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Abstract The extracellular matrix (ECM) is a highly organised structure with the
capacity to direct cell migration through their tendency to follow matrix fibres, a pro-
cess known as contact guidance. Amoeboid cell populations migrate in the ECM by
making frequent shape changes and have minimal impact on its structure. Mesenchy-
mal cells actively remodel the matrix to generate the space in which they can move. In
this paper, these different types of movement are studied through simulation of a conti-
nuous transport model. It is shown that the process of contact guidance in a structured
ECM can spatially organise cell populations. Furthermore, when combined with ECM
remodelling, it can give rise to cellular pattern formation in the form of “cell-chains”
or networks without additional environmental cues such as chemoattractants. These
results are applied to a simple model for tumour invasion where it is shown that the
interactions between invading cells and the ECM structure surrounding the tumour
can have a profound impact on the pattern and rate of cell infiltration, including the
formation of characteristic “fingering” patterns. The results are further discussed in
the context of a variety of relevant processes during embryonic and adult stages.

Mathematics Subject Classification (2000) 92C17

1 Introduction

Cell migration plays a fundamental role in tissue development, maintenance and break-
down. During embryonic growth, a variety of processes including gastrulation, neural
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crest migration, axonal guidance and tissue formation require precisely coordinated
cell movements, either as individuals or as a collective cell group (for a review, see
[35]. In the adult organism, cell migration is a crucial component of tissue homeo-
stasis, tissue repair and the immune response. Mutations arising in cancerous cells
may lead to their uncontrolled migration and subsequent invasion into the surroun-
ding healthy tissue (e.g. [37]). A range of external cues impart information to the cells
that regulates their movement, including long range diffusible chemicals (e.g. che-
moattractants), contact with membrane bound molecules on neighbouring cells (e.g.
cell–cell adhesion and contact inhibition) and contact with the extracellular matrix
(ECM) surrounding the cells. In this paper we shall explore the role of interactions
between cells and the matrix in directing cell movement.

The ECM comprises a highly organised meshwork that forms a substantial part
of tissues: in the case of connective tissue such as the dermal skin layer, up to 70%.
A variety of proteins and polysaccharides make up the matrix, including collagen,
fibronectin and hyaluronan. The characteristic rope-like meshwork of the ECM is
principally formed from collagen proteins which can self-assemble to form collagen
fibrils 10–300 nm in diameter and 100s of micrometers in length [1,25]. In addition
to acting as a supporting structure to the cells, via its expression of a wide variety of
chemical cues the ECM plays a major regulatory role in all facets of cell behaviour,
including differentiation, proliferation and migration. The latter is strictly controlled
by the ECM, which has the ability to either facilitate or prevent cell movement: fibro-
blasts and leukocytes utilise the ECM for movement as part of normal physiological
responses in tissue repair and inflammation. In addition to providing a “scaffold” to
which cells can anchor and generate force, the ECM provides guidance information
to the cells either indirectly through matrix bound adhesive molecules (haptotaxis) or
directly through cells following along matrix fibres, a process known as contact gui-
dance [16]. To other cell types, such as epithelial cells, the ECM presents a physical
and chemical barrier to movement, thereby playing an important role in maintaining
tissue integrity.

1.1 Migration strategies in the ECM

A variety of motility types have been identified by cells in the ECM [18]. Broadly,
these can be classified as either individual or collective. In the former, cells migrate
as single elements and form only transient contacts with other migrating cells. In the
latter, migration occurs as a cluster or sheet of cells maintained by strong adhesive
contacts. In this paper the focus will be on individual cell migration.

Individual cell migration can be further subdivided into two classes: amoeboid and
mesenchymal [18]. Mesenchymal, utilised by fibroblasts, certain tumour cells and
neutrophils, is slow (0.1–2 µm/min) and cells move through continuous formation
and breakage of “focal adhesions” between their membrane and the matrix. To create
the necessary space to move, cells cut a hole in the ECM through the production and
secretion of matrix degrading proteins (or proteolytic enzymes) such as members of the
MMP family. Matrix degradation occurs in either a contact or non-contact dependent
manner: in the former (pericellular proteolysis) the proteolytic enzymes are recruited
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(c) cell chains(a) amoeboid (b) mesenchymal

Fig. 1 Schematic of different types of individual cell migration. a In amoeboid migration, cells squeeze
through the matrix but have negligible impact on its overall structure. b Mesenchymal migration involves
significant matrix remodelling, leaving a trail of aligned matrix along the cell path. c Cell chains in mesen-
chymal populations. Adapted from [18]

to focal adhesions at the leading edge of a migrating cell where they act on those fibres
directly in its path. In non-contact dependent proteolysis, enzymes are secreted by the
cell into the extracellular environment where they diffuse and degrade distant matrix.
As a result of remodelling, a matrix defect arises (or cell-path) [20,41,60] comprised of
fibres predominantly oriented along the path of cell migration, Fig. 1b. The functional
role (if any) of such cell-paths is unclear: imaging studies reveal that cells frequently
migrate onto and along previously formed paths, occasionally forming “cell-chains”,
Fig. 1c. Migrating cell-chains have been observed in a variety of biological processes:
the formation of chains during the early stages of neural crest cell migration [31,33]
suggests a potential role in embryonic patterning whilst their appearance in cancer
populations [20] indicates a capacity to facilitate tumour spread through the creation
of invasive pathways.

Amoeboid migration, named because of its mechanistic similarity to the movement
of cellular slime molds, occurs in T-lymphocytes [59], certain carcinoma cells [56]
and stem cells [17]. Cells form only transient contacts with the ECM and migrate by
making frequent changes in direction and shape deformation (see Fig. 1a) to squeeze
through small holes in the matrix [59], thereby dispensing of the need for proteolytic
action and permitting faster migration speeds, between 2 and 30 µm/min.

As observed above, the ECM is known to impart directional information to cells
through their tendency to follow individual fibrils, a process known as contact gui-
dance [16,24]. Contact guidance has been observed in both amoeboid (e.g. [59]) and
mesenchymal cell populations [24] and has been proposed to play an important role
in cell migration in development and the adult. A number of studies have implicated
contact guidance during the patterning of the pectoral fin bud of the teleost embryo:
upon migrating into the fin, cells become contact-aligned with the highly organised
fibril structure which guides them to their final location [62,53]. Contact guidance has
also been suggested as playing a role in the in vivo guidance of neural crest cells [43]
whilst in the adult it has been demonstrated by both immune cells [58] and fibroblast
cells responsible for tissue repair following injury [24].

1.2 Previous modelling

The effects of interactions between cell movement and the organisation/alignment of
an underlying matrix have been investigated by a number of previous authors applied
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to various biological systems. The model developed in this paper builds on earlier
work in [27]. There, a transport model was formulated to describe mesenchymal
migration of cells in tissues, incorporating the twin actions of contact guidance/fibre
following by the cells and matrix remodelling. Hillen focusses on the corresponding
macroscopic (i.e. diffusion) limit for the various transport models above, the impact
of contact guidance leading to an anisotropic diffusion tensor that depends on the
underlying structure of the ECM. An extension of the modelling in [27] to incorporate
cell–cell interactions and chemotaxis has been presented in [8]. In the modelling
presented later, numerical simulations of an underlying transport model similar to that
proposed in [27] are conducted and their significance for different types of biological
movement discussed. A transport-based model for contact guidance has also been
developed and studied by Dickinson [14,15]. Barocas and Tranquillo developed the
“anisotropic biphasic theory” by considering mass and momentum balance equations
between tissue-cell phase and interstitial fluid phase that incorporate cell and fibre
alignment [5].

A number of models incorporating contact guidance have been developed by Sher-
ratt, Dallon and others in the context of understanding fibroblast–ECM interactions
during scarring/wound healing. These works can be split into two groups. In the
first, hybrid discrete–continuous models were investigated in which fibroblasts were
modelled as discrete objects whilst the matrix and other factors (e.g. chemoattractants)
were modelled as continuous variables [12,13,38]. Contact guidance was introduced
by assuming the fibroblast cells orient according to the underlying collagen matrix
(modelled as a single dominant angle). In the second set of papers, continuum descrip-
tion were considered for both the cells and the matrix using either reaction-diffusion
equations [45,46] or integro-pde systems [10,11]. The latter have also been developed
to model the alignment of objects (such as fibroblast cells), however here the align-
ment was initiated through direct cell–cell contact rather than contact guidance with
a matrix [39,40].

1.3 Outline

In this paper a model is described for different types of cell migration in the ECM.
The aim of the paper is to address the following questions.

− How does the architecture of the ECM alter the macroscopic organisation of cells
migrating through contact guidance?

− How does feedback between contact-guided migration and matrix reorganisation
by the cells alter patterning? In particular, can the mesenchymal “cell-chains” be
generated through these actions alone, or are additional mechanisms necessary
(e.g. cell–cell adhesion)?

− How do the interactions between cells and the aligned structure of the ECM alter
patterns of infiltration during tumour invasion?

In Sect. 2 we develop a model based on the transport equation approach recently develo-
ped in [27]. In Sect. 3, we apply this model to amoeboid migration and demonstrate that
a structured ECM can induce cell aggregation and organisation. In Sect. 4 we model
mesenchymal migration by adding matrix remodelling by the cells. The combined
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action of contact guidance and matrix remodelling is shown to lead to cell-chains
and network pattern formation. In Sect. 5 a simple model is developed to described
tumour invasion into a structured ECM. The type of cell migration and the alignment
of the ECM are demonstrated to have a potentially large impact on the rate and man-
ner of tumour invasion, leading to “fingering” type behaviour. Finally, we discuss the
findings in the context of physiological examples of cell migration.

2 Modelling

It is assumed that cells migrate as a “run and tumble” process in which periods of
running with fixed orientation are punctuated at discrete times by an instantaneous
sensing of the environment and reorientation. The paradigm for this type of motion
is the flagellar bacteria E. coli [1], yet it can reasonably approximate other types
of motion, such as eukaryotic cell movement, through the specific functional forms
describing the speed and turning of cells. In principle, any number of external factors
can be incorporated into the sensing, for example tactic cues. The focus here will be
on the influence of the ECM.

The model is formulated and solved in the form of a transport equation in which
continuous cell distributions of varying velocities are tracked in space. Reorientations
between velocities are selected according to a turning function/probability distribution
depending on the environmental variables. In cell movement, this approach has been
extensively utilised to model chemotaxis (e.g. see [26,47]). The continuous trans-
port equation approach adopts a middle ground between microscopic/discrete cell
approaches and a truly macroscopic representation: while the model is formulated
using a microscopic description for cell motion, the outputs are macroscopic proper-
ties such as cellular densities and matrix distributions. This has led to their description
as “mesoscopic” in the literature [27]. Furthermore, the continuous nature of the equa-
tions offers a greater degree of analytical tractability than a discrete approach.

2.1 General model

We consider the motion of an individual cell in some space Ω to follow a velocity-
jump process [47], that is, cells move by smooth running interrupted at discrete times
by an instantaneous reorientation. In general, the choice of a new velocity and the
average runtime between reorientations will depend on environmental factors. The
velocity-jump process is formulated as follows

c(x, v, t)t + ∇ · vc(x, v, t) = −µc(x, v, t)+ µ

∫

V

T (v, v′)c(x, v′, t) dv′

m(x, φ, t)t = −∇Jm + f (c,m)

In the first equation above, c(x, v, t) can be interpreted either as the probability distri-
bution for a cell to be at position x and velocity v at time t or, if it is assumed that there
are no direct cell–cell interactions, as the density of cells at position x with velocity v.
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The first term on the right hand side describes turning of cells away from velocity
v with a turning rate µ (1/mean run-time) that may depend on the environmental
factors. The integral term calculates the rate at which cells reorient into velocity v
given previous velocity v′, summed over an appropriate velocity space V . The func-
tion T (v, v′) defines a probability distribution for a cell with previous velocity v′ to
choose new velocity v. Clearly cell conservation dictates that

∫

V

T (v, v′) dv′ = 1.

Notice that the above excludes cellular kinetics to focus on movement.
The second equation above encodes the dynamics for the environmental variables: in

the application considered here this should include, at the very least, a representation
for the extracellular matrix. Additional factors, such as secreted chemical factors,
may be included as appropriate. Jm describes flux terms while f (c,m) describes the
kinetics.

2.2 Simplified model

The above model has been posed in general form to illustrate the transport equation
approach. It can be applied to describe different types of cell movement through the
specific choices for turning rates, turning functions and environmental variables. Direct
numerical exploration is challenging: simulation in 2D will alone require discretisation
of a four-dimensional space since cell densities are tracked in both space and velocity.

To develop a model in a manner more amenable to numerical analysis, a number
of simplifying assumptions are made. First, we restrict cell migration to a two-
dimensional rectangular domain. Although cell migration in vivo is, obviously, a
three-dimensional process, it is believed that the restriction to 2D will admit cru-
cial insight. Second, it is assumed that the velocity of a cell between reorientations at
times t j and t j+1 is given by

v = s(m)(cos θ(t j ), sin θ(t j ))

where s(m) is the instantaneous cell speed and θ(t j ) ∈ (−π, π ] is its orientation, cho-
sen at the time of the previous reorientation. The above implicitly assumes that cell
direction remains fixed between sensing whilst the speed varies continuously accor-
ding to the environment. For the majority of this paper an even simpler case will be
considered in which s(m) = s0. These approximations reduce the dimensionality by
allowing cell distribution to be tracked in space and angle only. A further restriction
is that the runtime between reorientations is presumed independent of environmen-
tal variables, although more realistically this should also depend on the matrix: for
example, if cells encounter a large obstacle, they may be forced to reorient.

As described earlier, the ECM in vivo comprises a multitude of proteins and polysa-
chharides organised into a highly structured meshwork. In collagenous matrix, such as
the dermis, these may form long fibres up to several 100 µms in length. We represent
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the matrix in the model by condensing it into a single generic variable m(x, φ, t)
representing a fibrous ECM in which the matrix at each point in space is recorded as a
distribution of fibres of varying orientation. Fibres are assumed not to have a specific
polarity (i.e. there is no “up” or “down” a matrix fibre) and thus the angular distribution
for matrix varies between −π and 0. At present, no further environmental variables
are considered. In vivo, the situation is more complex. For example, interactions bet-
ween cells and the matrix are mediated by a variety of secreted and membrane bound
molecules, such as proteolytic enzymes, while guidance cues including chemotactic
and haptotactic factors also play a role in cell orientation.

For simplicity, it is assumed that the cell action on the matrix is local, that is we take
Jm = 0. This can be partially justified if the major contribution to remodelling is via
pericellular proteolysis whereby enzyme action is mediated at the cell membrane [41].
However, it is clearly a simplification of the true situation where cells can both secrete
diffusible enzymes which act over a longer range and alter the matrix nonlocally
through mechanical forces. As above, the simplification here is intended to limit the
model to a manageable form and understand how interactions between cell guidance
by the matrix and matrix remodelling by the cells shape cell movement pathways.
Clearly, a focus for future modelling work should be a more realistic representation
of the nonlocal interactions between cells and the matrix.

Under the various assumptions above, the equations are reduced to

c(x, θ, t)t + ∇ · vc(x, θ, t) = −µc(x, θ, t)+ µ

π∫

−π
T (θ, θ ′)c(x, θ ′, t) dθ ′, (1)

m(x, φ, t)t = f (c,m). (2)

where c(x, θ, t) describes the density of cells with orientation θ ∈ (−π, π ] and
m(x, φ, t) describes the distribution of matrix fibres for φ ∈ (−π, 0]. It is assu-
med that cells are restricted to a 2D rectangular domain Ω = [0, Lx ] × [0, L y] with
periodic boundary conditions, except where stated. Note that cell conservation now
requires

π∫

−π
T (θ, θ ′) dθ ′ = 1.

2.3 Numerical methods

A detailed investigation into the numerical scheme will be presented separately and
we confine ourselves here to a brief summary of the method invoked. In the numeri-
cal simulations that follow, a Method of Lines approach is used to solve the generic
equations (1–2) in which spatial and angular terms are initially discretised to yield
a large system of time-dependent ODEs (the MOL-ODEs). Spatial terms comprise
of an advective term representing cell movement and are approximated in conser-
vative form using a finite volume method. To ensure reasonable spatial accuracy, the
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Table 1 List of functions and
their interpretations employed
in data representation

Notation/definition Interpretation

c = ∫ π
−π c(x, θ, t)dθ Macroscopic cell density

m = ∫ 0
−π m(x, φ, t)dφ Macroscopic matrix density

Θ = arg −→c (x, t) Dominant local cell orientation

Φ = arg −→m (x, t) Dominant local matrix orientation

cL = ‖−→c (x, t)‖ Strength of local cell alignment

mL = ‖−→m (x, t)‖ Strength of local matrix alignment

discretisation of the advective term utilises a third-order upwinding scheme augmented
with a flux-limiting scheme to ensure positivity of solutions. Angular terms comprise
of an integral term (representing cell-turning) which is approximated by discretisation
in angle and employing a trapezoidal scheme. Integration in time of the MOL-ODE
systems has been performed using both explicit and implicit schemes. The explicit
scheme (forward euler) is capable of handling the large system of equations genera-
ted by the spatial/angular discretisation yet necessitates a small time step for stable
and accurate solution. To provide an efficient and robust scheme capable of solving
what may, in general, be stiff systems of equations we have also used the ROWMAP
stiff systems integrator [57]. Similar approaches to those described above have been
developed in other models of cell movement (e.g. see [23]). Tests using the two time
iteration methods yield equivalent results and simulations have been performed across
a range of discretisation steps.

2.4 Representation of the data

Despite the number of simplifying assumptions, Eqs. (1)–(2) are capable of producing
a vast amount of data, including cell/matrix density distributions in 2D space, angle
and time. To portray this information, we define the following “observables”, listed in
Table 1.

− Macroscopic cell/matrix densities, the total density at x summed across all
cell/matrix orientations. For the cells,

c(x, t) =
π∫

−π
c(x, θ, t) dθ

with a similar definition for the matrix.
− Cell/matrix alignment, a measure of the direction and strength of cell/matrix ali-

gnment at x. For the cells, this is computed as the vector

−→c (x, t) =
π∫

−π
(c(x, θ, t) cos θ, c(x, θ, t) sin θ) dθ. (3)
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The above is represented graphically by plotting its argument, Θ(x, t)(∈ (−π, π ]),
and magnitude, cL(x, t) = ‖−→c ‖. This process, while providing information on the net
movement of the population, inevitably oversimplifies the characteristic cell movement
patterns. For example, for symmetric cell distributions (e.g. cells migrating uniformly
in all directions or equal cell densities migrating in opposite directions) we must have−→c = 0. In any such cases, an alternative measure will be employed to indicate the
dominant orientations of the cells.

For the matrix alignment a similar quantity −→m (x, t) is obtained, modified to take the
bidirectional nature of the fibres into account (i.e. their distribution lies only between
−π and 0). First, we rescale by introducing the variable α = 2φ + π and calculate

π∫

−π
(m(x, α, t) cosα,m(x, α, t) sin α) dα.

The above quantity yields a vector with argument A(x, t) lying in (−π, π ] due to the
rescaling of φ. To obtain the vector with the appropriate argument between −π and
0 we perform the reverse scaling using A = 2Φ + π to obtain the matrix alignment
vector −→m (x, t) = mL(cosΦ, sinΦ).

To demonstrate the general suitability of this measure, we consider the two matrix
distributions in Fig. 2b and c. The matrix in (b) is randomly distributed in (−π, 0],
normalised such that m = 1. The dominant matrix orientation is determined to beΦ =
−3.04 radians, although for different sets of random initial data this varies uniformly
in (−π, 0]. The strength of matrix alignment mL is small (O(10−3)), indicative that
all matrix orientations are almost equally represented. For the matrix distribution in
(c), the macroscopic matrix density is the same as above, m = 1, however now the
orientation of the fibres is such thatΦ = −π/4 while mL is large (≈0.8), representing
a highly aligned matrix.

3 Rules for “amoeboid” migration

3.1 Model formulation

Amoeboid migration is carried out by hematopoietic stem cells [17], T-cells [59]
and certain cancer cells [56]. Migrating amoeboid cells can squeeze through small
holes in the matrix, thereby dispensing of the need to degrade it by proteolysis [59]:
experimental studies indicates the matrix is only transiently distorted as cells squeeze
through it and the ECM rapidly returns to its previous state. The brief contact between
the ECM and cells permits rapid cell movement (2–30 µm/min) and cells demonstrate
frequent turns, in part due to their need to circumnavigate large obstacles in the matrix
(i.e. where they are unable to squeeze through).

From the perspective here, amoeboid-style migration offers the opportunity to study
how the ECM can dictate global cell migration pathways: the “amoeboid-type” cells
we describe in the model are assumed to actively respond to the matrix through their
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(a) Contact guidance

(b)

(c)

Fig. 2 a Schematic illustrating the modelling of contact guidance. The fractions give the probabilities
of migrating in each of the indicated directions for the underlying matrix, based on Eq. (4) with b = 1.
b, c The two types of local angular distribution of matrix fibres employed in the amoeboid model simulations.
In c the dominant local matrix orientation is −π/4

tendency to follow fibres (i.e. contact guidance), but do not fundamentally alter its
structure. The model is based on the following set of assumptions:

(A1) negligible matrix remodelling,
(A2) frequent turning and high cell speeds,
(A3) contact guided migration along fibres.

(A1) implies that matrix dynamics can be ignored and therefore the ECM is prescribed
through its initial distribution. (A2) dictates the parameters for the cell speed and
turning rate in the transport models: default values for these parameters are listed
in Table 2. In the initial study it is assumed for simplicity that cells move with a
constant speed s0 and hence the velocity for cells migrating in direction θ is given
by v = s0(cos θ, sin θ)—more realistically the speed will be a function of the matrix
(e.g. see [22,50]).

(A3) dictates the choice of probability distribution for selecting a new cell direction
and, to model contact guidance, it is assumed that cells bias their direction according
to the local distribution of m (see Fig. 2a):

T (θ, θ ′) =

⎧⎪⎪⎨
⎪⎪⎩

1 − b

2π
+ b

m(θ)

2m
if θ ∈ (−π, 0]

1 − b

2π
+ b

m(θ − π)

2m
if θ ∈ (0, π ]

(4)

The above takes into account that fibres are bi-directional and cells are unable to
resolve between “up” and “down” a fibre. b ∈ [0, 1] is a parameter reflecting the
degree to which random effects and contact guidance bias the choice of direction. A
straightforward calculation shows that the above satisfies the cell conservation condi-
tion, i.e.

∫ π
−π T dθ = 1. The above, with the simple addition of the random component,

is based on the assumptions in [27]. This relatively simple model for contact guidance
is based on phenomological grounds, rather than a precise mechanistic/biochemical
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Table 2 Default values for the main model parameters

Parameter Interpretation Amoeboid Mesenchymal

s0 Mean speed (µm/min) 10.0a 0.5a

µ Turning rate (/min) 1.0c 0.05b

b Contact guidance strength 1e 1e

δ Matrix remodelling rate n/ad 0.1e

a From [21]
b From [55]
c A literature source for this value has not been determined, however studies of cell paths in [21] indicate
a short time
d Matrix degradation is assumed to be negligible for amoeboid migrating cells [59]
e Parameter values for “phenomological” parameters are undetermined—parameter sensitivity analysis will
be applied

basis, on the pretext of focusing on how interactions between cells and the matrix drive
global organisation. A more realistic model would entail incorporation of the effects
of mechanical forces and the biochemical pathways leading to cell–matrix coupling.

Further factors that influence cell guidance are neglected at present. For example,
it is known that many migrating cells show orientational persistence as a result of a
polarisation process that generates a cell leading edge [34]. While it is possible to
extend the modelling to integrate persistence—for example by adapting the functional
form in Eq. (4) to include appropriate dependence on the prior direction θ ′—an explicit
incorporation would introduce further parameters and increase the complexity of the
model. Therefore, at present, any persistence of the cells has been absorbed into the
mean run-time parameter. Preliminary simulations indicate that a specific functional
representation of persistence does not yield greatly different qualitative behaviour,
although a more detailed exploration needs to be conducted. On the same grounds,
we exclude the role of chemical signals such as chemotactic or haptotactic cues; the
model system can therefore perhaps be most closely compared to an in vitro system
in which cells migrate in a controlled collagen gel assay.

In summary, for the amoeboid model we solve Eqs. (1)–(2) with turning function
(4) and zero matrix dynamics, f = 0 in (2). The transport equation is given by

c(x, θ, t)t + s0∇ · c(x, θ, t)(cos θ, sin θ)

= −µc(x, θ, t)+ µ

π∫

−π
T (θ, θ ′)c(x, θ ′, t) dθ ′ (5)

with a prescribed matrix distribution m(x, φ, 0). Except where stated, parameters are
selected from the “amoeboid” column in Table 2. Clearly, initial conditions for the
matrix may play a huge role on the cellular dynamics and we expand on this in the
following section.
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3.2 Cell guidance under varying ECM architecture

3.2.1 Initial matrix distribution

The structure of the ECM varies considerably within a single tissue or from one tissue
to another. For cells exhibiting contact guidance, this may have considerable impact on
global movement patterns and this is investigated through simulation of the amoeboid
model. We consider the following generic forms:

(E1) an unaligned or random ECM, i.e. no dominant fibre orientation, see Fig. 3 (a1);
(E2) a globally aligned ECM, i.e. fibres predominantly oriented in a single direction,

Fig. 3 (b1);
(E3) mixed ECM (combinations of (E1) and (E2)) Fig. 3 c1, d1;
(E4) radially oriented ECM, Fig. 3e1.

All of the above matrix types are relevant to different tissues in vivo. Studies of extracel-
lular matrix during embryonic development shows a high degree of organisation: for
example, the globally aligned structure of the tail fin in fish [53,62] and the structure
of the ECM surrounding the neural crest [43]. In adults, the matrix surrounding the
antigen-processing domains inside Peyer’s patches (part of the lymphoid tissue) is
highly organised with matrix fibres radiating out from the centre [44]. Transitions bet-
ween different types of ECM occur in numerous examples. For example, ultrastructural
studies of articular cartilage reveal the matrix is organised into a layered structure: in
the outer (tangential) layer, matrix is highly aligned with the fibres running parallel to
the articular surface, in the intermediate layer the matrix has a more isotropic structure
with little alignment of the fibres whilst in the deeper matrix fibres are again aligned,
but this time orthogonally to the articular surface [29]. Highly varying ECM structure
can also be observed in sections of the dermal skin layer [54]. Dermal skin undergoes
changes during aging: while the matrix of younger dermal skin is relatively dense, the
number of crosslinks decreases with age [30] as it takes on an increasingly tortuous
nature.

To describe the various matrix types we must specify appropriate angular distribu-
tions of the fibres. We assume no spatial variation of the macroscopic matrix density,
normalised to m(x, 0) = 1, corresponding to a uniform matrix density. The distribution
of fibres at x is assumed to belong to one of the following types:

− a random local distribution, in which fibres are uniformly distributed in (−π, 0],
subject to a small angularly random perturbation (Fig. 2a);

− an aligned local distribution in which fibres are distributed with a Gaussian-type
curve centred on a predefined dominant local matrix orientation (Fig. 2b).

We plot the data to describe the various matrix types (E1)–(E4) in Fig. 3a2–e2. Repre-
sented in the plots are the dominant local matrix orientation (Φ), indicated by the line,
and the strength of matrix alignment (mL ), indicated by the grayscale.

Note that the generic phenotypes (E1)–(E4) may equally be represented with other
distributions: numerical simulations indicate that only the quantitative behaviour of
solutions is affected under such modifications. Situations where the matrix has a spe-
cific geometric structure can also be modelled by appropriate alteration of the local
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Fig. 3 Two-dimensional numerical simulations of the transport model for amoeboid migration. a1–e1
Schematic showing the matrix structure; a2–e2 matrix alignment. a3–e3 Cell alignment after 3 h simulation
time. a4–e4 Macroscopic cell density after 3 h simulation time. Numerical details: space scale 1 = 100 µm,
numerical simulations use a 50 × 50 discretisation over space and a 64 (32) point discretisation for the
cell (matrix) angle. A larger version of this figure, which shows more clearly the arrowheads in row 3, is
available in the supplementary material

fibre distribution, for example if the matrix comprises of an interlocking network of
orthogonally oriented fibres.

3.2.2 Numerical simulations

Equation (5) is solved numerically on a grid of size 500 × 500 µm2, subject to each
of the matrix types represented in Fig. 3. Except where stated, an initially uniform
distribution of cells across both space and orientation is assumed, i.e. c(x, θ, 0) =
1/2π (and hence c̄(x, 0) = 1). For these and the rest of the simulations in Sects. 3
and 4 we shall employ periodic boundary conditions. Parameter values are taken from
the default values listed in Table 2 and the equations are solved up until t = 3 h,
at which point solutions have evolved close to a steady-state distribution. The cell
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Fig. 4 Simulations illustrating isotropic/anisotropic spread of the cell population under matrix types (E1)
and (E2). a Initial macroscopic cell density (note that cells are uniformly distributed in orientation).
b Macroscopic cell density after 60 and 120 min for cells migrating in matrix type (E1). c Macrosco-
pic cell density after 60 and 120 min for cells migrating in matrix type (E2). Parameters/discretisation
details as in Fig. 3

density distributions are plotted in the bottom two rows of Fig. 3. Note that for the
cell alignment here we do not employ the measures of cell alignment derived from
Eq. (3): the bidirectional nature of the fibres results in symmetric cell distributions
with approximately equal densities of cells migrating in opposite directions. Thus the
vector (3) gives −→c ≈ 0 and hence limited information on the local cell alignment.
For this figure, we therefore instead calculate the arguments of the local maxima in
the cell distribution and plot these using the double arrowheads in Fig. 3, row 3.

With the random matrix (E1) there is no discernible change in the cell distribution
and they remain (subject to the small random perturbation of the matrix distribu-
tion) uniformly distributed in space and orientation (Fig. 3a3, a4). Cell movement for
(E1) is essentially an unbiased random walk, resulting in an isotropic diffusion pro-
cess at a macroscopic level: numerical simulations for a population of cells initially
concentrated in the centre of domain demonstrate uniform radial spread (Fig. 4b). For
a globally-oriented cell matrix (E2) the impact of contact guidance is demonstrated
through the alignment of cells to the underlying matrix (Fig. 3b3). With no spatial
variation of the matrix organisation, macroscopic cell densities c remain uniform
(Fig. 3 (b4)). Contact alignment here results in an anisotropic diffusion process at the
macroscopic level: radial spread of a population of cells shows enhanced movement
along the direction of fibre alignment, Fig. 4c.

In Fig. 3c and d data is plotted for two mixed matrix types. In Fig 3c, a strip of
oriented matrix (type (E2)) is positioned within a non-oriented matrix (type (E1)), with
fibres in the strip predominantly aligned parallel to it. Cells demonstrate a high degree
of orientation when positioned on the strip, as can be predicted from the above results.
Yet a difference now emerges in the macroscopic cell density c, which demonstrates
increased cellular density on the strip (c4). Intuitively, this arises through cells migra-
ting into the aligned region and becoming “trapped”. The significance of the ECM
arrangement is appreciated by considering the alternative matrix in which fibres in the
strip are predominantly aligned orthogonal to it, Fig. 3d. Cells that migrate onto the
strip are quickly transported across it, resulting in a lowering of the macroscopic cell
density, c, on the strip (d4). These two simulations indicate the capacity of an orga-
nised ECM to dictate cell patterning: the spatial organisation of the cells is strongly
influenced by the underlying ECM. A further test of this capacity is shown using the
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matrix type (E5) in which fibres are aligned radially. Simulations (Fig. 3e) indicate
that the cell population can be induced to colocalise at the centre of the grid solely
through the action of matrix fibril following, i.e. there is no necessity for an additional
orientational cue, such as a diffusible chemoattractant source.

Alterations in the cell speed, s0, and turning rate, µ, alter the timescale of patter-
ning and the quantitative distribution of cells, but do not impact on their qualitative
behaviour. Alterations in the value of b have a greater impact on the patterns: for
b = 0 there is no contact guidance of the cells and movement is isotropic diffusion.
Subsequently, no global organisation of the cell population occurs.

These simulations demonstrate the ability of a structured ECM to dictate and orga-
nise global cell movement patterns. Clearly, this may have important implications in,
for example, the coordinated movements of early embryonic populations, the migra-
tory pathways of immune cells or the directional spread of invasive tumours. The
latter will be studied in greater detail in Sect. 5 while the former is expanded on in the
discussion.

4 Rules for “mesenchymal” migration

4.1 Model rules

The simulations in Sect. 3 indicate a potentially crucial role of the ECM as a deter-
minant of cell organisation. The absence of matrix remodelling, however, means the
interaction is strictly one-way. The mesenchymal class of movement requires matrix
remodelling by the cells, thereby introducing feedback between cells and their envi-
ronment. In this section the modelling is extended to investigate the impact of this
coupling on macroscopic cell organisation. The following generic rules define the
model for “mesenchymal”-style migration:

(M1) contact guidance along matrix fibres,
(M2) slow cell speeds and infrequent turning,
(M3) extensive matrix remodelling.

The first two dictate the choice of cell movement turning functions and parameters:
contact guidance has been demonstrated for a variety of cell types that adopt mesenchy-
mal migration (e.g. [24]). To describe (M1) the same functional forms are employed
as in Sect. 3, namely the turning function (4) is assumed in Eq. 2. (M2) dictates speed
and turning rates: except where stated the default values listed in Table 2 are employed.
It is known that mesenchymal cells demonstrate a high degree of persistence in their
direction of movement, however, as stated earlier, specific functional representation
of this behaviour is not considered and its effect is absorbed into the mean turning
rate.

Matrix remodelling comprises multiple processes, including degradation of fibres
via proteolytic enzymes, the production and assembly of new matrix components
and the rearrangement of fibres through mechanical forces. Studies from migrating
carcinoma cells in 3D collagen gels have revealed the formation of “migration tracks”:
re-organised pathways along which the matrix fibres are aligned in the direction of
cell migration [20,41,60], see Fig. 1. The functional role of these paths is unknown,

123



526 K. J. Painter

however nearby cells have been observed to realign and move onto the trails, resulting
in the formation of moving “cell-chains” [20]. It is currently unclear as to whether
these are generated solely through the reshaping of the environment by the cells or
whether direct cell–cell interactions are also required (e.g. through filopodial contacts
or cell–cell adhesion). A use of the modelling here will be to study whether matrix
remodelling and contact guidance are sufficient for the formation of the cell-chains.

Degradation of the ECM occurs through the action of proteolytic enzymes, such as
MMPs, which can act in either a cell-localised or cell-nonlocalised manner. In the for-
mer, proteolytic enzymes are recruited to the membrane at the cell leading edge [41],
thereby focusing proteolysis to the fore of the cell. In the latter, proteolytic enzymes are
secreted into the environment as diffusible molecules, resulting in unfocused ECM
destruction. The synthesis and assembly of new matrix components is essential in
embryonic growth, maintaining the structure of healthy tissue and repairing wounded
tissue. Matrix components are secreted into the extracellular space as individual colla-
gen proteins by cells such as fibroblasts, where they assemble to form the long fibrils
that characterise much of the ECM. Although it is possible for the individual collagen
proteins to self organise into collagen fibres, cells themselves may play a significant
role in their assembly (see [25]).

Clearly, matrix remodelling is highly complex and the precise mechanisms involved
will depend on both the cell type and the physiological context. Here, on the grounds
of keeping the modelling both manageable and generic, three relatively simple sets of
matrix dynamics are considered.

(R1) involves degradation of the matrix as a cell clears matrix fibres ahead of its
migration path.

(R2) results in a constant macroscopic matrix density, but with locally realigned
matrix fibres. This may be interpreted either as a process in which degraded
matrix components are recycled and reincorporated into the matrix or as one in
which cells rearrange the fibres through mechanical forces as they pass through
it.

(R3) incorporates both matrix degradation and new matrix assembly and assumes
these are independent. Cells are assumed to actively secrete matrix compo-
nents and assemble them along their migration path. The dynamical diffe-
rence to case (R2) is that the macroscopic matrix density will be altered as the
cells pass through it according to the relative rates of matrix production and
degradation.

4.1.1 Case R1

To set up appropriate equations to describe (R1), the remodelling forms proposed in
[27] are adapted. To illustrate this, consider the proteolytic action of a single cell as it
migrates through the matrix. Rather than introduce extra complexity by incorporating
additional variables, for example proteolytic enzymes, degradation is assumed to act
at the cell surface only and its action on the matrix is described phenomenologically.
This assumption can be justified on the grounds that proteolytic enzymes are recruited
to specific sites at the cell membrane. For a single cell, moving in direction θ and at
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position x, the degradation rate of fibres with orientation φ is taken to be

− δ (1 − ψ |cos(θ − φ)|) . (6)

The matrix degradation parameter δ in vivo/vitro will depend on cell type, reaction
rates in the degradation pathway, proteolytic enzyme concentrations etc, however
here we simply take it to be constant. For varying ψ ∈ [0, 1] the above models either
focussed or unfocussed proteolytic degradation. The former assumes that degrading
proteins are recruited to the front of the cell. As such, cells are more likely to encounter
and degrade those fibres orthogonal to their path, thus we set ψ > 0. For unfocussed
proteolysis it is assumed cells have equal action on all matrix orientations.

To compute the overall degradation of the matrix, we sum over all cell orientations
to derive type (R1) matrix dynamics:

m(x, φ, t)t = −δ
⎛
⎝

π∫

−π
(1 − ψ |cos(θ − φ)|) c(x, θ, t) dθ

⎞
⎠ m(x, φ, t). (R1)

Note that the above takes into account that cells migrating in opposite directions will
have equivalent proteolytic action on the matrix.

4.1.2 Case R2

For (R2) matrix is remodelled but without alteration of the macroscopic density:
as mentioned above, this may be interpreted either as a process in which fibres are
redistributed during cell migration (for example, as a result of mechanical forces
exerted by the cells on the matrix) or as a process in which the matrix components
are recycled and reincorporated into the matrix. To derive the matrix dynamics, we
consider the latter. Considering the modelling of proteolytic degradation above and
integrating over all matrix directions, the sum total of matrix degraded at x will be

δσ = δ

0∫

−π

⎛
⎝

π∫

−π
(1 − ψ |cos(θ − φ)|) c(x, θ, t) dθ

⎞
⎠ m(x, φ, t) dφ

To preserve the macroscopic matrix concentration, this matrix is reincorporated accor-
ding to the existing matrix distribution. This leads to the type (R2) matrix dynamics:

m(x, φ, t)t = δ

⎛
⎝σ −

π∫

−π
(1 − ψ |cos(θ − φ)|) c(x, θ, t) dθ

⎞
⎠ m(x, φ, y) (R2)

Note that this second form, coupled with the cell equation, is equivalent to that proposed
in [27].
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4.1.3 Case R3

For the final form of matrix dynamics, it is assumed cells both degrade, produce and
play an active role in assembling the matrix fibres as they migrate. Although matrix
components such as collagen are capable of self-organising into fibres, in vivo the
matrix proteins are generated intracellularly, transported to secretary sites localised to
particular regions (e.g. the poles) of the cell surface and discharged into cell-controlled
extracellular compartments where they are assembled into matrix fibres [1,25]. The
high level of regulation by the cell over this process allows matrix to be assembled in
a controlled manner, for example, resulting in the construction of fibres along the path
of cell migration.

We incorporate both matrix production and degradation into the model; here, these
two processes are assumed to be independent, but in vivo they may well be linked
internally or externally. Either way, the macroscopic matrix density may shift. Assu-
ming that cells assemble the matrix fibres along their path then, coupled with the above
modelling of proteolysis, we derive the following type (R3) dynamics:

m(x, φ)t = δ (γ (c(x, φ, t)+ c(x, φ + π, t))

−
⎛
⎝

π∫

−π
(1 − ψ |cos(θ − φ)|) c(x, θ, t) dθ

⎞
⎠ m(x, φ)

⎞
⎠. (R3)

The above takes the bi-directional nature of the matrix into account through the
assumption that matrix production depends on the sum c(x, φ, t)+ c(x, φ + π, t).

4.2 Numerics

The simulations from the amoeboid-style model in Fig. 3 indicated that the ECM may
play a significant role on the global organisation of motile cell populations through
their tendency to follow matrix fibres. In the “mesenchymal-style” model, active feed-
back between cell movement and matrix remodelling takes place. In this section, the
impact of this feedback is investigated by simulating the transport model for the cells,
Eq. (1) with turning function (4) under the various forms for matrix dynamics given by
(R1)–(R3).

4.2.1 Matrix dynamics

We first address how the different types of matrix dynamics (R1)–(R3) impact on its
rearrangement. A population of cells migrating with fixed direction (i.e. µ = 0)
is placed in an initially nonoriented/random matrix (type (E1)). The initial loca-
tion, final location and direction of cell movement is indicated in Fig. 5a. Figure 5b
shows the alteration of the ECM under the various matrix dynamics for the following
cases:

1. (R1) focussed degradation, ψ = 1 (Fig. 5b1);
2. (R1) unfocussed degradation, ψ = 0 (Fig. 5b2);
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Fig. 5 Numerical solutions to explore ECM remodelling. a Macroscopic cell density at t = 0 and t = 10 h.
Cell population orientation indicated by arrow. b1–b5 Distribution of matrix after 10 h for each of cases
1.-5. in Sect. 4.2.1. Top row Ψ (indicated by line orientation) and mL (indicated by grayscale). Bottom
row m. Numerical simulations employ parameter values as given in Table 2 (Mesenchymal column) except
µ = 0. Domain size = 200 × 500 µm2 using 40 × 100 spatial and 64 angular discretisation points. Scale
1 = 100 µm

3. (R2) focussed remodelling, ψ = 1 (Fig. 5b3);
4. (R3) focussed degradation with high matrix production, γ = 5.0, ψ = 0.75

(Fig. 5b4);
5. (R3) focussed degradation with low matrix production, γ = 0.5, ψ = 0.75

(Fig. 5b5).

Other model parameters are taken at the default values listed in the “mesenchymal”
column of Table 2.

For 1. matrix degradation occurs, but those fibres parallel to the cell migration path
are left intact. The outcome is a trail of realigned matrix with lowered macroscopic
matrix density (Fig. 5b1). A degree of realignment occurs for all values ψ > 0,
however when ψ = 0 (case 2), corresponding to unfocussed degradation, all fibre
orientations are altered equally resulting in a trail of almost completely cleared (yet
unoriented) matrix (Fig. 5b2).

For 3. we expect a constant macroscopic matrix density following redistribution
of the matrix fibres. This is confirmed in simulations (Fig. 5b3) whilst the matrix is
redistributed such that it becomes aligned in the direction of cell movement. For 4.
and 5., the amount of new matrix is independent of the amount degraded, resulting in a
shift of the macroscopic matrix density following cell movement. The size of the shift
will depend on the sizes of the parameters γ , δ, etc.: in cases 4. and 5. (Fig. 5b4, b5)
respectively an increase/decrease of the macroscopic matrix density is observed. The
twin actions of focussed proteolytic action and assembly along the cell path results in
an aligned matrix.
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4.2.2 Contact guidance and ECM remodelling

In this section the coupling between ECM remodelling and contact guided migration
on the macroscopic cellular and matrix distributions is explored. For the rest of this
section we restrict attention to matrix dynamics (R2) and (R3) since under (R1) matrix
is destroyed to negligible levels. Evolution of the model is considered from an almost
homogeneous initial distribution: cells are set at a small random perturbation about
1/2π , normalised such that the macroscopic cell density c = 1, while the matrix is
set at type (E1) (i.e. random/unoriented).

The numerical simulations of the model are shown in Fig. 6 (Movies showing
the evolution of the cells and matrix can be found in the supplementary material).
Simulations illustrate a process of macroscopic pattern formation during which cells
become organised into long chains/networks underlain by pathways of aligned ECM.
The mean length of the paths is significantly longer than the mean run length of the cells
(defined as the speed/turning rate): for example, in the simulation displayed in Fig. 6,
paths on the order of several hundred micrometers are visible, as opposed to a mean
run length of 10 µm. An examination of the cell and matrix distributions at selected
spatial points reveals additional information (Fig. 7). For a dense cell chain, location 1
in Fig. 6, the matrix is highly aligned in the direction of the cell path (Fig. 7a, circles).
The corresponding cell distribution reveals high cell densities moving in opposite
directions along this path (Fig. 7b, circles). On a lower density cell chain, location 2 in
Fig. 6, the matrix is less strongly aligned along the cell path (Fig. 7a, triangles) and the
corresponding cell distribution shows a much lower number of cells (Fig. 7b). Away
from the cell chains, location 3 in Fig. 6, the matrix is relatively unaligned and there
is a very low cell density (Fig. 7, stars). An extended simulation run time indicates
these patterns persist: there is little difference between the patterns plotted after the
first day and the patterns after 10 days (data not shown).

Further studies indicate that the twin actions of contact guidance and the reali-
gnment of the ECM by the cells are responsible for the formation of the networks:
solutions when either b = 0 (zero contact guidance) orψ = 0 (no matrix realignment)
fail to generate patterns and the cell/matrix distributions evolve to uniform distribu-
tions. Intermediate values of b and ψ allow networks to form, however these develop
on a slower timescale. Simulations using different matrix dynamics (type (R3)) also
indicates the possibility of chain formation, see Fig. 8, thus indicating that patterning
is not specific to a particular choice of kinetics. A detailed study into the conditions
under which cell chain formation is possible will be undertaken in future work, howe-
ver the investigations reported here indicates the realignment of the matrix fibres in
the path of cell migration is essential.

The simulations from the model suggest that the twin actions of matrix remodel-
ling and contact guidance are sufficient for the generation of the network—there is no
necessity for additional cell–cell interactions such as adhesion or filopodial contacts
(although these may clearly play a further role in practice—note that a model incor-
porating the role of an aligned matrix, cell–cell interactions and chemotaxis has been
developed in [8]). The functional significance of the chains is unclear, yet as mentioned
earlier they have been observed in both neural crest cell migration and in cancerous
cell populations [20,33,31] and the creation of specific migration routes may allow
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Fig. 6 Evolution of the transport model with (R2) matrix dynamics for focussed proteolysis (ψ = 1) and
contact guidance (b = 1). Top two rows Macroscopic cell density c, Third row dominant cell orientation,
Θ (green arrow) and strength of alignment cL (grayscale). Fourth row Dominant matrix orientation, Φ
(green line) and strength of alignment mL (grayscale). Other parameters taken from Table 2 (mesenchymal
column). Discretisation: 100 × 100 space and 64 angle points. Length scale 1 = 100 µm

more efficient shuttling of certain cell types. For example, the radial organisation
of the matrix surrounding Peyer’s patches in lymphoid tissues is consistent with the
pathways of immune cells, however it is not clear the extent to which it is the cells
themselves that have organised this matrix. The structure of the remodelled ECM
displays a certain similarity to the ECM in vivo in tissues such as the dermis, where
collagen fibres show a degree of local spatial organisation and structure with bundling
and local alignment of the fibres [30]. Note that in the simulations here, the absence
of specific guidance cues (for example, chemoattractants) results in a fairly random
network structure.
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Fig. 7 Angular distributions of a matrix and b cells after t = 24 h for the labelled positions 1, 2 and 3 in
Fig. 6

Fig. 8 Demonstrate of chain formation using (R3) matrix kinetics. Solutions plotted after 24 h for para-
meters in Table 2 together with ψ = 0.75 and γ = 0.5. Length scale and discretisation details as in
Fig. 6

4.2.3 Parameter sensitivity analysis

We tested the role of model parameters on the pattern forming capabilities of the model.
As mentioned above, both focussed proteolysis and contact guidance are essential for
the formation of the patterns (determined by setting either b or ψ = 0). We now
investigate the effect of parameters s0, µ and δ by considering a variation over two
orders of magnitude range centred on the values in Table 2. Matrix dynamics are
modelled using (R2) and we set ψ = 1. Alterations of either the speed, s0, or the
turning rate, µ, change properties of the moving cells and have a large impact on
the structure of the trails (Fig. 9). The effect of these two parameters can be linked
together by considering the mean run length = speed/turning rate, corresponding to
the average cell path length between reorientation. For a low mean run length (i.e.
low cell speeds or high turning rates), chains are extremely short and the underlying
ECM evolves with a high degree of spatial variation in its dominant orientation. As
the mean run length increases, longer trails develop and the underlying ECM shows a
greater degree of global organisation (i.e. the dominant local orientation of the matrix
persists over a wide region of space). Increasing the mean run length further results in
disappearance of chain formation and the ECM becomes globally oriented. Analytical
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Fig. 9 Results from the parameter sensitivity analysis for alterations in the cell speed s0 across two orders
of magnitude. From left to right, s0 = 0.05, 0.25, 1.0 and 5.0. Top row Macroscopic cell density (c).
Bottom row Matrix alignment (lineΦ, grayscale mL ). Other parameters and discretisation data as in Fig. 6.
A similar set of results is obtained if the turning rate is appropriately altered

investigations will be needed to further explore the relationship between the model
parameters and the macroscopic patterning of the cells and matrix.

The parameter δ alters only the timescale of patterning: i.e. a small δ value cor-
responds to slow reorganisation of the matrix, and consequently slow formation of
the chain patterns. A similar effect is observed on altering the initial macroscopic cell
density: lower cellular densities still form patterns, but the development takes place
over a longer timescale.

5 Application to tumour invasion

The acquired ability of tumour cells to break free from a tumour and invade surrounding
tissue is a key event in its transformation to malignancy [37]. Invasion can occur in
either an individual (amoeboid or mesenchymal) or collective manner [19] according
to cancer type and origin and can result in complex and heterogeneous patterns of
invasion, for example “fingering” patterns (strands of cells extending out from the main
tumour mass), “nesting”, cell-chains or individual isolated cells. Enormous effort has
been invested into understanding the interplay between the invading cancer cells and
the host tissue (e.g. see [37]), research that has spawned a large number of mathematical
models for cancer invasion (for a review, see [4]).

A number of these models (e.g. [3,7,36,49,50]) have focussed on the role played
by the ECM in providing a substrate for the binding of adhesive molecules and cell
movement. Tumour cells follow gradients in these molecules (a process known as hap-
totaxis) and the modelling has provided critical information into, for example, the effect
of matrix density on the rate of cancer invasion. The precise organisation/architecture
of the ECM and its impact has generally been neglected in models for cancer invasion.
Here, an exploration of this issue is initiated.
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The model is formulated in a simple and generic way (i.e. there is no specific
tumour/tissue environment), although an inherent assumption is that migration takes
place via one of the individual migration strategies (amoeboid/mesenchymal) des-
cribed earlier. Where applicable, type (R2) matrix dynamics are assumed, thereby
assuring a constant macroscopic matrix density. Of course, in reality both the matrix
alignment and density may undergo significant change, according to tissue and cancer
origin, with a correspondingly large impact on tumour infiltration. The assumption of
(R2) dynamics allows attention to be focussed solely on the role of matrix alignment.
Future extensions of the model will incorporate additional factors such as the impact
of matrix density, adhesion receptors bound to the ECM etc.

In the modelling that follows the set-up illustrated in Fig. 10a is considered. An
initially tumour free ECM region is assumed to be bordered on one side (x = 0) by
a compact solid tumour (x < 0). It is presumed that the tumour was previously non-
invasive, however from t = 0 a steady flow of tumour cells escapes the main tumour
mass and invades the surrounding ECM. An interpretation for this would be a mutation
arising in the main tumour mass leading to down-regulation in cell–cell adhesion and
subsequent escape into the ECM. To focus only on the invasion process, cell kinetics are
currently ignored—i.e. migrating cells do not proliferate. For the timeframe considered
in the numerical simulations, this is a reasonable approximation.

It is assumed that, as before, cells move through contact guidance and we therefore
simulate Eq. (1) with turning function (4). Rather than consider a single form for the
cell velocity, the following two cases are considered:

v(x, θ) = s0(cos θ, sin θ) or v(x, θ)=
⎧⎨
⎩

s0
m(x,θ)
m(x) (cos θ, sin θ) if θ ∈ (−π, 0]

s0
m(x,θ−π)

m(x) (cos θ, sin θ) if θ ∈ (0, π ]

which we term constant and alignment-dependent respectively. The latter form
assumes cell velocity increases with the strength of alignment. While this is somew-
hat speculative in nature, an intuitive explanation is that cells migrating in an aligned
matrix may need to spend less time circumnavigating obstacles or clearing the matrix.

The boundary conditions for the cells require special attention and are described as
follows. Along the left and right boundaries we consider periodic boundary conditions.
To model the invasion process we assume that along x = 0 there is a positive flux of
upward-moving invasive cells crossing into the ECM region. This flux is assumed to
be uniform across the tumour-ECM border. Cells moving downwards across x = 0
are assumed to be deflected due to the presence of the solid tumour, and reverse their
migratory direction. Along x = Lx we assume that any cells moving upwards “escape”
and do not re-enter (i.e. there is a flux out of the domain resulting from cells moving
“upwards” across x = Lx ) and zero-flux “downwards” across x = Lx .

5.1 Amoeboid/negligible-ECM remodelling

In the first set of simulations it is assumed cell movement is of “amoeboid”-style,
i.e. contact-guided migration occurs but without any ECM remodelling. The focus is
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Fig. 10 a Schematic showing the set-up in the model for tumour invasion. b The four underlying ECM
types. c Simulation result showing the macroscopic cell density for amoeboid migration following 8 h of
simulation time for constant cell speed s0 = 2.5 µm/min and µ = 1.0/min on a spatial grid of dimensions
250 × 150 µm2

on how the structure of the matrix alters the pattern of invasive spread. To this end,
the four-matrix types displayed in Fig. 10b are considered: a random matrix with no
dominant alignment, a globally oriented ECM aligned parallel to the tumour-ECM
boundary, a globally oriented ECM aligned orthogonal to the tumour-ECM boundary
and a mixed scenario.

Figure 10c displays the results of the numerics following 8 h using the constant
velocity (with s0 = 2.5 µm/min and µ = 1.0/min). As can clearly be seen from the
numerics, the structure of the ECM may have a significant effect on the infiltration
rate into healthy tissue: in relation to the “random” ECM, the “orthogonally”-oriented
ECM permits much faster invasion while the “parallel”-oriented ECM permits much
slower invasion. For more complicated ECM structures, such as the “mixed” type
represented in Fig. 10b, the invasion pattern may be complex with a heterogeneous
pattern of tissue invasion. This suggests that invasive tumours originating in highly
structured matrix may show a complex pattern of infiltration. This is expanded on
further in Sect. 5.3.

5.2 Mesenchymal/ECM remodelling

Reorganisation of the ECM is now incorporated by assuming the invading cells adopt
a mesenchymal class of movement. As stressed above, the macroscopic matrix density
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Fig. 11 Tumour invasion with ECM remodelling. Top row Macroscopic cell density (m), bottom row
strength of matrix alignment (mL ). a Constant cell speed with s0 = 0.5 µm/min and µ = 0.05/min.
b Alignment-dependent cell speed with s0 = 1.0 µm/min. Equations solved on a spatial grid of dimensions
250 × 150 µm2

is assumed constant (type (R2) dynamics with ψ = 1). For the simulations here, an
initially nonoriented/random ECM is considered (type (E1)). With a uniform rate of
invasion along the tumour-ECM border and a nonoriented ECM, the invasion rate is
almost uniform with y and 2D data is thus represented by plotting of the macrosco-
pic cell density (c) and strength of matrix alignment (mL ) as a function of x only
(representing the depth of invasion).

With the incorporation of matrix remodelling, the matrix remodelling rate δ becomes
a critical parameter. In Fig. 11a, invasion profiles are plotted for varying values of δ
and a constant cell migration speed following 8 h of simulation time. An increase in
δ results in only marginal increase in the degree of invasion (top row). However, the
matrix shows an increased level of alignment (with fibres aligned in the direction of
cell invasion) behind the invasion wavefront (bottom row).

Under an alignment-dependent cell speed, the extent of cell invasion is strongly
dependent on the matrix remodelling rate, Fig. 11b. With negligible matrix remodel-
ling, very little invasion takes place as cells remain “trapped” near the tumour-ECM
border. As δ is increased, however, the realignment of the matrix in the direction of cell
invasion results in a dramatic increase in the depth of invasion. The cell density profile
now has a compact wavefront with cells “stacking” at the tip of invasion. Intuitively,
the compact form of the tumour derives from invading cells migrating quickly across
the aligned ECM region before accumulating on reaching the unorganised ECM.

5.3 Invasion into a remodelled matrix

In the final simulation from this preliminary investigation, the effect of tumour invasion
into a previously remodelled matrix is considered. As mentioned earlier, the ECM
derived following mesenchymal movement displays a certain similarity to the structure
of ECM in vivo in tissues such as the dermis. A simulation is conducted to investigate
invasion into remodelled ECM derived from the simulation in Fig. 6. The numerical
results are displayed in Fig. 12 for (a) amoeboid, and (b) mesenchymal migration,
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Fig. 12 Tumour invasion into a previously remodelled ECM. a Amoeboid migration with s0 =
2.5 µm/min, µ = 1.0/min. b Mesenchymal migration with s0 = 0.5 µm/min, and µ = 0.05/min and
δ = 0.1. The initial matrix distribution was taken from Fig. 6 and as indicated by the top right plot.
Discretisation details as in Fig. 6

however a direct comparison between the two cases is somewhat redundant due to
different choices of parameters such as the cell speed. In both cases, a constant cell
velocity was considered.

The numerics for both types of invasion reveal a complex and spatially heteroge-
neous pattern of tumour infiltration. The aligned and spatially varying structure of the
matrix results in enhanced migration along specific pathways, yielding a macroscopic
fingering process. For amoeboid migration, no matrix remodelling occurs and there-
fore the matrix structure displayed after 24 h is the same as its initial distribution.
For mesenchymal migration, the matrix is remodelled, however only in a manner to
reinforce the existing orientational structure of the matrix.

These simulations serve to reinforce the notion that matrix structure and organisa-
tion may strongly impact on the type of tumour invasion. Complex patterns of tumour
invasion, for example “fingering” and cell-chain invasion may arise solely as a result
of the cell–matrix interactions.

6 Discussion

In this paper a continuous transport model has been developed to understand the role of
a structured extracellular matrix on the collective organisation of migrating cell popu-
lations. Continuous transport equations have frequently been described in the litera-
ture as “mesoscopic”: they provide a bridge between a truly “microscopic” approach
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in which each cell is modelled as a discrete/individual object with precise rules for
movement and a “macroscopic” model based on evolution equations for variables such
as the macroscopic cell/matrix densities in which movement is modelled in terms of
a total population flux. The transport model retains a microscopic description of cell
movement yet provides illumination on the dynamics of macroscopic variables. Wei-
ghed against these advantages, however, they are comparatively more taxing to solve
numerically or analytically than a macroscopic approach.

The model here can be solved in a multiscale manner: a discrete model may be
developed to describe the underlying velocity-jump model upon which the transport
equation is based and utilised in situations where the cell density is low or more com-
plex models for cell behaviour required. Preliminary simulations of a discrete formu-
lation of the model presented here indicates a close correspondence with the behaviour
of the continuous transport model. The continuous transport model may be used to
understand the dynamics of systems where the number of cells is unfeasibly large for
a discrete approach or when a greater understanding of the macroscopic properties of
the system are required. Through appropriate scaling of the length and time scales, it
is possible to derive a fully macroscopic model for the cell density to tackle large scale
biological processes [27]. An important area under current investigation is to deter-
mine whether the “cell-chain” behaviour reported here can also be observed in its
corresponding macroscopic model. The connection between microscopic/mesoscopic
models of movement and their macroscopic counterparts is an important area which
has received little rigorous treatment, although some work has been initiated for a
“space-jump” type model of movement [48,28].

In the “amoeboid” model simulations it was shown how the ECM structure can
organise cells, for example inducing colocalisation despite the non-directional nature
of the matrix fibres and the absence of other environmental cues (e.g. adhesion gra-
dients, chemotactic cues). These results echo experimental observations of motile cells
placed on micro-fabricated structures [61] and support the notion that the architec-
ture of the ECM may play an important role in the organisation of cell populations
during embryonic growth or facilitating movement during physiological processes.
Ultrastructural studies of the developing pectoral fin in fish indicates contact guidance
may play an important role directing cell movement [62,53]: a potential application of
the model here would be to test whether the ECM alone is capable of directing these
cell movement patterns, or if additional environmental cues (for example, chemoat-
tractants) are required. Contact guidance has also been suggested as playing a role in
the in vivo guidance of early embryonic neural crest cells [43] and in the guidance
of adult lymphocytes. Detailed studies of “Peyer’s-patches” in the mouse indicate a
radial pattern of ECM fibre alignment consistent with the migration pathways of lym-
phocyte cells in and out of the patch [44]. Clearly, contact guided migration may play
a role in facilitating the speed and guidance of the lymphocyte cells.

In the simulations of mesenchymal migration, we demonstrated the macroscopic
formation of networks or cell-chains: dense connected pathways of motile cells similar
to those reported in a number of in vitro and in vivo systems, including tumour cells
[20], neural crest cells [33] and glioma gel assays [32]. The modelling here indicates
that the twin actions of contact-guided migration along ECM fibres and an ECM
remodelling process in which fibres become aligned along the path of cell migration
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are sufficient conditions for this process to occur—thus it is not necessary for additional
interactions to take place, such as the formation of adhesive interactions between cells,
cell-contact through filopodial interactions or communication via chemoattractants,
although clearly all such processes may play a role in vivo examples of chain formation.
A clear area for future work would be analytical investigation into the conditions for
which network patterns arise and their structure. The resemblance of the remodelled
ECM to in vivo matrix in tissues such as the dermis indicate an ongoing process of
cellular migration (for example, as a result of normal tissue repair, immune systems
response) may result in gradual reorganisation of the skin.

One significant extension is to model dermal wound healing. In the early stages of
healing, fibroblasts migrate into the wounded region to regenerate the ECM through
secretion and assembly of collagen and other matrix components. Scarred tissue shows
a significantly greater degree of bundling and alignment of the fibres than normal
tissue, resulting in its different appearance and weaker nature. A variety of models
have been developed by Sherratt and others (e.g. [10–13,38,45,46]) to determine the
role of biological parameters on the form of the reconstituted matrix. The patterning
and the matrix structure from the mesenchymal simulations here echo their results:
for example, we demonstrated that the spatial scale of the “globally aligned regions”
(see Fig. 9) depended on cell parameters such as speed and turning rates. It would be
of interest to extend the modelling here to further compare the results to obtain new
insights into the mechanistic basis of wound healing.

The cell chain patterns presented here display a striking similarity to the network
of endothelial cells formed during “vasculogenesis”, the early embryonic formation
of the vasculature. Vasculogenesis is a multi-step process in which endothelial cells
first form a connected network structure through their response to chemical signals
(principally VEGF) and the surrounding ECM before undergoing tubularisation to
form the blood capillaries. A great deal of understanding of this process has derived
from in vitro models in which cells are cultivated in a “Matrigel” scaffold. A number of
mechanochemical models have been developed that incorporate the mechanical forces
between the endothelial cells and the surrounding matrix (for example, see the reviews
in Chapter 8 of [42] and [2] for more information). The model developed here suggests
that the twin actions of focussed proteolysis by the cells and contact guidance migration
may be sufficient in generating the early network patterns, however it is important to
note that the model here neglects the forces between the cells and the matrix that will
undoubtedly play a role in the patterning process. Omission of these details suited
the purposes of the current modelling, where a simpler and more phenomenological
model was desirable, however an important future extension of the model should be
a more realistic description for the mechanical forces acting between cells and the
matrix.

Preliminary simulations have been conducted to understand how the matrix orga-
nisation may impact on the rate and pattern of tumour invasion. Whilst the model
was purposefully kept simple in nature, it implied that the orientational structure of
the ECM could be a significant determinant on the rate and heterogeneity of tumour
invasion. Significantly, we demonstrated that invasion into a complex ECM environ-
ment could, through the simple action of matrix fibre following, give rise to complex
“fingering” types of tumour invasion. These results indicate that for highly structured
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connective tissues (such as the bone and dermis), clear understanding of the nature of
the matrix may assist in identifying pathways of invasion. Another potential applica-
tion for extension of the modelling lies in describing the growth pattern of gliomas.
The heterogeneous growth of these brain tumours are believed to stem from regional
variability in the environment [52]. For example, the rapid spread across the cor-
pus callosum has been attributed to the tendency of individual glioma cells to migrate
along the highly aligned white matter tracts [6]. Macroscopic models of glioma growth
have been formulated utilising an anisotropic diffusion tensor [9] derived from Dif-
fusion Tensor Imaging (DTI) data that indicates the white matter tract anatomy [51].
Significantly, the fully macroscopic models derived from an underlying description
of contact-guided cell migration along ECM fibres [27] comprise of a PDE equation
incorporating an anisotropic diffusion tensor based on the underlying extracellular
architecture. The modelling can thus potentially implicate a link between a guided
individual cell migration of cells along white matter fibre tracts and the global pat-
terns of glioma spread.

Incorporating remodelling of the matrix into the model demonstrated the impor-
tance of understanding how cell migration parameters (such as cell speed) depend on
the alignment structure of the matrix. Under reasonable assumptions for the cell speed,
large variations in the degree of invasion could be observed. Clearly, this latter work
may be extended in a number of manners. For example, a more precise incorporation
of the manner in which cells remodel the matrix, inclusion of long range proteolytic
enzymes, the role of adhesion molecules in the matrix and other chemical factors
should all be considered in the modelling. This will form part of future extensions of
the modelling.
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