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Abstract

Pattern formation via direct cell to cell contact has received considerable attention

over the years. In particular the lateral-inhibition mechanism observed in the Notch

signalling pathway can generate a regular periodic pattern of differential cell activity,

and has been proposed to explain the emergence of patterns in various tissues and

organs. The majority of models of this system have focussed on short-range contacts:

a cell signals only to its nearest neighbours and the resulting patterns tend to be of

fine-scale “salt and pepper” nature. The capacity of certain cells to extend signalling

filopodia (cytonemes) over multiple cell lengths, however, inserts a long-range or non-

local component into this process. Here we explore how long range signalling can

impact on pattern formation. Specifically, we extend a standard model for Notch-

like lateral inhibition to include cytoneme-mediated signalling, and investigate how

pattern formation depends on the spatial distribution of signal from the signalling

cell. We show that a variety of patterns can be obtained, ranging from a sparse

pattern of single isolated cells to larger clusters or stripes.

Keywords: lateral inhibition; pattern formation; morphogenesis; cytoneme

signalling; Delta-Notch interactions; juxtracrine models

1. Introduction

Determining the communication channels through which a cell population patterns

and differentiates itself is central to understanding the development, homoeostasis,

repair and pathogenesis of the tissues and organs of our bodies. Many early theories

Preprint submitted to Mathematical Biosciences November 25, 2015



invoked the concept of morphogens, chemical signalling molecules capable of direct-

ing the behaviour and differentiation of cells: for example, the seminal model of

Turing [30] proposed that a system of reacting and diffusing molecules could form a

spatially periodic pattern, and that this information offered a patterning blueprint;

the French-flag model of Wolpert [34] posited that a non-uniform distribution of a

morphogen could pattern a tissue via distinct differentiation paths being followed

by cells according to the morphogen level. Numerous morphogens have been dis-

covered, and their various modes of operation have been the source of considerable

theory and speculation (e.g. see the review in [23]).

In many models, morphogen transport is explicitly or implicitly assumed to result

from simple diffusion in the extracellular space: for example, in Turing’s model

diffusion is (surprisingly) the critical factor that breaks initial symmetry to create

pattern; Crick [6] calculated that small(ish) molecules were (theoretically) capable

of diffusing through tissues in timescales relevant for early embryonic processes. In

recent years, a combination of theoretical modelling and experimental data have

supported molecular diffusion as a potential morphogen transport mechanism (e.g.

[35, 14]).

In certain signalling systems, however, the intercellular communication required for

pattern formation can be achieved without extracellular diffusion, a particular well

known example being the Notch system. This crucial signalling pathway is widely

conserved throughout the animal kingdom and found to control/regulate a diverse

range of processes in both developing and adult tissues [1, 10]. The Notch receptor

and its ligands, the Delta/Serrate/Lag2 (DSL) family, are transmembrane proteins

that require cell to cell contact due to their membrane-tethered nature: while dif-

fusible forms of ligand exist, they do not appear to trigger signalling [12]. In other

words, cell to cell signalling is achieved through a direct and one-to-one contact

between a signaller cell and receiver cell, providing juxtacrine signalling. Diffusion,

on the other hand, allows paracrine signalling: a secreting cell could signal many or

all other cells in a population. Such direct signalling is by no means confined to the

Notch signalling system, or receptor/ligand modes of communication: for example,

cadherin adhesion molecules create cell-to-cell adhesive bonds that also provide sig-
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nalling [33]; information can also pass directly from cell to cell via “gap-junction”

tunnels between two membranes [16], allowing small molecules to pass directly from

cytoplasm to cytoplasm.

In the context of developmental pattern formation Delta-Notch signalling is capable

of operating a lateral-inhibition scheme [1, 10], where high receptor (Notch) activ-

ity in a receiving cell down-regulates its own ligand (Delta) activity, and hence its

capacity to signal other cells (see Figure 1 (a)). Between two quasi-identical cells,

stochastic fluctations in their initial ligand and receptor activities will be steadily

amplified, with one cell’s ligand activity progressively downregulated to the extent

that it cannot induce a similar reponse in the other: one cell “wins” and the other

“loses”, distinct signalling activities are displayed and the cells take alternate fates.

In an array of cells, this juxtacrine-based mechanism of lateral inhibition can gen-

erate a fine-scale “salt and pepper” pattern of signalling activity (see Figure 1 (b)),

and hence provide a potential mechanism for certain types of tissue patterning.

Notch-based pattern formation has received intense scrutiny during many develop-

ment processes, such as sensory bristle formation in the fruit-fly thorax [27, 1, 10].

These mechanosensory bristles develop from single sensory organ precursor (SOP)

cells, which form at regular spaced intervals in an epithelial field through a Notch-

Delta lateral inhibition process [27].

A number of mathematical models have been developed to explore juxtacrine-based

signalling in patterning. Collier, Monk and others [5] devised a model for juxtacrine-

based lateral inhibition that consisted of a network of coupled equations for the

signalling activities of Delta and Notch in each cell. Juxtacrine signalling was incor-

porated via a cell’s receptor activity depending on the ligand activity of its nearest

neighbours, and the model was shown to reproduce the fine-grained patterning of a

cell sheet. This framework has subsequently been adapted and extended in various

directions, from more detailed analytical explorations to refined representation of

the molecular interactions, or specific modelling of particular instances of pattern

formation: as examples, we refer to [13, 18, 19, 31, 20, 32, 21, 8, 3, 29, 28, 17, 26, 2].

On initial reading, the “juxtacrine” labelling of Delta-Notch interactions suggests
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strictly local communication, such that a cell can only signal to its nearest neigh-

bours. Consequently, the length scales of any developing patterns is somewhat

uncertain. For example, in the lateral-inhibition based model of [5], each cell signals

only to its nearest neighbours and the corresponding pattern tends to a fine-scale

form: a more-or-less alternating pattern of distinct signalling states (e.g. see an

example in Figure 9 (a)). In contrast, the spacing between SOPs during bristle for-

mation is somewhat larger, raising the question as to what coarsening factors could

contribute to the process.

Many cells, even in highly packed epithelial layers, have a dynamic form that al-

lows the extension of long membrane protrusions such as filopodia. In particular,

much attention has focussed on the capacity of certain cells to extend long, ori-

ented “signalling filopodia” – often referred to as cytonemes [22] – that can contact

and directly signal to more distant cells, possibly up to 200µm (10s of cell lengths)

away (e.g. see the reviews in [25, 9, 11]). Consequently, the directly-contactable

neighbourhood of a cell may extend considerably beyond its nearest neighbours. In

the context of Notch-Delta based SOP patterning, de Joussineau et al [7] found

Delta expressed along filopodia puncta and, speculating that this may increase the

range of lateral inhibition, showed that disrupting the protrusions resulted in a

shorter spacing and over-expressed SOPs. More recently, Cohen et al [3] used a

combined experimental/theoretical approach to show that the length and lifetime of

the dynamic filopodia extended by bristle precursors correlated with the pattern and

density of bristles. Beyond this role in lateral-inhibition based pattern formation,

cytoneme- or filopodia-mediated cell to cell signalling has been associated to numer-

ous processes in development: most frequently in drosophila, such as Dpp-regulated

anterior/posterior border specification and hedgehog (Hh) delivery in the wing-disc,

but also vertebrates (for example sonic hedgehog signalling in chick limb buds); we

refer to [25, 9, 11] for reviews.

1.1. Outline

In this paper we consider the impact of long-range, direct contact signalling on the

patterning of cellular tissues. We use the classic system of Delta-Notch signalling

as a case study, extending the analytically convenient model of [5] to account for
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Figure 1: (a) Illustration of the Delta-Notch lateral inhibition mechanism, adapted from [5]. (b)

Lateral-inhibition operating in a Juxtacrine signalling process is capable of creating a finely grained

pattern of alternate cell fates. (c) The 1D and 2D geometries considered for the modelling. We

note that for the two cells r and s we have dr,s = 2.

non-local interactions. Specifically, we construct a general form in which each cell

creates a signalling net, contacting other cells in some non-local neighbourhood. In

its general form the equations can be adapted to include a variety of precise modes of

non-local signalling, such as dynamically changing according to the concentration of

specific components. For the more general purposes here we subsequently restrict to

the specific and analytically convenient case in which each cell creates a equivalent

and fixed signalling net. Yet, even within this simplification a wide variety of distinct

forms of non-local signalling can still be considered, including uniform, tip-based

and polarised scenarios. A combination of linear stability analysis and numerical

simulation is used to unravel the complexities of pattern formation and determine

how the spatial distribution of signal through the net impacts on the pattern form.

2. Model Derivation

2.1. Collier et al model

We suppose the tissue to be formed from a set of identically-sized discrete cells,

C, arranged into either a 1-dimensional chain or 2-dimensional regular hexagonal

lattice (Figure 1 (c)) and of total cell number |C|. Each cell operates as both a

signaller and a receiver, according to the activity levels of ligands and receptors at

the cell membrane. Each cell is given an index r, and for two cells r and s we define

their distance apart as dr,s, measured in terms of cell diameters. For example, for

a population of cells of consistent size and (approximate) diameter 10 µm, dr,s = 5
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would correspond to 50µm.

We base our study on the well-known Delta-Notch signalling pathway for lateral

inhibition, crucial as a regulator of patterning and for the functioning of various

developing and adult tissues. More precisely, we adapt the Collier et al. [5] model:

these equations forsake detailed pathway representation for an analytically tractable

two-variable model that characterises the essential elements of the process.

It is important to note that this model exhibits a number of drawbacks: from a

biological perspective it does not offer the detailed molecular description consistent

with our current understanding into Delta-Notch signalling, while from a pattern-

ing perspective it demonstrates a certain lack of robustness to noise. While various

models have been developed to address these and other issues, we retain the original

model of [5] as our “core pattern generator”: given our more theoretical aims, as

the prototype model it acts as a suitable reference point for comparison.

Specifically, for each cell r ∈ C, we suppose receptor (Ur) and ligand (Vr) activity

levels evolve according to the coupled set of equations:

d(Ur/U
∗)

dτ
= F (V̄r/V

∗)− µUr/U∗ ;

d(Vr/V
∗)

dτ
= G(Ur/U

∗)− ρVr/V ∗ .

Here, τ is time and U∗ and V ∗ define typical levels of ligand and receptor activity. F

and G are continuous functions F,G : [0,∞)→ [0,∞) that describe how the activity

changes according to interactions between and within cells (e.g. lateral inhibition);

their specific forms are described below. µ and ρ are rate constants for the turnover

of receptor and ligand. Defining f := F/µ and g := G/ρ and setting ur = Ur/U
∗,

vr = Vr/V
∗, t = µτ, ν = ρ/µ, yields the non-dimensional system:

dur
dt

= f(v̄r)− ur ,

dvr
dt

= ν[g(ur)− vr] .

(1)
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The function f determines the upregulation of receptor activity: this will be directly

dependent on cell to cell ligand-receptor binding, and hence will vary according to

the average ligand activity received by the cell from its neighbourhood, defined

as v̄r: a standard assumption, as taken in [5] and similar models, is to assume a

cell only signals to its nearest neighbours. Here we assume long range (filopodia-

mediated) signalling across some non-local neighbourhood, and the variable v̄r will

be defined accordingly. Overall, f : [0,∞) → [0,∞) is set as an increasing func-

tion of v̄r, reflecting that high ligand activity in a cell’s neighbourhood will lead to

greater ligand-receptor binding and hence high receptor activity in the receiving cell.

In the lateral-inhibition interactions of Delta and Notch, high receptor activity in

a cell down-regulates its ligand activity: see Figure 1 (a). Specifically, we assume

g : [0,∞)→ [0,∞) to be a continuous and decreasing function of receptor activity.

Following the standard choice of Hill-type functions as taken in [5], we set

f(y) =
yh1

ah1 + yh1
, and g(y) =

bh2

bh2 + yh2
, (2)

where a, b > 0 and Hill coefficients h1, h2 ≥ 1.

2.2. Long range signalling

As stated, our principal aim is to investigate how non-local, direct-contact signalling

can impact on tissue patterning. Specifically, we assume that each cell has a capacity

to form a net of filopodial-like extensions through which ligand-receptor interactions

can occur. Filopodia-mediated cell to cell signalling will undoubtedly be subject to

extensive regulatory control, depending on the state of both an individual cell and

its environment. For specific applications, due consideration would therefore need

to be made of:

• the physical structure of the net, characterised by the numbers, lengths and

orientations of the extensions – filopodia/cytonemes can be found to range up

to 100s of microns (10s of cell lengths) and can display a distinct polarisation

or orientational bias;

• the distribution of signalling molecules throughout the net, for example, whether

they are distributed uniformly along filopodia or concentrated at apical ends,
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or whether just ligand, just receptor or both components are localised to filopo-

dia.

Aiming for a more general treatment, we condense these aspects into a single mod-

elling term, w(s, r; ·): a weighting function defining the level of signalling from a

signaller cell s ∈ C to a receiver cell r ∈ C. We note that 0 ≤ w(s, r; ·) ≤ 1. This

function could potentially depend on several factors, including: the signalling activ-

ity of the signaller or receiver – high/low activity in either the signalling or receiving

cell could promote or inhibit the formation of long-range contacts; environmental

factors, such as extracellular chemical signalling molecules.

For a cell j we can therefore define a signalling neighbourhood (see Figure 2 (a)),

Sj = {r : r ∈ C and w(j, r; ·) > 0} ,

and a receiving neighbourhood (see Figure 2 (b)),

Rj = {s : s ∈ C and w(s, j; ·) > 0} .

The former defines the set of cells that receive signal from cell j, while the latter

defines the set of cells from which it receives signal. The sizes of these neighbour-

hoods will be limited by the maximum lengths of filopodia and are not necessarily

the same: for example, one cell may exclusively signal to its nearest neighbours, but

receive signals from distant cells via their extension of ligand-laden filopodia.

Through the above we define v̄r for model (1). Specifically, we assume that at time t

the cell r receives the weighted proportion w(s, r; ·)ls(t) of ligand from the signaller

at s. Hence, the total amount received will be given by

v̄r(t) =
∑
s∈Rr

w(s, r; ·)ls(t) . (3)

Any cell only has a finite amount of active ligand to distribute at any given timepoint:

here we assume that the full activity is distributed1, resulting in the conservation

1For example, cells have an abundance of free receptors that allows ligand to be more or less

instantaneously bound.
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Figure 2: Signalling and receiving neighbourhoods. (a) Each cell signals to other cells in a non-local

signalling neighbourhood, with the amount signalled varying with signaller/receiver positions: as

an example, here the closest cells receive the greater share and distant cells little or none. (b) Each

cell receives signals from other cells in its receiving neighbourhood, with the sum total providing the

input for upregulation of receptor activity. (c-e) Illustrations showing potential signalling/receiving

neighbourhoods for different scenarios: see text for explanation.
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law ∑
r∈Ss

w(s, r; ·) = 1 . (4)

Of course, in the event that full ligand activity is not transferred, w is still con-

strained such that
∑

r∈Ss w(s, r; ·) ≤ 1. However, potential cell-cell variations be-

tween signalling distributions would not lead to a similar law for reception: a cell

r could receive either a larger (
∑

s∈Rr
w(s, r) > 1) or smaller (

∑
s∈Rr

w(s, r) < 1)

share according to the ligand distribution of surrounding cells.

Non-local signalling nets will be described via the following terminologies:

• Fixed or dynamic. Fixed nets are assumed to be time-independent, i.e. the

weighting function w(s, r) does not depend on t and neighbourhoods are fixed

throughout the patterning process. Dynamic nets refers to cases where w may

vary in time (for example, with the concentration of ligand/receptor activities).

• Homogeneous or heterogeneous. For homogeneous we assume every cell gen-

erates an equivalent signalling net: hence, w(s1, r1) = w(s2, r2) where the po-

sitional relationships between s1 and r1 and between s2 and r2 are equivalent.

In heterogeneous cases, the arrangements vary from cell to cell.

• (Radially) symmetric or asymmetric. For (radially) symmetric nets we sup-

pose the weighting function is radially symmetric about the signalling cell:

w(s, r1) = w(s, r2) if ds,r1 = ds,r2 for two receiving cells r1 and r2. Asymmet-

ric cases do not display such properties, but could include polarised/oriented

scenarios, where signalling is focussed into one or more direction.

Figure 2 (c-e) shows some examples of these in a one-dimensional chain. In (c)

we consider fixed, homogeneous and symmetric nets where each cell signals to the

four neighbours either side (although the proportion received may still vary with

distance from the signaller): in this case, a cell’s signalling and receiving neighbour-

hoods will be identical. In (d) we consider a fixed, homogeneous and asymmetric

net where ligand is only transferred leftwards: signalling/receiving neighbourhoods

are distinct, but of equal size. In (e) we illustrate two adjacent cells in a population

with fixed, heterogeneous nets: each cell’s signalling/receiving neighbourhood can
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be of distinct size and shape.

To illustrate, we consider appropriate weighting functions for some basic examples

as follows.

• In an autocrine signalling system each cell signals only to itself: e.g. ligand

binds to receptor on the same cell. Hence, we would set

w(s, r) =

{
1 if ds,r = 0

0 otherwise
.

Receiving and signalling neighbourhoods become the single element sets com-

posed of the cell itself. In the context of the Delta-Notch model, we have

v̄r(t) = vr(t) and the |C|× 2 order system 1 reduces into |C| decoupled second-

order systems.

• In nearest-neighbour juxtacrine signalling we assume a cell shares its ligand

equally across its nearest neighbours. Specifying the exact weighting function

depends on the precise geometry: for the regular arrangements of Figure 1 (c)

we would have

w(s, r) =

{
1/N if ds,r = 1

0 otherwise
,

where N = 2 (for the 1D chain) or N = 6 (for the 2D hexagonal array). This

case recapitulates the form used in the Collier et al model ([5]) for lateral

inhibition.

3. Fixed and homogeneous signalling nets

For the more general aims here, we employ the remainder of the paper to focus on

the analytically convenient case where signalling nets are fixed and homogeneous.

We do permit variation from symmetric to asymmetric forms to determine how the

precise spatial distribution of signal through the net impacts on patterning.

Given that direct contact is required, signalling will be restricted by the maximum

reach of filopodia. We therefore parametrise the model in terms of the signalling

range R, defined in terms of cell diameters and marking the distance between the
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signalling cell and the most distant receiving cell2: we therefore have w(s, r) = 0 for

ds,r > R. Note that we will exclude any possibility of autocrine signalling by setting

w(r, r) = 0.

3.1. Weighting functions

3.1.1. One-dimensional chain

In the one-dimensional case we let each cell’s index define its position along the

chain. For a receiver at r and a signaller at s = r + n (for n ∈ Z) we consider the

weighting function

w(r + n, r) =


w∗γ1e

−σ1(n+µ1)2 if −R ≤ n < 0

w∗γ2e
−σ2(n−µ2)2 if 0 < n ≤ R

0 otherwise

. (5)

In the above, σ1,2, µ1,2 and γ1,2 are constant parameters that define the functional

shape, while w∗ is the appropriate normalising constant that ensures (4).

The above weighting function can encompass a broad range of signalling classes, as

we illustrate in Figure 3. We can include both symmetric (top row) and asymmetric

(bottom row) signalling scenarios. Figure 3 (a) considers a “diminishing” form in

which signalling is concentrated to the nearest cells and decreases as the distance

from signaller to receiver increases. Figure 3 (c) illustrates a “targeted” form, where

ligand is predominantly passed to cells located more than one cell diameter away.

Polarised equivalents are illustrated in Figure 3 (b) and (d). For purposes of analysis,

we also consider the following special limiting cases.

• Symmetric (polarised) uniform signalling, SU (PU). We set γ1 = 1 (γ1 = 0),

2Hypothetically, ligand attached to the apical tip of one filopodium could contact a receptor on

the apical tip of another: consequently, this range could potentially be up to twice the maximum

filopodium length.
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Figure 3: Examples of weighting function (5): (a-b) Symmetric/polarised distributions in which

cells closest to the source cell at 0 receive the greatest proportion of signal; (c-d) Symmet-

ric/polarised distributions in which signal is targetted to more distant cells. (e-f) Symmet-

ric/polarised uniform signalling. (g-h) Symmetric/polarised distal signalling. For all forms we

set R = 10, γ1,2 = 1 for symmetric (γ1 = 0, γ2 = 1 for polarised) signalling, and: (a-b) σ1,2 = 0.1,

µ1,2 = 0; (c-d) σ1,2 = 0.25, µ1,2 = 5; (e-f) σ1,2 = µ1,2 = 0; (g-h) σ1,2 =∞, µ1,2 = 10.

γ2 = 1, µ1,2 = σ1,2 = 0. Hence (5) becomes (Figure 3 (e-f)):

(SU) w(r + n, r) =

{
1
2R

if 0 < |n| ≤ R

0 otherwise
;

(PU) w(r + n, r) =

{
1
R

if 0 < n ≤ R

0 otherwise
.

• Symmetric (polarised) distal signalling, SD (PD). We set γ1 = 1 (γ1 = 0),

γ2 = 1, µ1,2 = R and σ1,2 →∞. Hence (5) becomes (Figure 3 (g-h)):

(SD) wr+n,r =

{
1/2 if |n| = R

0 otherwise
;

(PD) wr+n,r =

{
1 if n = R

0 otherwise
.
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3.1.2. Two-dimensional array

We consider the regular hexagonal lattice (see Figure 1 (c)) and weighting function:

w(s, r) =

{
w∗e−σ1(ds,r−ρ)

2

eσ2 cos(α(θs,r−φ)) if 0 < ds,r ≤ R

0 otherwise
. (6)

In the above, θs,r ∈ (−π, π] defines the angular bearing between the signalling and

receiving cells. σ1,2, ρ, φ and α are parameters that control the shape and form of

the weighting function, while w∗ is the normalising coefficient.

As in 1D, equation (6) can be tailored to create a variety of distinctive signalling

nets:

• Radially symmetric signalling. Setting σ2 = 0 imposes radial symmetry: figure

4 (a-c) plots examples for (a) uniform symmetric signalling, (b) locally target-

ted symmetric signalling, and (c) distally targetted symmetric signalling.

• Axial signalling. Polarity-inducing cues may allow filopodia to become ori-

ented along a particular axial direction: these scenarios can be reproduced by

setting σ2 > 0 and α = 2. Figures 4 (d)-(e) illustrate axial signalling exam-

ples where all cells, (d), or a subset of cells, (e), along a particular axis are

signalled.

• Polarised signalling. Signalling may also be concentrated along a unique di-

rection. Setting σ2 > 0 and α = 1 generates polarised signalling, for example

see Figure 4 (f).

3.2. Linear stability analysis

To investigate the possibility of pattern formation we perform a linear stability anal-

ysis under certain idealised scenarios. Note that such analyses have previously been

performed for the nearest-neighbour juxtacrine signalling of [5]: here, we extend

that analysis to investigate how patterning will be altered in systems capable of

non-local, direct-contact signalling. For simplicity we concentrate on the 1D sce-
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Figure 4: Illustrations of the two-dimensional weighting function (6), where the weighting function

(white=low, dark=high) is indicated by the colorscale. (a-c) Radially symmetric signalling; (d-e)

Axial signalling; (f) Polarised signalling. For all plots we set R = 8 and (a) σ1 = ρ = σ2 = α =

φ = 0; (b) σ1 = 0.1, ρ = σ2 = α = φ = 0; (c) σ1 = 0.5, ρ = 5, σ2 = α = φ = 0; (d) σ1 = ρ = 0

σ2 = 5, α = 2, φ = 0; (e) σ1 = 0.5, ρ = 5 σ2 = 5, α = 2, φ = 0; (f) σ1 = ρ = 0 σ2 = 5, α = 1, φ = 0.

nario3 outlined in section 3.1, assuming that cells form an infinite chain. The linear

stability analysis itself closely follows that outlined in [5].

We first note that the system (1) possesses a single positive homogeneous steady

state (u0, v0): a state in which Notch/Delta activity levels are the same across the

cellular field. Note that at the steady state we have f(g(u0)) = u0, v0 = g(u0),

with its uniqueness stemming from f(g(u)) being monotonically decreasing for all

u ≥ 0. To examine stability, we set ûr = ur + u0 and v̂r = vr + g(u0), where the

new variables track disturbances from the steady state. Substituting into (1) and

3The extension to higher dimensions is straightforward and does not significantly change the

principal message here: the most notable difference is more stringent requirements on the feedback

strength, as the signal must be distributed over a larger number of cells, see [5] for details.
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ignoring nonlinear terms (and dropping the “hats” for notational simplicity), we

obtain the linearised system

u̇r = Av̄r − ur,
v̇r = νBur − νvr,

(7)

where ur, vr denote the new variables, and “ ˙ ” indicates the time derivative. Note

that in the above we have set A := f ′(g(u0)) and B := g′(u0).

Following a standard stability analysis, for example see [15], we look for solutions

of the form ur, vr ∼ eλt+ikj, where λ is the (temporal) eigenvalue. k defines the

(discrete) wavenumber: solutions for k > 0 correspond to patterned solutions with

corresponding pattern wavelength 2π/k. Substituting into (7) and simplifying yields

the dispersion relation

λ2 + (1 + ν)λ+ ν(1− ABK(k)) = 0 , (8)

where the function K(k) differs according to the averaging term/weighting function.

Patterns are expected to emerge from perturbations of the uniform solution only if

there exists a non-empty set of discrete values of the form k = 2π/m, m = 2, 3, 4 . . .

for which max(Re(λ)) > 0. This requirement for such discrete k results from the

discrete nature of the cellular field: only discrete wavelengths corresponding to

2, 3, 4, . . . cell diameters are relevant for patterning.

For the one-dimensional scenario considered in section 3.1 we have

K(k) =
R∑

n=−R,n 6=0

w(r + n, r) (cos(nk) + i sin(nk)) (9)

In particular, for symmetric signalling scenarios (w(r − n, r) = w(r + n, r)) the

imaginary component disappears and we obtain

K(k) = 2
R∑
n=1

w(r + n, r) cos(nk) . (10)

In this case, patterned solutions are expected to form provided

AB <
1

Kmin

, (11)
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where Kmin < 0 denotes the minimum of the real function K(k) for k ∈ [0, π].

Noting that A and B define the slopes of the feedback functions f and g at the ho-

mogeneous steady state and defining the magnitude |AB| as the feedback strength,

condition (11) stipulates that the feedbacks must operate in opposing fashion (as for

a lateral inhibition mechanism), and that the feedback strength must be sufficiently

high for patterns to emerge, |AB| > |1/Kmin|.

A detailed analysis for the general weighting function (5) is not particularly illu-

minating due to its large number of free parameters. Instead, we focus on the two

idealised scenarios of uniform and distal signalling: each corresponds to a specific

limit of (5) and can therefore provide an indication of behaviour for more general

forms.

3.2.1. Uniform signalling

We consider the uniform signalling scenarios (SU) and (PU). Here, we obtain

KSU(k) =
(sin((R + 1/2)k)− sin(k/2))

2R sin(k/2)
,

KPU(k) =
((sin((R + 1/2)k)− sin(k/2)) + i (cos((R + 1/2)k)− cos(k/2)))

2R sin(k/2)
,

where we have employed Lagrange’s trigonometric identities. Note that for R = 1

we simply have K(k) = cos k for symmetric signalling and K(k) = cos k + i sin k

for polarised signalling. In either case, the condition for patterning simplifies to

AB < −1: for the symmetric scenario, this case exactly recapitulates that of [5].

Figure 5 (a) plots the relationship between the required feedback strength and the

signalling range for instability of the uniform solution to occur under symmetric

uniform signalling. First, we note that larger R require larger |AB|: intuitively, as

the number of cells within signalling range increases, the activating ligand is shared

across a wider field and stronger feedback is necessary to generate patterning.

However, rather than a simple linear dependency, Figure 5(a) suggests that the

feedback strength saturates for larger values of R. A combination of numerical

investigations and algebra suggests that as R increases, the minimum of KSU(k)
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Figure 5: Top row: Linear stability analysis for symmetric uniform signalling. (a) Critical value of

|AB| needed for pattern formation as a function of the signalling range R; (b) Typical dispersion

relation, plotting Re(λ) as a function of the wavenumber (k). Purely real eigenvalues are indicated

by solid lines; complex eigenvalues denoted by dotted lines. Here, |AB| = 5 and R = 5, resulting in

multiple ranges of unstable wavenumbers. (c) Plot of the fastest growing wavelength as a function

of signalling range for (solid-black-stars) |AB| = 5, (dashed-red-squares) |AB| = 4, and (dot-dash-

blue-circles) |AB| = 3. Bottom row: Linear stability analysis for polarised uniform signalling.

(d) Critical value of |AB| needed for pattern formation as a function of signalling range R; (e) A

typical dispersion relation: here |AB| = 4 and R = 5. (f) Fastest growing wavelength as a function

of R for (solid-black-stars) |AB| = 4, (dashed-red-squares) |AB| = 3, and (dot-dash-blue-circles)

|AB| = 2.

converges to sin x∗/x∗ at corresponding wavenumber x∗/R, where x∗ is given by the

solution to tanx∗ = x∗ (x∗ = 4.493409 . . .). Subsequently, from (11) we have an

upper limit on the necessary |AB|: for sufficiently strong feedback in the underlying

signalling network, i.e. |AB| ' 4.6, the instability condition is satisfied regardless

of R and there is no upper limit on the signalling range for pattern formation to

occur.
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Note further that for the functions f and g given in equation (2), feedback will be

controlled by parameters a, b, h1, and h2. A reasonably straightforward calculation

(see Appendix) determines |AB| < h1h2. Taken with the observations above, for

functional forms (2) and arbitrarily large R, a minimum for the Hill function coef-

ficients will therefore be h1h2 ' 4.6.

We next explore expected pattern wavelengths. Examining KSU we observe that

K(k) < 0 for sin((R + 1/2)k) < sin(k/2): hence, we can expect multiple ranges of

unstable wavenumbers in [0, π], from short (wavelengths of 2 cells) to much longer

wavelengths. Figure 5 (b) plots a representative dispersion relation in the unstable

regime, showing these multiple ranges. We define the expected wavelength via the

wavenumber that maximises Re(λ): wavelengths close to this value will grow the

quickest, at least initially and under random initial perturbations, and therefore it

offers an insight into the nonlinear pattern wavelength.

In Figure 5 (c) we plot the expected pattern wavelength (in terms of cell diame-

ters) as a function of R under various feedback strengths: in each case we observe

an identical quasi-linear increase in the expected wavelength, suggesting that the

spacing in emerging patterns is relatively robust to kinetic parameters but crucially

dependent on the signalling range. For lower feedback strengths the expected wave-

length can collapse to zero above a critical R, if we cross the instability/stability

boundary shown in Figure 5 (a); note that for the choice |AB| = 5 this will never

happen and we expect indefinite increase of the expected wavelength with R.

Figure 5 (d-f) summarise the results of an equivalent analysis under polarised uni-

form signalling. The overall trends are consistent, although two distinct aspects

are noted. First, we observe an expanded instability regime, in that patterning can

occur at a lower feedback strength for equivalent R, Figure 5 (d): intuitively, for

polarised signalling the ligand is shared across half the number of cells and the re-

quired feedback to trigger patterning is lower. Second, the imaginary component to

KPU(k) ensures complex eigenvalues for all wavenumbers, see Figure 5 (e). Conse-

quently we can expect that emerging solutions will oscillate in both space and time,

raising the potential for long-term nonstationary and patterned solutions.
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3.2.2. Distal signalling

For the distal signalling scenarios (SD) and (PD) we have

KSD(k) = cosRk ,

KPD(k) = cosRk + i sinRk .

As for uniform signalling, we immediately note that the polarised case generates

complex eigenvalues and, hence, oscillating solutions.

For either symmetric or polarised distal signalling the condition for patterning sim-

plifies to AB < −1: the capacity to pattern is independent of the signalling range

and rests solely on the underlying signalling interactions (represented via the func-

tional forms f and g). However, R may still impact on the form of patterns via their

expected wavelength. Here we find that at large R multiple unstable wavenumbers

grow at an identical rate: for example, for R = 4 each of the 2-, 4- and 8-cell

wavelengths are predicted to grow equally fast. Consequently, the linear stability

analysis is inconclusive regarding the predicted wavelength.

4. Numerical Simulations

To gain further insight we perform a numerical analysis. Our focus remains on the

spatial distribution of signal through the signalling net and we continue to adopt

the 1D and 2D weighting functions introduced above. For R we assume it spans

a range from a single cell (i.e. only nearest-neighbours are signalled) to O(10) cell

lengths: filopodia/cytoneme lengths have been reported of up to 100s of microns

[24], corresponding to 10s of cell lengths based on an average cell diameter of 10 µm.

Kinetic term parameters are simply fixed at values that ensure any linear instability

condition is met for the given weighting function. Note that we exclusively consider

ν = 1: the choice ν 6= 1 does not significantly alter the pattern, but does impact on

the patterning timescale.
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4.1. One-dimensional cell chain

4.1.1. Symmetric signalling

We first consider a one-dimensional cell chain and exploit the convenient forms of

uniform/distal signalling to investigate pattern variation as the range is altered. To

minimise any impact from boundaries we impose periodic boundary conditions: the

“first” and “last” cells are considered adjacent, so that the chain ends join to form a

cellular ring. Initially, ligand and receptor activity levels are given a small, spatially

random perturbation from the uniform steady state distribution.

Figure 6 demonstrates the output from representative simulations under symmetric

uniform (SU) and distal (SD) signalling, as R is increased. Solutions are computed

in each case until a (numerical) steady-state solution is obtained, i.e. such that

there is no perceptible change to the solution; theoretically, the solution could sim-

ply represent a long-lived transient, yet given the finite time scales of embryonic

developmental processes, any such transient can be considered a final solution. For

descriptive purposes we assume a cell adopts a “primary fate” when receptor levels

are low and ligand levels are high, and a “secondary fate” otherwise, consistent with

SOP specification during Drosophila bristle patterning.

Figure 6(a) illustrates the simulation results for uniform signalling. Clearly, and

in line with the earlier analysis, a lengthening of the pattern wavelength is ob-

served as the filopodial range increases. Specifically, we find an emerging pattern in

which isolated cells adopt a primary fate, interspersed with an R-dependent region

of secondary fate cells. In the lateral-inhibition mechanism, primary fate adoption

will suppress similar behaviour in neighbouring cells: here, this suppression spreads

through the signalling neighbourhood and a sparse pattern results. We note that

when emerging from random initial conditions, pattern wavelengths are consistent

with the expected wavelength: it is possible to “force” the pattern into other wave-

lengths by biasing the initial conditions appropriately.

Simulations for an equivalent analysis under distal signalling are depicted in Figure

6 (b). The earlier analysis was less revealing on how pattern depends with R: this

unpredictability transfers to numerical solutions where, for larger R, we observe a
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Figure 6: Numerical solutions of model (1) with (3,5) and under (SU) or (SD) signalling. (a) SU

signalling for distinct R, as specified above each plot. Increasing R expands the pattern wavelength

to create a single primary fate cell (high ligand/low receptor) in an expanding block of secondary

fate cells (low ligand/high receptor). (b) SD signalling for distinct R. “Mixed-mode” patterns

are observed composed of single and multi-cell blocks of primary fate cells are interspersed with

secondary cells. For these simulations we set: (a) ν = 1, a = b = 0.1, h1 = h2 = 3 and SU

signalling; (b) ν = 1, a = b = 0.1, h1 = h2 = 2 and SD signalling. Simulations are computed for

a chain of 100 cells until a numerical steady state is reached. Numerical computations invoke the

ode15s routine in Matlab.
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tendency towards “mixed mode” patterns in which both short (alternating cell fate)

and long-wavelength patterns can emerge in distinct regions of the field. In contrast

to uniform signalling we now frequently observe “block patterning”, where blocks of

adjacent cells adopt the primary cell fate. From an intuitive perspective, the lack of

direct signalling into the adjacent cells (unless R = 1) prevents a primary fate cell

from suppressing similar activity in its closest neighbours.

Uniform and distal signalling are analytically convenient, yet in practice we would

expect signalling to vary with the distribution of filopodial lengths and directions,

along with the mode of ligand distribution. We therefore extend our study to deter-

mine whether similar patterning occurs under more smoothly distributed weighting

functions: naturally, we would expect ligand distribution to steadily diminish at

large distances between signal and receiver, for example due to fewer longer filopo-

dia and the decreased likelihood of forming a contact.

We first suppose the weighting function decreases monotonically from the signalling

cell outwards, varying σl,r in (5) to control the extent to which more distant cells

receive signal: see Figure 7 (a-c, top row) for the weighting function distributions.

Simulations indicate patterning similar to the uniform signalling case considered

above: an isolated primary fate cell emerges within a region of secondary fate cells,

where the region of secondary fate cells increases as more signal is shifted to the

more distant cells.

Next, weighting functions are changed so that the focal point of signalling shifts

from closer to more distant cells: specifically, we vary µl,r in (5) while keeping other

parameters fixed, Figure 7 (d-f, top row). The corresponding patterns are somewhat

similar to the distal signalling case, but are considerably more regular: we obtain

regularly spaced and sized blocks of primary fate cells, separated by similar blocks

of secondary fate cells.

4.1.2. Polarised signalling

We extend our simulations to examine the impact of polarised signalling where, for

a one-dimensional chain, ligand is distributed asymmetrically about its centre. Note
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Figure 7: Numerical solutions of (1,3,5) for more general weighting functions. (a-c) Signalling

decreases with distance between receiving and signalling cells: allowing distant cells to receive

more signal results in a sparser pattern of primary fate cells. We take (5) with γ1 = γr = 1,

µl = µr = 0 and (a) σl = σr = 0.3, (b) σl = σr = 0.15, (c) σl = σr = 0.075. (d-f) Concentrated

signalling is steadily shifted from nearer to more distant cells: the resulting pattern is formed of

alternating blocks of primary and secondary fate cells. We take (5) with γ1 = γr = 1, σl = σr = 0.3

and (d) µl = µr = 3; (e) µl = µr = 0.6, (f) µl = µr = 10. Note that for all simulations we set

ν = 1, a = b = 0.1, h1 = h2 = 3 on a ring of 100 cells.

that given the homogeneous tissue scenario, the polarity is assumed to be identical

across the field: for example, all cells signal “to the left”. Effectively, this assumes

that some global signalling cue, such as a diffuse morphogen gradient, orients the

tissue into a common polarity.

Our earlier analysis indicated that complex eigenvalues arise under polarised sig-

nalling, implying temporal oscillations during the initial pattern development. To

examine how polarised signalling impacts over longer times, we consider spatio-

temporal patterning as we steadily shift between completely symmetric and com-

pletely polarised signalling. Figure 8 shows the results of simulations for weighting

functions that (a-d) monotonically decrease, or (e-h) are focussed at specific distance
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from the signalling cell. Polarised signalling can clearly introduce spatio-temporal

behaviour, such that the position of primary-fate precursor cells (isolated or in

blocks) shifts along the chain. Note that the direction of the shift changes according

to the direction of polarity.

Figure 8: Spatio-temporal patterning under various forms of polarised signalling. In each frame

(a-h) we plot (top) the form of the weighting function and (bottom) the positional-temporal con-

centration of ligand as a density plot (white = low concentration, black = high concentration).

(a-d) For these simulations we take (5) with µl = µr = 0, σl = σr = 0.075, and: (a) γl = γr = 1;

(b) γl = 1, γr = 0.2; (c) γl = 1, γr = 0; (d) γl = 0, γr = 1. (e-h) For these simulations we take (5)

with µl = µr = 6, σl = σr = 0.3, and: (a) γl = γr = 1; (b) γl = 1, γr = 0.2; (c) γl = 1, γr = 0;

(d) γl = 0, γr = 1. In all simulations we set ν = 1, a = b = 0.1, h1 = h2 = 3 and simulations are

solved on a chain of 100 cells with periodic boundary conditions.
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4.2. Two-dimensional arrays

We extend the numerical investigation to a two-dimensional cellular field, such that

cells are positioned on a hexagonal array as in Figure 1 (a). Note that for these

simulations the cellular field is self-enclosed, in that cells only signal to or receive

signals from others within the field: hence, cells located along or near the field edges

distribute their ligand across a smaller set of cells. As for the one-dimensional case,

our focus is on the signalling range and arrangement of the network and we consider

fixed and homogeneous scenarios. We take the two dimensional weighting function

(6) under various signalling forms, as discussed in Section 3.1.2.

4.2.1. Radially symmetric signalling

We first consider uniform and radially symmetric about the signalling cell (see Fig-

ure 4 (a)), exploring how pattern formation changes as the size of the signalling

region is altered. Simulations plotted in Figure 9 (a-c) show representative patterns

as we expand the signalling range: as in the 1D case we observe isolated cells that

adopt the primary fate, surrounded by a field of secondary fate cells that grows with

the signalling range. This behaviour is consistent with experimental observations

in [7]: disrupting filopodia formation during Drosophila SOP specification leads to

their overproduction and decreased spacing. Here, disrupting filopodia formation is

equivalent to a contraction in the signalling range and we generate a greater number

of primary fate cells.

We next consider a radially symmetric scenario in which signalling is concentrated

into specific cells located some target distance away, see Figure 4 (b-c). Figure 9

(d-f) plots simulation results as the target distance between signalling and receiving

cells changes. Consistent with earlier simulations of the equivalent one-dimensional

scenario, as we move the target distance further from the signalling cell we shift to

a pattern of “block” patterning: patches of primary fate cells in a field of secondary

fate cells.
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Figure 9: Pattern formation in regular hexagonal cells arrays and radially symmetric signalling.

For each simulation we solve (1) under a weighting function of the form (6). Each cell is represented

by its activity, with black indicating high ligand/low receptor activity and vice versa for white cells.

(a-c) Pattern formation under uniform signalling (Figure 4 (a)), and increasing R for (a) R = 1,

(b) R = 3 and (c) R = 6. Isolated primary fate cells are selected in a field of secondary fate cells.

For other parameters we set ν = 1, a = b = 0.01, h1 = h2 = 3. (d-f) Pattern formation under

targeted radial signalling (Figure 4 (b-c)), where in (d) to (f) we increase the target distance from

the signalling cell. Specifically, we consider (6) with σ1 = 1, σ2 = α = φ = 0, R = 10 and (d)

ρ = 1, (e) ρ = 3 and (f) ρ = 6. Blocks of primary fate cells are formed, surrounded by large regions

of secondary fate cells. Other parameters are set at ν = 1, a = b = 0.1, h1 = h2 = 3. For all

simulations we consider a field of 75 × 75 cells and compute solutions until a (numerical) steady

state distribution is achieved.

4.2.2. Radially asymmetric signalling

We next turn our attention to asymmetric signalling scenarios, as described in Sec-

tion 3.1.2. Figure 10 illustrates the results from two simulation sets, as we shift

from a symmetric to “axial” signalling scenario. Specifically we change the weight-

ing function from radial uniform to restricted along a single axial direction: see

Figure 10 (a-d, top panels) for the changing weighting function. The radial sym-
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metric pattern is as above: isolated primary fate cells in a field of secondary fate

cells. Biasing signalling in this manner results in variable spacing between primary

fate cells according to the axial direction, culminating in single cell width primary

fate stripes for the most extreme cases, see Figure 10 (d).

Next, we modulate the weighting function to shift from targeted/radially symmet-

ric to targeted/axial signalling: see Figure 10 (e-h, top panels). Restricting the

signalling towards a single axial direction now results in multi-cell width stripes,

oriented along the direction of axial signalling.

5. Discussion

The hypothesis that cellular populations can perform direct cell to cell signalling

across multiple cell lengths has gathered increasing momentum in recent years. Long,

filopodia-like signalling protrusions (or cytonemes) have been observed in a variety

of developing tissues and organs in distinct species, and are believed to have a

potentially crucial role in their patterning and differentiation. In this paper we

have developed a framework to model the impact of such cell to cell interactions,

and subsequently explored how non-local contact based signalling can direct the

emergence of pattern in a cellular field when operating in a lateral-inhibition type

system. Specifically, we have expanded the well-established model of Collier et al

[5] for juxtacrine-based lateral inhibition in the Delta-Notch system by permitting

cells to signal directly at a distance, such that one cell can trigger action in another

located multiple cell diameters away.

We used a combination of linear stability analysis and numerical simulation to inves-

tigate how the range and form of non-local signalling impacts on patterning. A key

finding is that longer wavelength patterns develop in a robust manner which, accord-

ing to the distribution of signal from the signalling cell, can vary from single isolated

primary-fate cells to clusters and stripes; in contrast, the original model of Collier et

al [5] tends to create fine-grained patterns. We note that longer wavelength patterns

have been generated in other discrete-cell juxtacrine type mathematical models.

Owen and Sherratt [18] observed multi-cell length patterns in a generalised model

of nearest-neighbour signalling, however this required a lateral-induction (positive
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Figure 10: Transition from radially symmetric to axially oriented signalling scenarios. In each

row as we move from left to right signalling is progressively shifted from radially symmetric to

targetted along a specific axial direction. (Top row) All cells along a given axial direction are

targetted: (a) σ2 = 0; (b) σ2 = 1; (a) σ2 = 2; (b) σ2 = 10. Other parameters are set at R = 6,

α = 2, σ1 = ρ = φ = 0. (Bottom row) Only a subset of cells along a given axial direction are

targetted: (e) σ2 = 0; (f) σ2 = 1; (g) σ2 = 2; (h) σ2 = 10. Other parameters are set at R = 8,

α = 2, σ1 = 1, ρ = 5, φ = 0. Kinetic parameters are set at ν = 1, a = b = 0.01, h1 = h2 = 3. For

all simulations we consider a field of 75×75 cells and compute solutions until a (numerical) steady

state distribution is achieved.
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feedback) interaction between adjacent cells, instead of the lateral-inhibition mech-

anism of the Delta-Notch interaction. Chen and colleagues [2] extended the Delta-

Notch model of [29] by incorporating a “Notch-gradient activity” term analogous

to discretised diffusion, conferring a longer-range component to lateral inhibition.

This model is successful is generating a sparser pattern, yet a precise mechanistic

motivation for the added term is uncertain: the model presented here instead gener-

ates multi-wavelength patterns specifically through modelling the contribution from

non-local cell-cell contacts.

Our findings specifically support those in [3], where a combined experimental/modelling

approach was used to determine the role of filopodial-based interactions for the cor-

rect spacing between SOPs in Drosophila neoneurogenesis. Similar to here, they

extended the model of Collier et al. [5] in non-local fashion, albeit with randomly

distributed and dynamic filopodia to highlight the impact of the filopodial length and

lifetime. A further analysis was performed in [4], where it was shown how noise and

nonlocal contact-based signalling could generate a variety of pattern forms within

a cellular automata based model for lateral inhibition. The work here differs in

providing a more generalised and theoretical approach, allowing a comprehensive

analysis into how various signalling scenarios will impact on the pattern form.

The use of the Collier et al. [5] model was practically motivated: it is simple and, as a

pioneering model with well-known patterning properties, provides a logical point of

reference. As previously mentioned, however, it suffers from certain drawbacks such

as a degree of patterning sensitivity to environmental noise: we observe similar sen-

sitivity here. More recent modelling by Elowitz and colleagues [29] has accounted for

the impact of cis-inhibition of Notch and Delta in an extension of (1): significantly,

their extended model resolves some of its shortcomings, demonstrating greater ro-

bustness and sharper transitions between upregulated/downregulated states. We

have also performed simulations of the long-range direct contact signalling model

here after replacing (1) with a Notch-Delta-cis interaction model of [29]: consistent

patterning phenomena is observed (data not shown), suggesting that the patterns

are not critically dependent on the precise form of the underlying equations. Nev-

ertheless, a more formal exploration into how sensitive/robust the model is remains
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a subject for future work.

It is also worth noting that the pattern change seen in, for example, Figures 10

(c) and (d) (or (g) and(h)) is quite significant given the relatively small variations

in the corresponding spatial signal distribution. Given that environmental noise is

expected to be considerable, and that an individual cell may not have such pre-

cise control over the extension and orientation of its filopodia, the robustness of

such patterns is also an important point to consider. Incorporating the impact of

environmental variability (e.g. via stochastically fluctuating signalling nets) would

therefore be an important area for future studies. Of particular interest would be

to additionally account for dynamic evolution of signalling nets according to the

local and non-local contacts formed, and investigate whether this has the capacity

to confer additional robustness to patterns.

Our linear stability analysis revealed that longer range signalling will typically place

stronger constraints on the strength of feedback in the underlying molecular inter-

actions: distributing to a wider field inevitably dilutes the ligand, and subsequently

a stronger response must be generated. Yet, there is seemingly an upper limit to

the feedback strength required: if feedback is sufficiently strong, patterning can po-

tentially emerge for arbitrarily large signalling ranges. Of course, one must always

view cautiously the results of linear analyses, and a non-linear study of the model

provides an interesting direction for future research.

For practical reasons, the study here has been restricted to the analytically con-

venient case of fixed and homogeneous networks: even within this setting we can

generate a broad variety of specific signalling nets and, subsequently, a wide range of

patterns. In practice, patterning in embryos will typically takes place under a back-

drop of considerable spatio-temporal complexity and relaxing further the restrictions

here is likely to expand the range of patterning further. As an example, we illustrate

via the preliminary simulations in Figure 11. Here we drop the homogeneous sig-

nalling net restriction, assuming instead that the weighting function changes with

cell position in the field: from left to right, we assume signalling is increasingly

shifted into more distant cells. Figure 11 (a) shows a pattern in which isolated
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Figure 11: Patterning under heterogeneous signalling nets. In each simulation we allow the weight-

ing function to vary such that, from left to right, the signalling becomes more concentrated into

more distant cells. Note that for both cases the signalling nets are fixed and radially symmetric.

Specifically, we consider (6) with: (a) σ1 = 2.5(1 − x), ρ = 0, σ2 = α = φ = 0; (b) σ1 = 2.0,

ρ = 1+5x, σ2 = α = φ = 0. Here, x represents the nondimensional coordinate along the horizontal

axis, as shown. Kinetic parameters are set at ν = 1, a = b = 0.01, h1 = h2 = 4 throughout on a

field of 75× 75 cells.

cells emerge, but with a spacing changing with axial position from fine to coarse

grained. Figure 11 (b) illustrates a transition between fine grained isolated cells to

coarsely grained clusters. While these simulations are preliminary, and designed to

indicate the broader patterning capacity of the current model, an interesting focus

for future studies would be to develop the model to investigate patterning within

the context of a specific process of embryonic development, for example SOP spec-

ification, and where simulation results can be appropriately benchmarked against

various experimental observations.

Appendix

The feedback strength |AB| is controlled by parameters a, b, h1, and h2 in the

feedback functions f and g, see Equations(2). Here we show the following result.

Lemma. Given the kinetics in equations (1), together with feedback functions (2)
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for a, b > 0, and h1, h2 ≥ 1, we have

|AB| < h1h2 . (12)

Proof.

First, we note that a single positive steady state (u0, v0) exists where

u0 =
v0
h1

ah1 + v0h1
and v0 =

bh2

bh2 + u0h2
. (13)

We have A = f ′(v0) = h1a
h1 v

h1−1
0

(ah1+v0h1 )2
and B = g′(u0) = −h2bh2 u

h2−1
0

(bh2+u0h2 )2
. Hence,

after some manipulation,

|AB| = h1h2
ah1

bh2
u0
v0h1

u0
h2v0 . (14)

The first equation in (13) implies u0
v0h1

< 1
ah1

, while the second implies u0
h2v0 < bh2 .

Taken together, we arrive at (12). �
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[7] C. de Joussineau, J. Soulé, M. Martin, C. Anguille, P. Montcourrier, and

D. Alexandre. Delta-promoted filopodia mediate long-range lateral inhibition

in drosophila. Nature, 426:555–559, 2003.
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