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MOMENTS OF VON MISES AND FISHER DISTRIBUTIONS

AND APPLICATIONS

T. HILLEN AND K.J. PAINTER AND A. SWAN AND A. MURTHA

Abstract. The von Mises and Fisher distributions are spherical analogues to
the Normal distribution on the unit circle and unit sphere, respectively. The

computation of their moments, and in particular the second moment, usually

involves solving tedious trigonometric integrals. Here we present a new method
to compute the moments of spherical distributions, based on the divergence

theorem. This method allows a clear derivation of the second moments and
can be easily generalized to higher dimensions. In particular we note that, to

our knowledge, the variance-covariance matrix of the three dimensional Fisher

distribution has not previously been explicitly computed. While the emphasis
of this paper lies in calculating the moments of spherical distributions, their

usefulness is motivated by their relationship to population statistics in ani-

mal/cell movement models and demonstrated in applications to the modelling
of sea turtle navigation, wolf movement and brain tumour growth.

1. Introduction. The motivation for the present paper stems from the modelling
of oriented biological movement. In many studies of animal or cell movement, a
primary point of concern is the cue (or cues) used to navigate, necessitating sta-
tistical correlation between a preferred movement direction and orientating infor-
mation in the environment. Typical examples include the orientation of animals
in response to the earth’s magnetic field [31], or the migration of invasive tumour
cells through their local extracellular environment [30]. In ecological scenarios a
quasi two-dimensional scenario generally suffices – for example, the habitat of a
land-bound population or the typical swimming depth of marine organisms – and
in such cases an animal’s bearing can be described by a single angular coordinate.
Other situations, however, may require a fully three-dimensional description, such
as the motion of parasitic nematode worms in the soil, the movement of plankton in
the oceans, or the flight of insects and birds. For the migration of cell populations in
tissues a three dimensional understanding of movement can be particularly crucial.
For example, malignant cancers of the central nervous system (CNS) are charac-
terized by their diffuse and heterogeneous growth, and discovering the pathways of
invasion is necessary for predicting tumour extent. The organisation of the brain
itself plays a significant part in invasion, with cells channelled along the aligned neu-
ral fiber tracts that characterise white matter. Consequently, a three-dimensional
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understanding of the brain’s architecture and the movement of cells in response to
it can potentially lead to targeted treatment protocols.

To model these and other movement phenomena we will consider random walk mod-
els in the next section (Section 2). We will draw a connection between spherical
distributions, also called directional distributions, and movement models for biolog-
ical systems. We denote the spherical distribution by q(n), where n is a unit vector
indicating an individuals’ bearing. It turns out that the first moment of q(n) (i.e.
the expectation E[q]) is proportional to the population drift, while the variance-
covariance matrix Var[q] is proportional to the diffusion of the population. Hence
the moments of q(n) provide immediate significance for interpreting population-level
responses. In Section 3 we compute the first and second moments of the von Mises
distribution in two dimensions. These moments are known, and we include our com-
putation to introduce a method based on the divergence theorem. In Section 4 we
apply this method to compute the first and second moment in three dimensions (in
three dimensions the von Mises distribution is generally known as the Fisher or von
Mises-Fisher distribution [20, 1]1). To our knowledge, an explicit formula for the
three dimensional variance is not known in the literature and here we provide such
a formula. Moreover, this method generalises to higher space dimensions and other
circular/spherical distributions. Finally, in Section 5 we illustrate the importance
of these calculations to three applications of directional movement: the orientation
of sea turtles in an ocean; the tendency of animals to follow or avoid linear land-
scape features such as roads or seismic lines; and, the three-dimensional anisotropic
spread of glioma. In each of these cases we find that the von-Mises and/or Fisher
distribution lies at the heart of the organizing centre for directed movement and
that their moments provide key information on population-level distributions.

2. The von Mises and Fisher distributions. We consider distributions q(n)
on the unit circle Sn−1 in Rn. The von Mises, Fisher and n-dimensional von
Mises-Fisher distributions relate to a given direction u ∈ Sn−1, which identifies
a “preferred” direction. In two dimensions the von Mises distribution is given
as

q(n) =
1

2πI0(k)
ekn·u, (1)

for n ∈ S1. Here k is the concentration parameter and I0(k), and later Ij(k), denote
the modified Bessel functions of first kind of order j. A more familiar representation
of the von-Mises distribution in two dimensions uses the polar angle of the vectors
involved. If we represent n = (cosα, sinα)T and u = (cosµ, sinµ)T , then the
two-dimensional von-Mises distribution is

q(n) =
1

2πI0(k)
ek cos(α−µ).

We prefer the coordinate free vector notation in (1) as it generalizes easily and
it is not coupled to a specific coordinate system. The same distribution in three
dimensions is called the Fisher distribution and is given by

q(n) =
k

4π sinh(k)
ekn·u, n ∈ S2. (2)

1Not to be confused with the statistical F-distribution.
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Figure 1. Left: The unimodal von Mises distribution as a function
of n ∈ S1 with a peak at (1, 0)T . Right: The bimodal von Mises
distribution as a function of n ∈ S1 with peaks at n = ±(1, 0)T .

The extension to higher dimensions forms the n-dimensional von Mises-Fisher dis-
tribution, given as

q(n) =
kn/2−1

(2π)n/2In/2−1(k)
ekn·u n ∈ Sn−1.

The von Mises distribution occupies a predominant position in spherical statistics.
As a form of ‘wrapped’ normal distribution it acts as the de facto standard for fitting
oriented data and has received a great deal of attention (e.g. see [22]). Further,
applying a linear combination (or mixture) of von Mises distributions can be used to
fit more complicated datasets, such as skewed or multi-modal distributions, thereby
extending its general utility. For a von Mises mixture with given unit vectors
u1, . . . ,uN , we consider

q(n) =

N∑
i=1

ci
2πI0(ki)

ekin·ui , (3)

where the coefficients ci satisfy
∑N
i=1 ci = 1. Of particular note is the symmetric,

bimodal von Mises distribution

qB(n) =
1

4πI0(k)

(
ekn·u + e−kn·u

)
, (4)

along with its three-dimensional bimodal Fisher version

q(n) =
k

8π sinh(k)

(
ekn·u + e−kn·u

)
, (5)

which define bidirectional distributions with two opposite and equal peaks. Figure
1 illustrates the standard von Mises distribution superimposed onto the unit circle,
along with a bimodal von Mises distribution with peaks at (1, 0)T and (−1, 0)T .
Figure 2 illustrates the three dimensional distribution (2) for increasing values of k.
Given the prominent role of von Mises-Fisher distributions, we illustrate a novel
method for computing their first and second moments. In the context of the ap-
plication to animal/cell movement, this allows a direct line to be drawn between
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Figure 2. The Fisher distribution on the unit sphere. From left to
right we plot the distribution for increasing values of concentration
parameter k. In each case, the dominant direction is taken as
u = (1/2, 1/2,

√
2/2).

.

the statistical analysis of an experimentally-derived dataset and inputs for the pre-
dictive macroscopic-scale model (6). Typically, moments are derived via explicit
trigonometric integration (e.g. [24, 3]) whereas our method here utilises the diver-
gence theorem: while the former calculations becomes increasingly cumbersome as
the space dimension increases, the latter generalises relatively easily.
To explain the use of the von Mises and Fisher distribution in population models,
we consider a simple random walk model for oriented animal/cell movement paths
in two and three dimensions. Random walks have an established history in the
quantification and modelling of biological movement (e.g. see [27, 37, 7, 6, 38]). In
the velocity-jump random walk, [28], a path is traced out as a series of ‘runs’ (con-
tinuous movement through space with constant velocity) punctuated with ‘turns’
(selecting a new velocity). The run and tumbling motion of flagellated bacteria such
as E. coli provides the exemplar, yet more generally, it offers a natural description
for movement, compatible with established methods of recording animal/cell tracks:
datasets of turning angles, times etc. inform probability distributions for input into
the velocity-jump model.
In the formulation here (see [14, 29, 16, 32] for further details and applications) we
presume an individual (taken as a point) is characterized by its position (x ∈ Rn
for n = 2, 3) and velocity (v ∈ Rn) at time t ∈ [0,∞). For simplicity we assume
the individual moves with a constant speed s, but that it undergoes changes in
its direction (n ∈ Sn−1) as a result of a Poisson process, where λ is the (assumed
constant) turning rate parameter. At each turn, a new direction (n ∈ Sn−1) is
selected according to a suitable directional distribution q(t,x,n). Then q(t,x,n)
will satisfy ∫

Sn−1

q(t,x,n)dn = 1 .

To obtain an efficient evolution equation for the macroscopic population density
distribution c(x, t), scaling techniques can be employed: we refer to [16] for full
details. Adopting a moment-closure approach yields a macroscopic drift-diffusion
equation in the form

c(t,x)t +∇ ·
(
a(t,x)c(t,x)

)
= ∇∇ :

(
D(t,x)c(t,x)

)
, (6)

=

n∑
i,j=1

∂

∂xi

∂

∂xj
(Dijc) ,
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where the colon symbol (:) is used to denote the contraction of two tensors. In
the above D(t,x) defines a (symmetric) n × n–diffusion tensor and a(t,x) is the
n−dimensional drift (or advective) velocity. Formally, equation (6) describes the
probability distribution for finding an individual at position x and time t; however,
if the population is dispersed and interactions are negligible, it can be interpreted
as a macroscopic population density distribution. Significantly, the macroscopic
quantities a and D relate to the first two moments of the turning distribution q:

• the drift a is proportional to the expectation of q,

a(t,x) = sE[q] = s

∫
Sn−1

nq(t,x,n)dn ; (7)

• the D is proportional to the variance-covariance matrix of q,

D(t,x) =
s2

λ
Var[q] =

s2

λ

∫
Sn−1

(n− a(t,x)/s)(n− a(t,x)/s)T q(t,x,n)dn . (8)

Note that the product vvT denotes the dyadic product of two vectors (in tensor
notation: v ⊗ v) and therefore D forms a symmetric matrix.
For the case in which q is unchanged across x and t, a and D will be given by a
constant vector and diffusion tensor respectively. In this case we can calculate the
fundamental solution of (6) as

c(x, t) =
1√

detD(4πt)n
exp

(
− 1

4t
(x− at)TD−1(x− at)

)
. (9)

The above describes the probability density for finding a random walker (starting
at location 0, time 0) at location x, time t.

Clearly, the dynamics predicted by (6) pivot about the directional distribution q
which, in turn, is dictated by data. Ideally, an explicit form for the moments of q
can be calculated, allowing a direct translation between the inputs of the stochas-
tic/individual model and the macroscopic model. Yet, while the statistical method-
ology for analysing oriented datasets has grown substantially in recent decades (e.g.
see [3, 10, 22]), it remains substantially less advanced than that of classical (linear)
statistics.

3. Moments of the von Mises distribution.

Lemma 3.1. For a given unit vector u ∈ S1 consider the von-Mises distribution

q(n) =
1

2πI0(k)
ekn·u, n ∈ S1.

Then q has the following expectation and variance:

E[q] =
I1(k)

I0(k)
u ; (10)

Var[q] =
1

2

(
1− I2(k)

I0(k)

)
I2 +

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)
uuT . (11)

In the above, Ij denote modified Bessel functions of first kind and order j, I2 denotes
the 2 × 2 identity matrix, and uuT denotes the dyadic product of two vectors (in
tensor notation u⊗ u).



6 HILLEN, PAINTER, SWAN, MURTHA

Proof2. Before we compute the moments of q(n) we collect some properties of
Bessel functions (see e.g. [15]). Let Jn(x) denote the Bessel functions of first kind,
then

In(x) := (−i)−nJn(ix)

denote Bessel functions of first kind with purely imaginary argument, or the modified
Bessel functions. The modified Bessel functions have an explicit representation as

In(k) =
1

2π

∫ 2π

0

cos(nφ)ek cosφdφ . (12)

Bessel functions satisfy a differential relation

d

dx
(xnJn(x)) = xnJn−1(x) (13)

and, for n ≥ 0, they satisfy a recurrence relation

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x). (14)

The total mass of the unimodal von Mises distribution (1) can be directly computed
from (12), where we denote the angle between n and u as φ:∫

S1
q(n)dn =

1

2πI0(k)

∫ 2π

0

ek cosφdφ = 1.

For the expectation,

E[q] =

∫
S1
nq(n)dn ,

we use a test vector b ∈ R2 and multiply it by E[q] (note that the expectation here
is a vector quantity), using summation convention for repeated indices. Then we
have

b ·E[q] = b ·
∫
S1
nq(n)dn,

and

b · 2πI0(k)E[q] = b ·
∫
S1
nekn·udn ,

=

∫
S1
ni(bie

kn·u)dn ,

=

∫
B1(0)

∂

∂vi
(bie

kv·u)dv ,

=

∫
B1(0)

bikuie
kv·udv ,

= b · ku
∫ 1

0

∫ 2π

0

erkcosφrdrdφ ,

= b · ku
∫ 1

0

2πrI0(rk)dr ,

= b · 2πku
∫ 1

0

rI0(rk)dr .

2The computations in this section have already been published in an appendix to a book
chapter [16]. We include them here for completeness and to introduce our method.
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In the first step we use the summation convention, which requires summation over
repeated indices, i.e. aibi =

∑n
i=1 a

ibi. In the third step we used the divergence
theorem to transform a surface integral over S1 into a volume integral over the unit
ball B1(0) of a divergence-term.
The last integral can be solved via (13) and

rI0(rk) =
irkJ0(irk)

ik
=

1

ik

d

dx
(xJ1(x))|x=irk =

1

ik

d

dr
(rJ1(irk)).

Then ∫ 1

0

rI0(rk)dr =
1

ik
J1(ik) =

1

ik
iI1(k) =

I1(k)

k
, (15)

and due to the fact that b is an arbitrary test vector

E[q] =
I1(k)

I0(k)
u,

which is (10).
The variance-covariance matrix of q is given by

Var[q] =

∫
S1

(n−E[q])(n−E[q])T q(n)dn =

∫
S1
nnT q(n)dn−E[q]E[q]T .

To find the second moment of q we consider two test vectors a,b ∈ R2 and we use
index notation for automatic summation over repeated indices:

2πI0(k)a

∫
S1
nnT q(n)dn b (16)

=

∫
S1
ain

ibjn
jekn

luldn,

=

∫
S1
ni(aibjn

jekn
lul)dn,

=

∫
B1(0)

∂

∂vi
(aibjv

jekv
lul)dv,

=

∫
B1(0)

aibie
kv·udv +

∫
B1(0)

ai(v · b)kuie
kv·udv,

= a · b
∫
B1(0)

ekv·udv + ka · u b ·
∫
B1(0)

vekv·udv, (17)

where, again, we use the summation convention and the divergence theorem. The
first integral in (17) can be solved directly:∫

B1(0)

ekv·udv =

∫ 1

0

∫
S1
erkn·urdrdn =

∫ 1

0

2πrI0(rk)dr = 2π
I1(k)

k
,

where we used (12) and (15) in the penultimate and ultimate step, respectively.
Using (12) we can transform the second integral from (17) as follows:∫

B1(0)

vekv·udv =

∫ 1

0

∫
S1
rnerkn·urdrdn =

∫ 1

0

r2
∫
S1
nerkn·udndr,

= 2πu

∫ 1

0

r2I1(rk)dr, (18)

where we used (10) in the last step.
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Now we use the differential recurrence relation (13) to write

r2I1(rk) = − 1

ik2
(irk)2J1(irk) = − 1

ik2
d

dx
(x2J1(x))|x=irk = −1

k

d

dr
(r2J1(irk)).

Continuing from (18) we find∫
B1(0)

vekv·udv = −2πu

∫ 1

0

1

k

d

dr
(r2J1(irk))dr = −2πuJ2(ik) = 2πu

I2(k)

k
. (19)

Substituting all the integrals back into equation (17):

a

∫
S1
nnT q(n)dn b = a · b

2π I1(k)k

2πI0(k)
+ ka · u

2πu · b I2(k)k

2πI0(k)
,

= a

(
1

k

I1(k)

I0(k)
I2 + uuT

I2(k)

I0(k)

)
b .

Finally, we use the identity (14) for n = 1 to replace

1

k

I1(k)

I0(k)
=

1

2

(
1− I2(k)

I0(k)

)
,

and the second moment is given by∫
S1
nnT q(n)dn =

1

2
I2 +

I2(k)

I0(k)

(
uuT − 1

2
I2
)
. (20)

Together with the formula for the expectation (10) we find

Var[q] =

∫
S1
nnT q(n)dn−E[q]E[q]T ,

=
1

2
I2 +

I2(k)

I0(k)

(
uuT − 1

2
I2
)
−
(
I1(k)

I0(k)

)2

uuT ,

=
1

2

(
1− I2(k)

I0(k)

)
I2 +

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)
uuT ,

which is (11). �

In the two dimensional case, it is useful to formulate the result of Lemma 10 in
terms of a polar angle. For u = (cosµ, sinµ)T we find

E[q] =
I1(k)

I0(k)

(
cosµ
sinµ

)
; (21)

Var[q] =
1

2

(
1− I2(k)

I0(k)

)(
1 0
0 1

)
+

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)(

cos2 µ cosµ sinµ
cosµ sinµ sin2 µ

)
. (22)

As outlined earlier, for many applications it is useful to compute the first and second
moments for the bimodal von Mises distribution.

Corollary 1. For given u ∈ S1 consider the bimodal von Mises distribution

q(n) =
1

4πI0(k)

(
ekn·u + e−kn·u

)
,
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then

E[q] = 0 , (23)

Var[q] =
1

2

(
1− I2(k)

I0(k)

)
I2 +

I2(k)

I0(k)
uuT . (24)

Proof. Since the bimodal von Mises distribution is symmetric we have E[q] = 0
and Var[q] =

∫
nnT q(n)dn. We apply formula (20) for each of the components

ekn·u and e−kn·u separately and sum. �

3.1. Limiting behaviour for the uniform distribution. A natural limiting sce-
nario arises as the parameter of concentration k becomes small (i.e. k → 0). Here,
the directional bias becomes increasingly small and (1) or (4) limit to a uniform dis-
tribution. A straightforward exploration reveals that I1(k)/I0(k), I2(k)/I0(k)→ 0.
Consequently, E[q] → 0 while the variance-covariance Var[q] → 1

2 I2 for both the
unimodal and bimodal cases.

4. The 3-D Fisher distribution. The main result of this paper is as follows.

Theorem 4.1. For given u ∈ S2 consider the Fisher distribution

q(n) =
k

4π sinh k
eku·n, n ∈ S2.

Then

E[q] =

(
coth k − 1

k

)
u , (25)

Var[q] =

(
coth k

k
− 1

k2

)
I +

(
1− coth k

k
+

2

k2
− coth2 k

)
uuT . (26)

Proof. To compute the mean direction

E[q] =

∫
S2
nq(n)dn,
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we use a test-vector b ∈ R3 and multiply it by E[q]. Using summation convention
for repeated indices:

b ·E[q] = b ·
∫
S2
nq(n)dn ,

=

∫
S2
ni(biq(n))dn ,

=

∫
B1(0)

∂

∂vi

(
bi

k

4π sinh k
ekulv

l

)
dv ,

= bi
∫
B1(0)

k2ui
4π sinh k

eku·vdv ,

= b · uk
∫
B1(0)

k

4π sinh k
eku·vdv ,

= b · uk
∫ 1

0

∫
S2

k

4π sinh k
erku·nr2drdn ,

= b · uk
∫ 1

0

r2k

4π sinh k

4π sinh rk

rk
dr ,

=
b · uk
sinh k

(
− 1

k2
sinh k +

1

k
cosh k

)
,

= b · u
(

coth k − 1

k

)
,

where in the 5th step we used the normalization condition for a Fisher distribution
with concentration parameter rk, i.e.∫

S2
erku·ndn =

4π sin(rk)

rk
.

Since the test vector b was arbitrary, we proved (25). This formula coincides with
formula (9.3.9) in Mardia [22].

To compute the second moment, we take two test-vectors a,b ∈ R3 and compute

a ·
∫
S2
nnT q(n)dn · b

=

∫
S2
ain

injbjq(n)dn ,

=

∫
S2
ni(ain

jbjq(n))dn ,

=

∫
B1(0)

∂

∂vi

(
aiv

jbj
k

4π sinh k
ekulv

l

)
dv ,

=

∫
B1(0)

aibi
k

4π sinh k
eku·vdv +

∫
B1(0)

ai(v · b)
k2ui

4π sinh k
eku·vdv ,

= a · b
∫
B1(0)

k

4π sinh k
eku·vdv︸ ︷︷ ︸

(A)

+a · u b ·
∫
B1(0)

k2

4π sinh k
veku·vdv︸ ︷︷ ︸

(B)

). (27)
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From the computation of the first moment, we find for the first integral (A) that∫
B1(0)

k

4π sinh k
eku·vdv =

1

k
coth k − 1

k2
. (28)

The second integral (B) can be computed as∫
B1(0)

veku·vdv =

∫ 1

0

∫
S2
r3nerku·ndndr.

From the first moment we obtain∫
S2
nerku·ndn =

[
4π sinh rk

rk

(
coth rk − 1

rk

)]
u.

Hence ∫
B1(0)

veku·vdv , =

[∫ 1

0

r3
4π sinh rk

rk

(
coth rk − 1

rk

)
dr

]
u ,

= 4π

[∫ 1

0

r2 cosh rk

k
dr −

∫ 1

0

r sinh rk

k2
dr

]
u ,

= 4π

[
sinh k

k2
− 3 cosh k

k3
+

3 sinh k

k4

]
u.

Then
k2

4π sinh k

∫
B1(0)

veku·vdv =

(
1− 3

k
coth k +

3

k2

)
u. (29)

Combining (28) and (29) with (27) we obtain

a ·
∫

nnT q(n)dn · b = a · b
(

coth k

k
− 1

k2

)
+ a · u u · b

(
1− 3 coth k

k
+

3

k2

)
,

and the second moment is given by∫
nnT q(n)dn =

(
coth k

k
− 1

k2

)
I +

(
1− 3 coth k

k
+

3

k2

)
uuT . (30)

To compute the full variance-covariance matrix of q we use the formula Var[q] =∫
nnT q(n)dn−E[q]E[q]T to obtain

Var[q] =

(
coth k

k
− 1

k2

)
I +

(
1− coth k

k
+

2

k2
− coth2 k

)
uuT ,

which is (26). We were not able to find this formula elsewhere in the literature. �

Corollary 2. The first two moments of the bimodal Fisher distribution

q(n) =
k

8π sinh k

(
eku·n + e−ku·n

)
=

k

4π sinh k
cosh(ku · n)

are given by

E[q] = 0, (31)

Var[q] =

(
coth k

k
− 1

k2

)
I +

(
1− 3 coth k

k
+

3

k2

)
uuT . (32)

Proof. As for the bimodal von Mises distribution, we exploit the symmetry prop-
erties by considering the components ekn·u and e−kn·u separately and summing.
�
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4.1. Limiting behaviour for the uniform distribution. It can be revealing
to consider the coefficients arising in (25, 26, 32) and their dependence on the
concentration parameter k. Consider the following four coefficients as functions of
k:

a(k) = coth k − 1

k
;

b(k) =
coth k

k
− 1

k2
;

c(k) = 1− coth k

k
+

2

k2
− coth2 k ;

d(k) = 1− 3 coth k

k
+

3

k2
.

(33)

Then for the unimodal case

E[q] = a(k)u, Var[q] = b(k)I + c(k)uuT , (34)

and for the bimodal case

E[q] = 0, Var[q] = b(k)I + d(k)uuT . (35)

Thus, the variance-covariance matrix is split into an isotropic component, deter-
mined by b(k), and an anisotropic component, determined by c(k) or d(k), respec-
tively. In two dimensions as the (unimodal and bimodal) von Mises distribution
tends towards a uniform distribution (k → 0) we found that the expectation van-
ishes while the variance-covariance becomes an isotropic matrix. While substituting
k = 0 directly into (25, 26, 32) is not possible, the limit as k → 0 for the various
coefficients above can be computed. Using the above notation,

lim
k→0+

a(k) = lim
k→0+

coth k − 1

k
,

which can be rewritten using l’Hôpital’s rule as

lim
k→0+

a(k) = lim
k→0+

k − tanh k

k tanh k
,

= lim
k→0+

1− sech2k

tanh k + ksech2k
,

= lim
k→0+

2sech2k tanh k

sech2k + (1− 2sechk)sech2k
,

= 0.

Continuing in a similar fashion for b(k), we have

lim
k→0+

b(k) = lim
k→0+

coth k

k
− 1

k2
.
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This can be rewritten with repeated use of l’Hôpital’s rule as

lim
k→0+

b(k) = lim
k→0+

k − tanh k

k2 tanh k
,

= lim
k→0+

1− sech2k

2k tanh k + k2sech2k
,

= lim
k→0+

2sech2k tanh k

2ksech2k + 2 tanh k − 2k2sech2k tanh k + 2ksech2k
,

= lim
k→0+

−4sech2k tanh2 k + 2sech4k

6sech2k − 12ksech2k tanh k − 2k2(sech4k − 2sech2k tanh2 k)
,

=
1

3
.

Then we have

lim
k→0+

c(k) = lim
k→0+

1− coth k

k
+

2

k2
− coth2 k ,

which we may write as

lim
k→0+

1−
(

coth k

k
− 1

k2

)
︸ ︷︷ ︸

b(k)

+
1

k2
− coth2 k = lim

k→0+

2

3
+

(
1

k
+ coth k

)(
1

k
− coth k

)
.

In the above we have used the fact that the limit of b(k) is 1/3. Taking a factor of
1/k from the first factor to the second, we have

lim
k→0+

c(k) = lim
k→0+

2

3
+

(
1

k
+ coth k

)(
1

k
− coth k

)
,

= lim
k→0+

2

3
− (1 + k coth k) (b(k)) ,

= lim
k→0+

2

3
− 1

3

(
1 +

k

sinh k

)
,

=
2

3
− 2

3
= 0,

where we used l’Hôpital’s rule in the last step. Finally, for d(k) we have

lim
k→0+

d(k) = lim
k→0+

1− 3 coth k

k
+

3

k2
,

= lim
k→0+

1− 3

(
coth k

k
− 1

k2

)
,

= 1− 3 lim
k→0+

b(k) ,

= 1− 3

(
1

3

)
= 0 .

Summarising, for either the unimodal or bimodal Fisher distribution, as k → 0 we
find

a = 0 and D = τs2
1

3
I3
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as would be expected.
These results are demonstrated numerically by plotting the coefficients as a function
of k, see Figure 3: as k decreases to 0, the directional distribution tends to the
uniform distribution and the variance-covariance matrix for either the unimodal or
bimodal case limits to an isotropic tensor, as c(k) and d(k) tend to 0. Furthermore,
we can clearly see from these plots that as anisotropy increases (k increases), the
expectation of the uni-modal distribution becomes more strongly aligned with u.
As a final note of interest, it is remarked that for the unimodal case (34) the coeffi-
cient c(k) that describes the anisotropic diffusion component is negative. This effec-
tively means reduced diffusion in the dominant direction u: the unimodal von-Mises
distribution describes enhanced movement in direction u, with a correspondingly
reduced movement in direction −u, thereby reducing the variance in this direction.

Figure 3. Coefficients a(k), b(k), c(k), d(k) from (33) as functions
of k

5. Numerical tests and applications. We use this section to briefly highlight
three interesting applications. In the interest of brevity we refer to the literature
for biological and modelling details. We first compare our macroscopic PDE model
(6) to an explicit random walk simulation in Section 5.1. The results show excel-
lent overlap between the continuous model and the Monte Carlo simulation. In
Section 5.2 we consider orientation of sea turtles as described by the unimodal two
dimensional von Mises distribution. Section 5.3 considers the use of a bimodal
two-dimensional von Mises distribution for animal movement patterns in disturbed
forest environments. Finally, in Section 5.4, we use a bimodal three-dimensional
Fisher distribution to model brain tumour growth. In all cases, simulations of
the population-level animal/cell density distributions exploit the explicit moment
calculations derived in Sections 3 and 4.

5.1. Fixed, homogeneous orienteering cue. To illustrate anisotropic diffusion
we consider the movement of individuals released at x = 0 at t = 0 and subjected to
a fixed, spatially uniform orientating cue. Consequently, q is fixed with respect to x
and t and the macroscopic density distribution predicted by (6) will be determined
by the fundamental solution (9), with a and D given by (7)–(8).
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Figure 4. Comparison between simulations of the stochastic
velocity-jump model and the fundamental solution of (6), equa-
tion (9) in two dimensions. Results shown at times t = 50 (left)
and t = 200 (right). Red lines indicate contours of the average
distribution for the particle position, generated through repeated
simulations of the stochastic velocity-jump (VJ) model, while blue
lines indicate contours of the fundamental solution (FS), equation
(9); contours are shown here for c(x, t) = 10−4 and 10−2. For
the stochastic simulations we initialize the individual at (0, 0) and
compute the random walk path using the von Mises distribution
for q (with φ = π/4 and κ = 10), s = 10 and λ = 100. a and D for
(9) are subsequently determined using (10) and (11).

We initially consider a 2D scenario, where q is given by a von Mises distribution
with φ = π/4 and κ = 10. In Figure 4 the density distribution for particle po-
sition is generated through repeated (100000) simulations of the individual model
and compared against the fundamental solution (9) with a and D determined by
equations (10) and (11). The correspondence between solutions validates both the
derivation of (6) as well as the calculations of a and D. In Figure 5 we show a
similar comparison for a 3-dimensional scenario, using the Fisher distribution (2)
and correspondingly the moments (25–26) for a and D.

5.2. Sea turtle navigation. The ability of animals to navigate has fascinated sci-
entists for centuries. Certain green sea turtles (Chelonia mydas) are particularly
renowned for swimming halfway across the Atlantic Ocean to nest at tiny Ascension
Island [25], a feat noted even by Charles Darwin [8]. While the precise navigating
cues remain uncertain, a combination of factors from geomagnetic information to
wind or water-borne odours have been proposed to help turtles on their journey.
In [31] we formulated an individual-based model for turtle navigation, where the
turning direction for a simulated turtle from its current location was biased to-
wards the island via a two dimensional von Mises distribution. The subsequent
population-level macroscopic model is given by equation (6), although augmented
by an additional advection term to account for ocean current drift, where the first
two moments from equation (1) provide the forms for a and D. We refer to [31] for
full details of the modelling.
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Figure 5. Comparison between simulations of the stochastic
velocity-jump model and the fundamental solution of (6) in three
dimensions. All plots are generated at time t = 50. In (a)-(b)
we plot the three dimensional contour surface at the fixed density
c(x, t) = 10−5 for (a) the fundamental solution given by equation
(9) and (b) the particle probability distribution generated from
multiple simulations (200000) of the 3D velocity-jump model. In (c-
d) we illustrate the quantitative match by plotting contour lines of
fixed density c(x, t) = 10−4 (solid line) and c(x, t) = 10−6 (dashed
line) for projections onto the (c) x − z plane (fixing y = 50) and
(d) y − z plane (fixing x = 460). For the simulations we initialise
the individual at (0, 0, 0) and compute the random walk path using
the Fisher distribution (2) for q (with u = (1, 0, 0)) and κ = 10)
along with s = 10 and λ = 100. a and D for equation (9) are
subsequently determined by equations (25) and (26).

Figure 6 shows the results from two simulation scenarios. All simulations consider a
start date of 1st of January 2014 (early in a typical nesting season) and a population
of 1000 turtles that are initially distributed uniformly throughout a circular region
centred on the island. Simulated turtles subsequently attempt to swim towards the
island, with some fixed concentration parameter k that reflects the “navigational
strength” of the cue being utilised. For these simulations, the additional drift due
to ocean currents is taken from (post-validated) ocean surface flow data provided
by an ocean forecasting model [5] over the studied time period. Figure 6 shows
simulations for populations of (a) “weak navigators” (k = 0.5) and (b) “strong
navigators” (k = 2.0). For each case we show results from (top panel) the underly-
ing individual-based model and (bottom panel) the macroscopic model (6) for the
population distribution: the close match between these distributions demonstrates
that the macroscopic model (6) can accurately capture the individual-level data
and stresses the usefulness of the moment calculations. Our simulations show that
weak-navigators are generally unsuccessful in their attempts to reach the island:
the orientating bias is not sufficiently strong to overcome the often powerful ocean
currents encountered. Strong navigators, however, are able to plot a relatively
straightforward course to the island. More details, in particular on the estimation
of model parameters, can be found in [31].
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(a)

(b)

Figure 6. Simulations of green sea turtle navigation towards As-
cension island: we refer to [31] for full details. We consider (a) weak
navigators and (b) strong navigators, showing in each case (top
row) the individual-based model and (bottom row) the macroscopic
model. For the IBM turtle positions (white circles) are shown at
the indicated times, superimposed on ocean currents as illustrated
by its direction (arrows) and magnitude (arrow length/density
map), while for the macroscopic model (6) the population den-
sity is indicated by the density map, where the scale indicates the
number/km2 and white regions represent a density below 10−5.
Simulations start on 1st of January 2014 and turtles swim with
mean fixed swimming speed of 40 km/day and make turns once
per hour. Ocean currents are obtained from a standard ocean fore-
casting model (HYCOM, [5]).

5.3. Wolf movement on seismic lines. A good example in the usage of the
bimodal von Mises distribution comes from wolf movement in disturbed forest en-
vironments. Boreal landscapes in Northern Alberta are characterized by a network
of narrow straight corridors of cleared forest: so-called “seismic lines” created by
oil companies to allow seismic imaging of potential oil reservoirs. Approximately 5
metres wide, these lines criss-cross the habitats of caribou and wolf populations and
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have been found to impact on their spatial distribution, thereby potentially altering
the predator-prey dynamics. Location data from radio collars attached to wolves
and caribou found that (on average) the former tended to be closer to seismic lines
and the latter further away [18], suggesting that wolves may utilise the seismic lines
to facilitate their movement through the landscape (and hence expand their hunt-
ing range) while caribou avoid them, perhaps due to a greater chance of encounters
with wolves. More recently, GPS collar data from wolves demonstrated that they
tended to move along the seismic lines, and that a bimodal von Mises distribution
provided a good fit for their movement properties [23]. Subsequent modelling in
[23], based on various modes of biased movement in response to seismic lines, was
used to predict how this would impact on encounter/predation rates.
To show how biased movement along seismic lines can alter the population distribu-
tion, we consider simulations of the macroscopic model (6) in different landscapes,
where the expectation and variance-covariance required for a and D are those of the
bimodal von Mises distribution (23–24). Specifically, we consider (a) an artificial
landscape of regular criss-crossing seismic lines and (b) a genuine landscape based
on an aerial photograph. We assume distinct movement properties on and off the
lines as follows.

• Off-seismic lines the population is assumed to move in a (more or less) random
manner, i.e. k = 0 in (4).

• On-seismic lines the population is biased into either following or avoiding the
seismic lines:
– for seismic line following we take k = 2 in (4) and a direction of movement

along the (local) axial direction of the seismic line ;
– for seismic line avoidance we take k = 2 in (4) and a dominant direction

of movement orthogonal to the (local) axial direction of the seismic line.

Figure 7 plots the long-term distributions for populations following one of these
scenarios. As to be expected, there is a heterogeneous pattern in the population
distribution according to the underlying network of seismic lines, such that an
individual is either more or less likely to be found on (or close to) a seismic line
for following or avoidance strategies respectively. A more formal matching of this
distribution data to the location data found in studies such as [18, 23] would allow
us to examine theoretically how different strategies and responses of both wolves
and caribou to the seismic line network could impact on predation rates: we refer
to [23] to a specific such study in this regard.

5.4. An application to brain tumour modelling. One application of the three-
dimensional von Mises-Fisher distribution can be found in the modelling of brain
tumours. Gliomas are brain tumours that develop from the glial cells of the cen-
tral nervous system. The most aggressive variant is the Grade IV Astrocytoma
(Glioblastoma multiforme). Current standard of care includes a combination of
maximal safe surgical de-bulking, radiation therapy, and chemotherapy. The typical
median survival is approximately 14 months from diagnosis. Despite intensive treat-
ment, recurrence is expected in virtually all patients, and usually occurs within and
adjacent of the original region of grossly visible disease seen on diagnostic imaging.
Microscopic extension of tumor cells can be found in the adjacent normal appearing
brain and are thought to contribute to recurrence and subsequent extension of the
tumour.
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Figure 7. Population density distributions describing the differ-
ent responses of a population to linear landscape features such as
seismic lines. In each case we solve (6), where a and D are cal-
culated using the moments of the bimodal von Mises distribution,
i.e. equations (23–24). In (a) we impose a regular array of criss-
crossing seismic lines: the population density distribution is either
(a1) raised or (a2) decreased along the seismic lines according to
whether they tend to (a1) follow along the paths or (a2) move
directly off of them. In (b) an identical set of simulations is con-
ducted for a genuine landscape, based on an aerial photograph of
a Northern Alberta landscape.

Brain tissue can be classified into two main components: gray matter and white
matter. While the former is relatively isotropic in structure, a significant propor-
tion of white matter stems from the myelinated nerve axons, bundled into long
fibre tracts that generate a highly anisotropic tissue. Significant evidence suggests
that invasive glioma cells spread along these white matter tracts [33, 11, 12] hence
directing the heterogeneous spread of cancer. Consequently it is of key interest to
understand how these fibres are connected in the brain. An MRI-based technique
called diffusion tensor imaging (DTI) generates voxel-by-voxel diffusion tensors for
the anisotropic diffusion of water molecules, which can subsequently be reinter-
preted to provide a measurement of tissue alignment and hence information on the
arrangement of white matter tracts [4].
A number of groups have developed methods to include DTI measurements within
mathematical glioma growth models [35, 13, 19, 21, 26, 30, 9] and in [30] we pro-
posed to incorporate DTI information via its parametrisation of a bimodal von
Mises-Fisher distribution. Consequently the macroscopic glioma growth follows an
anisotropic diffusion model, augmented by a logistic growth term to describe pro-
liferation of the cancer cells:

c(x, t)t = ∇∇ : (D(x)c(x, t)) + rc(x, t)(1− c(x, t))
where c(x, t) is the time and space dependent (normalised) cell density and r is
the growth rate. The colon symbol (:) is used as contraction as in (6). D(x)
is given from (8) using (32), where the dominant direction u and concentration
parameter k is determined by the anisotropy revealed in the DTI data and will be
spatially variant. The concentration parameter k is taken to be proportional to the
fractional anisotropy (FA) at each location, with constant of proportionality κ, i.e.
k(x) = κFA(x). The fractional anisotropy, or FA measures “how anisotropic” the
DTI measured tensor is, with FA=0 corresponding to an isotropic tensor and FA=1
corresponding to a fully anisotropic tensor. The constant κ measures the degree to
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which the invasion process follows the anisotropic structure and can be tuned for
a specific patient: choosing κ = 0 will generate a uniform distribution, and hence
an isotropic tensor, while a higher value of κ simulates a stronger tendency of the
cancer cells to invade anisotropically along white matter tracts.
A full description of the model and simulation procedure can be found in [34] (see
also [30]) and a typical simulation is shown in Figure 8. In (a), we plot the FA map in
a two-dimensional slice of brain for a particular patient, and augment it with a black
dot representing the initial condition (i.e. proposed point of tumour initiation) for a
simulation; note that yellow regions correspond to high FA, and hence imply highly
aligned tissue in the form of bundled white matter tracts. (b) and (d) show two-
dimensional slices through the three-dimensional cell density generated by model
simulation, creating an artificial tumour based on patient-specific DTI data. While
the (b) and (c) corresponds to a low κ value (κ = 0.5), (d) and (e) use a high κ value
(κ = 15). Here the blue to yellow colormap indicates increasing cell density and the
tumour profile is plotted 280 days post initiation. (c) and (e) show an isosurface
for the three-dimensional cell density corresponding to c(x, t) = 0.16, estimated to
be the density observable on a T2 MRI image [36] and hence indicating the visible
tumour boundary. We see that for higher values of κ the finger-like projections
often seen in these types of tumours can be recreated.

6. Conclusion. We have shown that the divergence theorem can be a powerful tool
to compute the moments of spherical distributions. In this paper we focussed on the
first two moments of two and three dimensional spherical analogues of the Normal
distribution: the von Mises distribution (in 2-D) and the Fisher distribution (in
3-D). The method presented avoids tedious trigonometric integrals and we expect
that it can also be employed for higher order moments, for higher dimensions, or for
other spherical distributions such as the Kent- or Bingham distributions [20, 22].
The key argument was the use of the divergence theorem, and this is also possible
in higher dimensions. In those cases, higher spherical moment calculations are
necessary, but there is hope that these can be solved. See for example [17], where
general spherical moments were computed in arbitrary space dimensions for the
uniform distribution.
Our focus on the first two moments of the von Mises and Fisher distributions stems
from their direct relevance to the modelling of oriented movement of animals and
cells, highlighted here by applications to the modelling of sea turtle navigation,
wolf movement and brain tumour invasion: such movement-based problems natu-
rally reside in two or three dimensional space and one could apply similar methods
to model a myriad of other such phenomena in biology, ecology or medicine. More
generally, the n-dimensional von Mises-Fisher distribution has found applications
in numerous other areas, such as describing the type of high dimensional data found
in areas such as gene expression data [2]. Consequently, we hope that the method
described here may prove to have wider utility for other applications requiring de-
scriptions of directional data.
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DTI imaging to help predict the pattern of glioma growth.



MOMENTS OF VON MISES DISTRIBUTION 21

(a)

(b) (c)

(d) (e)

Figure 8. Simulations of brain tumour growth using real patient
data: see [34] for details. These are test cases to show the effect
of changing the concentration parameter. (a) shows the fractional
anisotropy for a two-dimensional axial slice of a real patient brain.
Yellow indicates high fractional anisotropy, and thus high align-
ment, while blue indicates isotropic tissue. The initial condition
for the brain tumour simulation is indicated by a black dot. (b)-
(e) show two artificial tumours generated using real patient DTI
data for two different values of κ, and thus k. (b) and (c) use
κ = 0.5, and (d) and (e) use κ = 15. (b) and (d) represent a two-
dimensional slice of the cell density (where dark blue = low cancer
cell density, yellow = high cancer cell density), while (c) and (e)
represent an isosurface corresponding to c(x, t) = 0.16. It has been
estimated that this is the cell-denstity that shows up on T2-MRI
images, thus the isosurfaces in (c) and (e) can be thought of as the
visible tumour boundaries.
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