Prob Sheet 1: First Order Ordinary Differential Equations

Module F13YT2

1. Integration revision. Find
$$y(x)$$
, given that
(i) $\frac{dy}{dx} = \frac{e^x}{3+6e^x}$; (ii) $\frac{dy}{dx} = x^2 \sin x$.

2. Name the type and find the general solution for each of the following first order equations: (i) $\frac{dy}{dx} = \frac{x^2}{y}$; (ii) $\frac{dy}{dx} + 3y = x + e^{-2x}$; (iii) $x\frac{dy}{dx} = x\cos(2x) - y$; (iv) $\frac{dy}{dx} = \frac{y^2 + 2xy}{x^2}$; (v) $xy^2 - x + (x^2y + y)\frac{dy}{dx} = 0$; (vi) $(xe^y + 2y)\frac{dy}{dx} + e^y = 0$; (vii) $(\cos x + 2xe^{2y})\frac{dy}{dx} + 1 - y\sin x + e^{2y} = 0$ (viii) $\frac{dy}{dt} + y = 2y^3$

3. Show that each of the following equations has two distinct solutions. (i) $\frac{dy}{dx} = y^{1/2}$; y(0) = 0; (ii) $y\frac{dy}{dx} = x$; y(0) = 0. Explain, in each case, why the hypotheses of Picard's Theorem are not satisfied.

4. Find all constant solutions of $\frac{dy}{dx} + y^2 = 1$. Hence sketch the solutions satisfying (i) y(0) = 1.1; (ii) y(0) = 0; (iii) y(0) = -1.1. Check your answer using Maple.

5. Consider the equation $\frac{dy}{dx} = y^2 - x$. Determine the points in the *xy*-plane at which $(i)\frac{dy}{dx} = 0$; $(ii)\frac{dy}{dx} > 0$; and $(iii)\frac{dy}{dx} < 0$. Hence sketch the solution satisfying y(1) = 1. Check your answer using Maple.

6. Consider the following first order differential equation

$$\frac{dy}{dx} = y - x. \tag{(*)}$$

- (a) Determine the points in the *xy*-plane at which $(i)\frac{dy}{dx} = 0$; $(ii)\frac{dy}{dx} > 0$; and $(iii)\frac{dy}{dx} < 0$. Hence, sketch the direction field of (*).
- (b) Sketch the solution of (*) satisfying the initial condition $y(0) = \frac{1}{2}$ in the direction field you have made for (a) (there is no need to solve the initial value problem explicitly).