{MF}(W)$ to study topological tachyon condensation in LG models.

theory of fundamental, "easy" branes $Q_{i} \quad$ "complicated" brane systems \mathcal{Q}_{j}
Fact. In a triangulated category $\mathcal{T}, \phi \in \operatorname{Hom}_{\mathcal{T}}\left(Q, Q^{\prime}\right)$ is an isomorphism iff $\mathrm{C}(\phi) \cong 0$, i. e. $\operatorname{End}_{\mathcal{T}}(\mathrm{C}(\phi))=0$.

Double-cone strategy to determine tachyon condensates of Q and Q^{\prime} :
\square compute all $\phi \in H\left(Q, Q^{\prime}\right)$
\square compute all $\psi \in H\left(\mathrm{C}(\phi), \mathcal{Q}_{\text {other }}\right)$
$\square \quad$ if $\operatorname{End}(\mathrm{C}(\psi))=0$, then \bar{Q} and Q^{\prime} condense to $\mathcal{Q}_{\text {other }}$

Examples: ADE singularities

Examples: ADE singularities

ADE polynomial $W \quad K_{0}(\operatorname{MF}(W))$

$\mathrm{A}_{n}:$	x^{n+1}	\mathbb{Z}_{n+1}
$\mathrm{D}_{n}:$	$x^{2} y+y^{n-1}+z^{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ for n even
		$\mathbb{Z}_{4} \quad$ for n odd
$\mathrm{E}_{6}:$	$x^{3}+y^{4}+z^{2}$	\mathbb{Z}_{3}
$\mathrm{E}_{7}:$	$x^{3}+x y^{3}+z^{2}$	\mathbb{Z}_{2}
$\mathrm{E}_{8}:$	$x^{3}+y^{5}+z^{2}$	$\{0\}$

Examples: ADE singularities

ADE polynomial $W \quad K_{0}(\operatorname{MF}(W))$

$\mathrm{A}_{n}:$	x^{n+1}	\mathbb{Z}_{n+1}
$\mathrm{D}_{n}:$	$x^{2} y+y^{n-1}+z^{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ for n even
		$\mathbb{Z}_{4} \quad$ for n odd
$\mathrm{E}_{6}:$	$x^{3}+y^{4}+z^{2}$	\mathbb{Z}_{3}
$\mathrm{E}_{7}:$	$x^{3}+x y^{3}+z^{2}$	\mathbb{Z}_{2}
$\mathrm{E}_{8}:$	$x^{3}+y^{5}+z^{2}$	$\{0\}$

Type A. $W=x^{n+1}, Q_{i}=\left(\begin{array}{c}0 \\ x^{i} \\ x^{n-i+1} \\ 0\end{array}\right), H\left(Q_{i}, Q_{j}\right)=\mathbb{C}\left\{\left(\begin{array}{cc}x^{a+i-j} & 0 \\ 0 & x^{a}\end{array}\right)\right\}$

Examples: ADE singularities

ADE polynomial $W \quad K_{0}(\operatorname{MF}(W))$

$\mathrm{A}_{n}:$	x^{n+1}	\mathbb{Z}_{n+1}
$\mathrm{D}_{n}:$	$x^{2} y+y^{n-1}+z^{2}$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ for n even
		$\mathbb{Z}_{4} \quad$ for n odd
$\mathrm{E}_{6}:$	$x^{3}+y^{4}+z^{2}$	\mathbb{Z}_{3}
$\mathrm{E}_{7}:$	$x^{3}+x y^{3}+z^{2}$	\mathbb{Z}_{2}
$\mathrm{E}_{8}:$	$x^{3}+y^{5}+z^{2}$	$\{0\}$

Type A. $W=x^{n+1}, Q_{i}=\left(\begin{array}{cc}0 & x^{n-i+1} \\ x^{i} \\ 0\end{array}\right), H\left(Q_{i}, Q_{j}\right)=\mathbb{C}\left\{\left(\begin{array}{cc}x^{a+i-j} & 0 \\ 0 & x^{a}\end{array}\right)\right\}$
Result: All branes can be generated by Q_{1} and Q_{n} :

$$
\operatorname{MF}\left(x^{n+1}\right)=\operatorname{tria}\left(Q_{1}\right)=\operatorname{tria}\left(Q_{n}\right)
$$

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \mathrm{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{aligned}
Q_{2 j} \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{aligned}
$$

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{aligned}
Q_{2 j} & \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} & \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{aligned}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{aligned}
Q_{2 j} & \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} & \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{aligned}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

for \boldsymbol{n} odd: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(one brane)

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{aligned}
Q_{2 j} & \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} & \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{aligned}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

for \boldsymbol{n} odd: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(one brane)
Type $\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$. All matrix factorisations explicitly known.

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \mathrm{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{array}{rll}
Q_{2 j} \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{array}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

for \boldsymbol{n} odd: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(one brane)
Type $\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$. All matrix factorisations explicitly known.
Result:
$\operatorname{MF}\left(W_{\mathrm{E}_{n}}\right)=$ tria(one brane)

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \mathrm{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{array}{rll}
Q_{2 j} \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{array}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

for \boldsymbol{n} odd: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(one brane)
Type $\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$. All matrix factorisations explicitly known.
Result:
$\operatorname{MF}\left(W_{\mathrm{E}_{n}}\right)=$ tria(one brane)

Examples: ADE singularities

Type D. $W=x^{2} y+y^{n-1}+z^{2}$, all n fundamental Q_{i} explicitly known.
Result: for \boldsymbol{n} even: $\quad \mathrm{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(two branes)

$$
K_{0}\left(\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$$
\begin{array}{rll}
Q_{2 j} \cong \mathrm{C}\left(\varphi_{j}\right), & \varphi_{j} \in H\left(Q_{n}, Q_{n}\right), & Q_{n} \longrightarrow Q_{n} \longrightarrow Q_{2 j} \longrightarrow \bar{Q}_{n} \\
Q_{2 j-1} \cong \mathrm{C}\left(\psi_{j}\right), & \psi_{j} \in H\left(Q_{n-1}, Q_{n}\right), & Q_{n-1} \longrightarrow Q_{n} \longrightarrow Q_{2 j-1} \longrightarrow \bar{Q}_{n-1}
\end{array}
$$

$$
\operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{n}\right)=\operatorname{tria}\left(Q_{n}, Q_{2 j-1}\right)=\operatorname{tria}\left(Q_{n-1}, Q_{2 j-1}\right)
$$

$$
\neq \operatorname{tria}\left(Q_{2 i-1}, Q_{2 j-1}\right) \neq \operatorname{tria}\left(Q_{2 j}, Q_{\text {any }}\right)
$$

for \boldsymbol{n} odd: $\quad \operatorname{MF}\left(W_{\mathrm{D}_{n}}\right)=$ tria(one brane)
Type $\mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}$. All matrix factorisations explicitly known.
Result:
$\operatorname{MF}\left(W_{\mathrm{E}_{n}}\right)=$ tria(one brane)

Appendix

Triangulated categories

Definition. Let \mathcal{T} be an additive category with an additive automorphism $T: \mathcal{T} \longrightarrow \mathcal{T}$ and a class of distinguished triangles of the form

$$
X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T X
$$

Then \mathcal{T} is triangulated iff the following axioms hold:
(TR1a) $X \xrightarrow{\mathbb{1}_{X}} X \longrightarrow 0 \longrightarrow T X$ is a distinguished triangle.
(TR1b) Any triangle isomorphic to a distinguished triangle is distinguished.
(TR1c) Any $X \xrightarrow{u} Y$ can be completed to a distinguished triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T X$.
(TR2) $\quad X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T X$ is distinguished iff $Y \xrightarrow{v} Z \xrightarrow{w} T X \xrightarrow{-T u} T Y$ is distinguished.

Triangulated categories

(TR3) For any f, g in

there is $h: Z \longrightarrow Z^{\prime}$ to complete the morphism of triangles.
(TR4) Any diagramme of type "upper cap" can be completed by a diagramme of type "lower cap" to an octahedron diagramme:

Octahedron diagramme

The resulting octahedron can also be displayed in the following way:

Physical interpretation

A distinguished triangle

$$
X \longrightarrow Y \longrightarrow Z \longrightarrow T X
$$

can be interpreted as "the branes X and Z may bind via the potentially tachyonic string $Z \longrightarrow T X$ to form $Y^{\prime \prime}$, denoted as X, Z un Y.
$\square \quad X$ binds with no brane to produce X, i.e. $X, 0 \leftrightarrow X$.
\square If there is a string $X \longrightarrow Y$, then there is a brane Z such that $X, Z \leadsto Y$.
\square If $X, Z \longleftrightarrow Y$, then $T X, Y \leadsto Z$, so $T X$ is the anti-brane of X.
$\square \quad$ (TR2) and (TR4) together describe consistent decompositions of brane systems:

$$
Z^{\prime} \longleftrightarrow T X, Y \leadsto T X, Z, T^{-1} X^{\prime} \leadsto \nVdash Y^{\prime}, T^{-1} X^{\prime} .
$$

