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A b s t r a c t - - W e  study the singular limit of a class of reinforced random walks on a lattice for 
which a complete analysis of the existence and stability of solutions is possible. We show that at 
a sufficiently high total density, the global minimizer of a lattice 'energy' or Lyapunov functional 
corresponds to aggregation at one site. At lower wlues of the density the stable localized solution 
coexists with a stable spatially-uniform solution. Similar results apply in the continuum limit, where 
the singular limit leads to a nonlinear diffusion equation. Numerical simulations of the lattice walk 
show a complicated coarsening process leading to the final aggregation. (~) 2003 Elsevier Science 
Ltd. All rights reserved. 

K e y w o r d s - - A g g r e g a t i o n ,  Lattice walks, Forward-backward parabolic, Coarsening process. 

1. I N T R O D U C T I O N  

M o v e m e n t  is a f u n d a m e n t a l  process  for a lmos t  all biological  o rganisms ,  rang ing  f rom t h e  single 

cell level  to  t h e  p o p u l a t i o n  level,  and  two m a j o r  classes of  models  a re  wide ly  used to  descr ibe  

movemen t .  In  s p a c e - j u m p  processes,  m o v e m e n t  is v ia  a sequence  of  pos i t ion  j u m p s  a t  r a n d o m  t ime  

intervals ,  whi le  in v e l o c i t y - j u m p  processes  m o v e m e n t  consis ts  of s t ra igh t - l ine  m o t i o n  p u n c t u a t e d  

by r a n d o m  changes  in ve loc i ty  at  r a n d o m  t imes  [1]. Space  j u m p  processes  inc lude  t h e  famil iar  
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lattice walks, and the simplest nearest-neighbor version in one space dimension leads to the 
master equation 

dP-'A~ = ~-1P~-1 - 2~p,  + ~+1P,+1 (1) 
dt 

for the number density at site i. When the transition rates ~ are constant this leads to the 
diffusion equation for the continuum density p(x, t). A general theory of random walks with 
time- and space-independent waiting times and jump kernels leads to a renewal equation, and 
from this both  the above master equation description and the continuum (PDE) limits can be 
derived by special choices of the kernels [1]. 

However, in many biological applications the transition rates depend on external fields or the 
number density, and the external fields may be altered by signals produced by the walkers. Here 
the theory is not as well developed and analysis proceeds from more specialized descriptions, 
because a general formulation that  leads to either discrete or continuum limits is not  available as 
yet. 

One tractable generalization of walks with constant transition probabilities begins with a re- 
inforced random walk, in which a walker on a one-dimensional lattice modifies the transition 
probability for succeeding passages [2]. One example of this arises in the motion of gliding bacte- 
ria such as Myxococcus xanthus, which glides along slime trails it produces [3]. We suppose that  
the transit ion rates depend on the density of a control substance w tha t  evolves according to 

dw~ 
dt = "~(P' W) ,  (2) 

where P = (Pz, . - .  ,Pu)  and W = (wz , . . .  ,wN).  Continuum limits of such walks were studied 
in [4], where it is shown that  a variety of asymptotic  states are possible, ranging from blowup in 
finite time to collapse to a uniform distribution. Here we assume tha t  ~ = Td(wi), i.e., the sensing 
is strictly local, which corresponds to reinforcement at the lattice sites rather than the intervals 
between sites. Let h be the lattice spacing and assume there is a sealing ~ ( W )  = ATe(W/h) 
such that  limh-~0,x-~oo Ah 2 = D; then the diffusion limit of (1) is 

Op 0 2 
0-7 = D-o~x2 ( ~ ( w ) p ) .  (3) 

Whether  this limit is legitimate for solutions tha t  are not smooth was not addressed in [4]. For 
7-d(U) = uK~/ (K~  + u 2) and jr  = (p _ w)/e,  numerical simulations indicate tha t  there are only 
two possible asymptot ic  states, blowup in finite time (or more precisely, essentially complete 
localization at one lattice point, since mass conservation implies tha t  no finite-dimensional ap- 
proximation to (3) can blow up in finite time), or convergence to a spatially-uniform solution. An 
example of the former is shown in Figure la. I t  can be proven tha t  the solution exists for a finite 
time for e > 0, and in Figure lb  we show how the computed numerical blowup time depends on e. 
To understand why there appear to be at most two attractors for the evolution, we consider here 
the singular limit e = 0, and show tha t  for any finite-dimensional approximation to (3) there are 
at most  two stable steady states. 
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Figure 1. Left: The solution of (3) for e = 1, Kd = 1, and v = 1 on a lattice of 201 
points. Right: The numerically-computed blowup time as a function of e. 
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2. A N A L Y S I S  O F  T H E  S I N G U L A R  M O D E L  

For the choice of Td(p) used here, (1) becomes 

dpi 2 2 • Kd P~-I ~ K~ p~ K~ P~+I 
- - ~  - -  Z / z ' ~ - -  - -  

u 2 _2  K 2 _k ~ 2 dt Kd + lJi- 1 d "~,i  + u K~ + p~+ 1 
(4) 

By scaling p by K d and t by u we can assume tha t  K d - -  1 and u = 1. Let A d be the lattice 
Laplacian with zero Neumann  boundary  data; then (4) reads 

d P  
d---t = Ad(Td(P)P) '  (5) 

where (Td(P)P) i  = Td(pi)pi. The flows defined by (5) and by (3) (with homogeneous Neumann 
data)  both  conserve the total  mass. We first focus on (5), and let H be the simplex given by the 
intersection of the plane ~ Pi = P0 with thenonnega t ive  cone of R N. 

Steady states of (5) are such tha t  Td(PS)P 8 is proport ional  to the eigenfunction of Ad belonging 
to the zero eigenvalue, and therefore, Td(p~)p~ = p for i = 1 , . . . ,  N where # is a constant.  Since 
Td(p)p is monotone increasing for p E [0, 1) and decreasing for p E (1, oo), there are exactly two 
possible values for each p~, p*, and p.  - 1/p*, and (Td(p)py < 0 for one of these solutions. All 
admissible s teady states can be characterized by the fractions a) 1 and w2 = 1 - wl of sites at p* 
and 1/p*. Admissible pairs ( p , o ) l ) ,  p E [0, oo), Wl : i / N ,  i = 1 , . . . ,  N satisfy 

w l p + W 2  _p0 - M d  (6) 
p N 

where M4 is the average number  per site. The  solutions are p+ = Md, which exists for all M~, 
and at  most  2 (N - 1) others given by 

P~I Md :t: ~ / M ' ~  - 4WlW2 
: 2021 (7") 

Since p ~  = 1/p~2, the  admissible nonuniform solutions are obtained by pairing the branches as 

= (8) 

The s teady s tates  are p8 = ( P ~ I , ' " , P ~ I , P ~ 2 , " "  ,P~2), to within a permutat ion.  The  steady 
states can be uniquely labeled as (q±, (N - q)t=), where q = w i N  and N - q = w2N. P+I > 1 for 
q = 1 , . . . ,  IN/2] and p~, > P+2 for Md C (2 w x / - ~ ,  1). All branches of the type  (q- ,  (N - q)+) 
intersect the uniform solution p+ = M~ transversely at M d  -~ 1 as Md varies. 

The  linearization of (5) leads to the equation 

d~ A T~ s s ,  
d--t = d ( (  d(P )P ) )~,  

and at  the uniform s teady s ta te  this reduces to 

(9) 

d_~ = ( (Td (p~) p~)') Ad~. 
dt 

(lo) 

It  follows tha t  the uniform steady state is stable as long as (Td(pS)pS) ' > 0, i.e., for M d  < 1, and 
unstable to all modes otherwise. In the lat ter  case, the shortest  wavelengths grow most rapidly. 

To illustrate how the existence and stabili ty of solutions depends on the total  density Md, 
consider a three-si te lattice; a complete analysis of stabili ty is done later. In addition to the 
homogeneous solution, p~ = Md, which is of type (3 +, 0 - ) ,  we have the nonuniform steady states 
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of type (1 +, 2-  ) and (1- ,  2 +), as well as the permutations of these. The spatial variation in a type 
(1 +, 2- )  solution is always of the form 'two low and one high', or LLH. The relative heights for 
(1- ,  2 +) solutions interchange at Md = 1, where the branches P~I and P+2 intersect transversely. 
When Md • (2v~/3,  1) the pattern is LLH, whereas when Md > 1 it is HHL (cf. Figure 2). 
Similar remarks apply for more sites. For N = 3 the stability properties of the steady states 
can be established analytically by calculation of the eigenvalues of Ad((Td(Ps)PS) ') for each of 
steady states. The result is that  the type (1 +, 2 - )  solution is linearly stable whenever it exists, 
whereas the type (1- ,  2 +) is unstable wherever it exists. As noted, the homogeneous steady 
state is unstable for Md > 1 and stable otherwise. Consequently, there is only one (to within 
permutations) stable nonuniform solution, and therefore, two locally-stable solutions whenever 
Md • (2v"2/3, 1). 

(1 ",2 +) 
(1",2*) 

2 
~3",o~ . . . .  ~ ..... " ., .. 

0 
0.6 1 1.4 

Figure 2. T he  complete  s teady-s ta te  bifurcation d iagram showing p~ as a funct ion 
of Md for a three-si te  system. 

For general N it is easier to determine stability by analyzing the critical points of the following 
'energy' or Lyapunov functional. Let O(p) = f Td(p)pdp, define 

N 

e~(P(t)) = ~ ~ ¢(p,(t))  = ~ ~ log (1 + p,~(t)) (11) y 
i i----1 

and let gd be the restriction of Ca to II. For a continuum domain [0, L] the corresponding energy 
is 

- [L  log (1 + p ( x ,  t)) dx. (12) C~c 
Ec(p(t)) = -~ Jo 

Both Ca and Cc are bounded below, and one can show that  these energies are strictly nonincreasing 
along solutions of the corresponding evolution equation. 

By construction, the critical points of ga in H correspond to steady states on the lattice, and 
it is easy to see that  there are no critical points of gd on 0II. Stability is determined by the 
eigenvalues of the Hessian of gd at ps. Suppose that  the solution has q sites with p~ = p > 1 and 
N - q with p~ = 1/p < 1, and let a = adO"(p) and ~ = aa~"(1/p). Then the Hessian of gd is 
given by 

~'{d = 
f~ a + ~  ~ . . .  

/~ . . . . . .  2 ~  " 

f~ f~ . . .  f~ 

This is the same form as in a system of coupled springs with a nonconvex elastic energy func- 
tion [5]. 

It  follows that  q - 1 eigenvalues of C are equal to a and N - q - 1 are equal to j3: simply note 
that  the corresponding eigenvectors can be chosen to have exactly one 1 and one - 1  in the first 
q - 1 positions or in the last N - q - 1 positions. By hypothesis p > 1, therefore, a < 0 and 
j3 > 0. Consequently, if q > 1 the corresponding critical point must either be a saddle point or a 
local maximum. The latter is precluded except at the uniform steady state. 
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One can show tha t  a = (1 - p2)/(1 + p2)2, f] __ _ap2,  and if we factor the characteristic 

equation as 
p()~) = ()~ _ c~)q-l(A _ D)N-q-1 (~2 _ al£ + a2) ,  

it follows that  
al = - c ~ ( N p  2 - 1 ) ,  a 2 = ( N - q - 1 ) - ( q - 1 ) p  2. 

Since p > 1 we have tha t  al  > 0, and a2 > 0 for q = 1, and therefore there are no further 
negative eigenvalues. We summarize the results as follows. 

1. For any Md there are at most two asymptotically stable steady states, one of which is 
constant. 

2. The uniform solution is a local minimum (maximum) of gd when Md < 1 (Md > 1). 
3. When it exists, the single peak solution is a local minimizer of gd. When Md > 1 it is the 

only minimizer and hence at tracts  the flow for almost all initial data. 

These results show tha t  in any finite-dimensional lattice the only stable solutions are the 
single-peak solution and possibly the uniform solution, and they suggest why one expects either 
a blowup, as in Figure la,  or convergence to a uniform solution for the PDE. They  also suggest 
how to prove tha t  the conclusions apply to (3) as well. I t  should be noted tha t  none of the 
general conclusions depend on the specific form of T(p), as long as the conditions on the sign of 
(T(p)p) ~ are satisfied. The conditions for stability of the uniform solution are also given in [6], as 
well as a partial analysis of stability of nonuniform solutions by direct s tudy of the spectrum of 
the Jacobian. 

3. G L O B A L  E V O L U T I O N  O N  T H E  L A T T I C E  

When Md > 1 the energy analysis shows that  the single peak solution at t racts  almost all 
initial data. However, because there are many saddle points when the lattice has many sites, 
the evolution of general initial da ta  may be complicated because the saddles all have at least 
one stable direction and solutions may be transiently at t racted to them. This is demonstrated 
in Figure 3 for one simulation in which Md > 1. Although many peaks develop initially, a period 
of coarsening ensues during which the number of peaks decreases, until only one peak remains. 
When there are two stable states, the outcome for general initial data  is difficult to predict. 
If  p(x, 0) < 1 for all x the diffusion coefficient is positive everywhere, the nonlinear diffusion 
equation behaves like a linear diffusion equation, and one expects evolution to the homogeneous 
solution: this is proven in [7]. However, when the initial particle density locally exceeds 1 at some 
points one expects tha t  the density will grow at these points, at least initially, but  the solution 
may still converge to the uniform state. A more complete analysis of this phenomenon is given 
in [7] 
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Figure 3. The coarsening process on a lattice with 201 sites at times 5, 50, and 5000. 
u(x, 0) = 10.0- 0.1 cos(Trx) on [0, 1]. 

4. T H E  C O N T I N U U M  P R O B L E M  

In the foregoing, the solution is defined on the lattice, but  the transition to the continuum 
problem requires the dual viewpoint, in which the particles are distributed on an interval of' 
length h = L / N  centered at the lattice site. This leads to a new PN that  is the sum of a finite 
number of step functions of height p + / h  and 1/hp+l. The only stable nonconstant  solution is 
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a single-peak solution, and as N --* c~, Wl = 1/N ~ O, P+I ~ co, and 1/p+x ---* O, limN-..,copN 
becomes concentrated at a point a E I.  More precisely, one can show that  PN defines a b-sequence 
in H - I ( I ) ,  the dual of the Sobolev space HX(I), and PN converges weakly in H - I ( I )  to the Dirac 
functional defined by 6a(u) = u(a) for all u E Hi(I) .  The precise sense in which the limiting 
distribution provides a solution of the continuum evolution equation is addressed in [7]. Here we 
will consider two continuum regularizations of (3). First, we add a term of Cahn-Hilliard type 
to £e that  increases the energy in proportion to the spatial variation of p. Define 

oz c EJ =  lp'l ÷ log (1 ÷ dx, (13) 

where 7 > 0 and p E :Do C Hi(I ) ,  the set of functions of Ll-norm equal to M[I[. The existence 
of a minimizer of Cc ~ follows from the direct method of the calculus of variations, and by using 
arguments similar to those in [8], we can show that  the global minimizer is either a single-peaked 
or a monotonic solution, depending on whether the solution is symmetric about the midpoint. 
Furthermore, as 7 --* 0 we again obtain the Dirac distribution as the solution that  minimizes £o 
[7]. The evolution equation for this regularization is 

019 02 ( c32P'~ 
= Ox2 

(14) 

which is obtained by assuming that  the driving potential for movement is the functional derivative 
of (13). This equation with zero flux conditions has global solutions in H i ( I )  for ~/> 0 [9], and 
in Figure 4, we show an example of the evolution of initial data  that  would lead to a completely- 
localized solution when 7 - 0. An alternate regularization is to add a small random component 
ap== to (3), both for e = 0 and e > 0. The first of these produces a van der Waals potential. 
Examples of the resulting time evolutions are shown in Figure 4. As the response time of the 
control species increases (e T), the individual peaks coalesce into a square wave. 
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Figure 4. The evolution of solutions of (14) with ~f = 10 -8 at times 10 (left) and 
100 (centre-left). The steady-state solution of (3) for (a, e) = (10 -4, 0) (centre-right) 
and (10 -4, 10) (right). We use an initial distribution p(x,0) --- 10- 0.1 cos(27rz), 
w(x, O) = 10.0. 

5. D I S C U S S I O N  

We have focused on the one-dimensional problem, but it is clear from the analysis that  the 
lattice results are independent of the spatial dimension and do not require that  the underlying 
connectivity o f  the sites correspond to a regular lattice; the only requirement is that  the Laplacian 
for the graph have a simple zero eigenvalue, which is true if the graph is strongly-connected. The 
extension to higher space dimensions is not so direct in the continuum problem: for instance, 
the phase plane analysis that  proves monotonicity of the minimizer cannot be carried over. In 
addition, the changes in the number and type of steady-state solutions as the parameter (~, % 
and ~ vary remains to be investigated. 
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