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Abstract. The chemotactic response of a cell population to a single chemical species has
been characterized experimentally for many cell types and has been extensively studied from
a theoretical standpoint. However, cells frequently have multiple receptor types and can detect
and respond chemotactically to more than one chemical. How these signals are integrated
within the cell is not known, and we therefore adopt a macroscopic phenomenological
approach to this problem. In this paper we derive and analyze chemotactic models based
on partial differential (chemotaxis) equations for cell movement in response to multiple
chemotactic cues. Our derivation generalizes the approach of Othmer and Stevens [29], who
have recently developed a modeling framework for studying different chemotactic responses
to a single chemical species. The importance of such a generalization is illustrated by the
effect of multiple chemical cues on the chemotactic sensitivity and the spatial pattern of
cell densities in several examples. We demonstrate that the model can generate the complex
patterns observed on the skin of certain animal species and we indicate how the chemotactic
response can be viewed as a form of positional indicator.

1. Introduction

A characteristic feature of a wide variety of living organisms is that they can alter
their motile behavior in response to external environmental cues and, in particular,
to chemical stimuli. Examples range over many orders of magnitude in spatial
scale. The green turtle,Chelonia mydastravels over 1000 miles to its breeding
ground, through detection of an unknown chemical source originating there [19]
and species of shark have the ability to detect traces of blood miles from an injured
animal. At the other extreme, fibroblast cells are thought to move into wounds in
response to chemical signals emitted at the wound site, and in cellular slime mold
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Dictyostelium discoideum, amoebae respond to the chemoattractant cAMP over
spatial scales of the order of a cell diameter [28].

The directed motile response of organisms to chemical cues is calledchemo-
taxis. Frequently this individual response is manifested at the population level by
the collective movement of a population up (or down) a gradient in concentration
of a chemoattractant(or chemorepellent). Organisms also rely on other forms of
taxis for guidance, including light (phototaxis), electric fields (galvanotaxis), mag-
netic fields (magnetotaxis), and adhesive gradients (haptotaxis). Smaller organisms
such as bacteria frequently rely on some form ofkinesis, which involves modula-
tion of either the speed or the duration of movement in response to environmental
conditions. Both taxes and kineses can often be described by similar macroscopic
equations, called chemotaxis equations (to be discussed later), even though the
stochastic processes that describe movement at the single-organism level may be
quite different. Thus one frequently lumps macroscopic descriptions of both taxes
and kineses together under the general heading of taxes.

Chemotaxis in bacterial species such asE. coli andS. typhimuriumhas been
extensively studied both experimentally and theoretically.E. colicells move by ro-
tating rigid helical flagella in a corkscrew-like manner [32]. Each cell contains 6–8
flagella distributed uniformly over the cell surface [37], which, when rotated coun-
terclockwise, coalesce into a propulsive bundle, resulting in a relatively straight
“run” [5]. When rotated clockwise they fly apart, resulting in a “tumble” which
reorients the cell but causes no significant translocation. The cell thus alternates
between runs and reorienting tumbles. In the absence of stimuli, the probability per
unit time of a tumble is essentially independent of when the last tumble occurred
[37]. In a chemoeffector gradient, the cell carries out chemotactic migration by
extending runs that carry it in favorable directions. Using specific chemoreceptors
to monitor its chemical environment,E. coli perceives spatial gradients as tempo-
ral changes in attractant or repellent concentration. The cell in effect compares its
environment during the past second with the previous 3–4 seconds and responds
accordingly. Attractant increases and repellent decreases transiently raise the prob-
ability of CCW rotation, or ‘bias’, and then a sensory adaptation process returns
the bias to baseline, enabling the cell to detect and respond to further concentra-
tion changes [36]. Attractants include sugars, amino acids and small peptides, and
negative chemotaxis (repulsion) occurs in response to noxious substances.

The chemotactic response of cells to a single attractant or repellant has been
characterized experimentally for many cell types and has been extensively stud-
ied from a theoretical standpoint [30,28]. However, many cell types have multiple
receptor types and can detect and respond chemotactically to more than one chem-
ical. For example, in wiring the nervous system of a developing embryo, tight
directional control of the growth of axons is needed in order to ensure that they
connect properly with nerve cells, muscles and other tissues. The four principal
cues involved are short range (surface) attractants and repellents and long range
(diffusive) attractants and repellents. Many diffusible attractants and repellents have
been discovered, principally Netrin-1 [33] and members of the semaphorin families
[12], [22]. While it functions as an attractant for certain types of axons, Netrin-1
also serves as a repellent for other types [7]. It is believed that many chemicals are
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involved in guidance, and that each type of molecule attracts some axons and repels
others.

Chemotaxis has also been widely-studied in the clinical sciences because it
is an important component of certain aspects of the immune response. Chemat-
tractants released at the site of an infection attract white blood cells in the first
response [1], and it has recently been found that adaptation plays an important role
in guiding leukocytes through the attractant landscape set up by spatially-separated
sources [15]. In tumor-induced angiogenesis, cancerous cells secrete chemoattrac-
tants into the surrounding tissue, stimulating endothelial cells in neighboring blood
vessels to migrate towards the tumor, thus creating a blood vessel link to the tumor.
Several chemoattractants (or tumor angiogenic factors) have been identified, in-
cluding basic fibroblast growth factor, angiogenin and vascular endothelial growth
factor.

Despite the evidence showing that cells respond chemotactically to multiple
environmental cues, mathematical models and experimental studies typically focus
on the response to a single stimulus. However, the presence of multiple chemotactic
signals raises a number of important questions,viz.,

• How are the multiple signals integrated intracellularly and interpreted to initiate
movement? For example, how is the occupancy of different receptor types in
a bacterium integrated and transduced into a response? It is known that the
chemotactic protein CheYp modulates the rotational bias of a flagellar motor,
and thus signal integration is easy for pathways using the same chemotaxis
proteins, but how is it done when different receptor types generate different
signal types?

• What effects do competing attractant and/or repellent signals have on macro-
scopic spatial patterns? For example, bacteria form a variety of intricate spatial
patterns under different nutrient levels [4,38,3,6] but little is known as to to
whether these patterns depend significantly on the presence of multiple sig-
nals, and whether simple changes in the balance between different signals can
account for observed changes in the pattern types.

• How is information filtered and processed by the organism? If signals of differ-
ent magnitudes (e.g. in gradient strength or concentration level), or of different
spatial and temporal scales are detected, how can an organism process the in-
formation so as to to generate the optimal response? This question may be
particularly relevant in ecology, where multiple signaling cues can vary on
different spatial scales.

These questions have not been answered at the molecular or higher level in any
system, and therefore we adopt a more phenomenological approach here. We begin
with a master equation for a stochastic space jump process and reduce this to a
partial differential equation to describe the movement of organisms in response to
multiple tactic signals. We derive a number of forms for the chemotactic sensitivity
(defined later), based on how information external to the organism is detected and
transduced to result in movement, and we investigate in detail spatial patterning
in a simple model for a cell population responding to two competing attractants.
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Applications of the work are considered in bacterial cell movement and the com-
plicated pigmentation patterns seen on the skins of certain animals.

How these signals are integrated within the cell is not known, and we therefore
adopt a macroscopic phenomenological approach to this problem. In this paper we
derive and analyze chemotactic models based on partial differential (chemotaxis)
equations for cell movement in response to multiple chemotactic cues.

2. Modeling the tactic response to multiple signals

Othmer and Stevens [29] investigated continuum limits of a continuous time, dis-
crete space random walk described by a master equation, in which walkers execute
instantaneous jumps in space at random times. In their analysis, which was moti-
vated by results of Davis [8] on reinforced random walks, the transition probabilities
depend on a control substance that itself evolves in time and space. In the following
we begin with the same master equation, but now under the assumption that the
transition rate is dependent on multiple signals.

Suppose that the probability that a walker is atn ∈ Z at timet , given that the
walk begin at 0 at t = 0, is given bypn(t). By hypothesis this satisfies the evolution
equation

∂pn

∂t
= T+

n−1(U)pn−1 + T−
n+1(U)pn+1 − (T+

n (U) + T−
n (U))pn. (1)

HereT±
n are the conditional probabilities per unit time of a 1–step jump ton±1,

and(T+
n (U) + T−

n (U))−1 is the mean waiting time at thenth site.U represents
the density of the control species, and is given by

U =




...
... · · · ...

u1,n−1/2 u2,n−1/2 · · · uk,n−1/2
u1,n u2,n · · · uk,n

u1,n+1/2 u2,n+1/2 · · · uk,n+1/2
...

... · · · ...




, (2)

for k control species. We have defined the control species on a lattice of half step size,
i.e.uj,n−1/2 is the density of speciesuj at positionn−1/2. The three different types
of models we consider here are characterized by the dependence of the transition
rates onU . Following the classification of [29], we define these asstrictly local,
barrier andgradientmodels.

2.1. Strictly Local Models

In this model the probability of a jump depends only on the level of control species
at the site of the walker. We denote byun the densities of control speciesu1, . . . , uk

at siten. We assume that the domain� is homogeneous and isotropic, and therefore
the transition probabilities do not depend directly on the lattice site, but only on
local densitiesun. It follows thatT− = T+(≡ T), and consequently (1) becomes

∂pn

∂t
= T(un−1)pn−1 + T(un+1)pn+1 − 2T(un)pn. (3)
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We definex = nh, extend the functionp to R, and expand the right hand side

to second order inh as a function ofx. We introduce a scaling of the transi-
tion rates,T(u) = λT(u), with the property that the limit limh→ 0,λ→∞ λh2 =
positive constant(≡ D) exists, then in this diffusion limit,

∂p

∂t
= D

∂2

∂x2
(T(u)p), (4)

The existence of this limit depends on the existence ofa priori bounds on higher-
order derivatives. In higher space dimensions the second derivative is replaced by
the Laplacian. Equation (4) is subject to initial conditions and, when a finite domain
is considered, boundary conditions. Furthermorep should always be nonnegative.

In one dimension the particle flux is

J = −D
∂(T(u)p)

∂x
= −D(T(u))

∂p

∂x
− Dp

∂(T(u))

∂x
. (5)

We define thechemotactic sensitivity to speciesi, χi , by

χi = −DTui
(6)

and then can write the flux as

J = −D(Ti (u))
∂p

∂x
+ p

k∑
i=1

χi(u)
∂ui

∂x
. (7)

If χi > 0 (i.e.,Tui
< 0), speciesi is an attractant and cells move up the gradient

of i at a speed that may depend on other species via the dependence ofχi on u.
However the global movement is determined by the sum of the responses to the
individual gradients.

2.2. Barrier models

In thebarrier modelthe transition rates for a cell at siten depend onu atn ± 1/2.
One finds that without further conditions on the transition rates there is no directed
movement in response to the signal; the chemotactic sensitivity vanishes identically
[29]. However, if the transition rates are renormalized so that the mean waiting
time is constant across the domain, then aggregation may occur. Thus we define
therenormalized transition ratesN± as

N+
n (U) + N−

n (U) = constant, (8)

and without loss of generality we take the constant as 1. The above equation is
satisfied by choosing the following forms for our transition rates,

N±
n (U) = N±(un−1/2, un+1/2) = T(un±1/2)

T(un+1/2) + T(un−1/2)
, (9)



6 K.J. Painter et al.

whereN± : Rk × Rk → R. We again assume that the lattice is homogeneous,
we rescale the renormalized transition rates asN = λN, and we assume that
D ≡ limn→∞,h→0

λh2

2 exists. Then in the diffusion limit we obtain

∂p

∂t
= D

∂

∂x


∂p

∂x
− 2p

k∑
j=1

(
N1,j − N2,j

) ∂uj

∂x


 . (10)

HereN1,j represents the derivative with respect to thej th component of the first
argument andN2,j represents the derivative with respect to thej th component
of the second argument, both evaluated at(un, un). These are determined from
Equation (9), and Equation (10) becomes

∂p

∂t
= D

∂2p

∂x2
− D

∂

∂x


p

k∑
j=1

(lnT)uj
· ∂uj

∂x


 . (11)

Thus the chemotactic sensitivity with respect to speciesi for the renormalized
barrier model is given by

χi = D(lnT)ui
. (12)

2.3. Non-local or gradient models

The non-local model is based on assumption that the transition rates depend on
differences between lattice sites of the density of the control species. In the sim-
plest case one supposes only nearest neighbor differences, and then can define
T∓

n±1 : U → R by

T+
n−1 = α + β(τ(un) − τ(un−1)), (13)

T−
n+1 = α + β(τ(un) − τ(un+1)), (14)

andτ : Rk → R with α(≥ 0) andβ constants. This gives the master equation

∂pn

∂t
= α(pn+1 − 2pn + pn−1) − β(τ(un+1) − τ(un))(pn+1 + pn)

−β(τ(un) − τ(un−1))(pn + pn−1). (15)

We assume a scaling in the transition rates such thatD = limh→0,λ→∞ λh2, and
we obtain in the diffusion limit

∂p

∂t
= Dα

∂2p

∂x2
− 2Dβ

∂

∂x

(
p

k∑
i=1

∂τ

∂uk

· ∂uk

∂x

)
. (16)

Thus the individual tactic sensitivities are given by

χi = 2Dβτui
(17)

and the taxis is with respect to speciesi is positive ifτui
> 0.



Cellular response to multiple chemotactic cues 7

3. The chemotactic sensitivities for multiple signals

It is clear from the preceding derivations that the dependence of the chemotactic
sensitivities on the control species arises from the dependence of the transition rates
onU . In this section we derive various chemotactic sensitivity functions and show
in particular that the presence of multiple signals carries with it the possibility of
competition and nonlinear interactions in any of the detection, transduction and
response steps.

3.1. Linear

The simple example of linear dependence of the transition rate onu, given by
T = T0 + b · u whereT0 andb are such thatT > 0, illustrates key differences
in behavior between the three models. It follows from (6), (12) and (17) that the
chemotactic sensitivities for the three models are

χj = −Dbj , χj = D
bj

T0 + b · u
, χj = 2Dβbj . (18)

In the barrier model the chemotactic sensitivity is monotone decreasing in the
total chemical concentration if allbis are positive, whereas the other models have
constant sensitivity with respect to all species. The sign of the sensitivities imply that
the local model results in aggregation at low concentrations of speciesj if bj > 0,
whereas barrier and gradient models lead to aggregation at high concentrations
under the same condition [29].

3.2. Receptor-based response laws

The linear law used above is based on the assumption that the transition rate contains
a basal ratea and a component proportional to the concentration. However signals
are often detected via receptors or other detectors on the surface, and since their
number is limited, the transition rate cannot increase indefinitely. Moreover, at the
cellular level receptors frequently span the membrane and are inactive when free
of ligand, but active when bound. In the absence of a detailed transduction scheme
we assume that when there is a single control species the response is proportional
to the fraction of receptors that is occupied by the control species [29]. Thus if the
binding reaction is written

Ri + u
k+
⇀↽
k−

Ra, (19)

then the fraction of activated receptors is given byRa = R0u/(K + u), where
K = k−/k+ andR0 = Ra + Ri is the total number of cell surface receptors. If
the transition rate comprises a basal rate and a component proportional to the total
number of occupied receptors, then for the local and renormalized barrier models
we have that

T = T0 + T1
R0u

K + u
(20)
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and this leads to chemotactic sensitivities of the form

χ = −D
T1R0K

(K + u)2

for strictly local sensing, and

χ = D
T1KR0

(K + u)[T0(K + u) + T1R0u]

for the renormalized barrier model.
Similarly, if we assume thatτ = R0u/(K +u) for the gradient model we obtain

the sensitivity

χ = χ0

(K + u)2
(21)

whereχ0 = 2DR0Kβ.
It should be noted that now the sensitivity is monotone decreasing in all cases,

and does so quadratically at largeu, which reflects the fact that the detection ma-
chinery saturates at large signal strengths.

3.2.1. Different receptor types

When there are two distinct signals present there are two different types of sensi-
tivities, depending on whether the signals bind competitively to the same receptor
or whether there is a different receptor for each signal. Experimental evidence sug-
gests that both cases occur depending on the specificity of the receptors. Some
receptors detect only one signal, whereas in other cases the cell surface contains
several types of chemotactic receptors, each receptive to a small group of signaling
chemicals (see [31] and [20]).

In the latter case, two types of chemoattractant molecules,u andv, bind to two
different receptor types,Ru andRv. This is a straightforward extension of the one
species case, and we derive the following expressions for the number of activated
receptors,Rau andRav :

Rau = R0uu

Ku + u
, Rav = R0v v

Kv + v
. (22)

R0u andR0v are the total number of receptors of typeRu andRv, respectively.
Ku = k−

1 /k+
1 andKv = k−

2 /k+
2 , wherek−

1 , k+
1 , k−

2 andk+
2 are the rate constants

due to rate equations similar to that given by (19). It is straightforward to extend
the above ton chemical species, and we obtain the following expression for the
total number of activated receptors:

∑
Rauj

=
n∑

j=1

R0uj
uj

Kj + uj

, (23)

whereRauj
is the number of activated receptors of typeRuj

, R0uj
is the total

number of receptors of typeRuj
andKj = k−

j /k+
j . Using the above expression for



Cellular response to multiple chemotactic cues 9

the transition rate for the gradient model we find that the individual chemotactic
sensitivities are given by

χi = 2DβR0ui
Ki

(Ki + ui)2
. (24)

It is clear from this that these sensitivities have the same form as the sensitivity in
the presence of a single chemical signal, which is a result of the fact that there is
no interaction of the signals at the detection stage.

3.2.2. Same receptor type

However, if the signals bind competitively then we expect to see this interaction
of the signals reflected in the chemotactic sensitivities. Now we suppose that an
inactive receptorRi is activated by binding to either of two molecules,u or v. Thus
the binding reactions are

Ri + u
k+

1
⇀↽
k−

1

Rau, Ri + v
k+

2
⇀↽
k−

2

Rav . (25)

and we assume that the total number of receptorsR0 = Rau +Rav +Ri is constant.
Assuming binding of either of the molecules occurs on the same time scale and is
faster than the subsequent transduction and movement response, we have[

R0 − (Rau + Rav )
]
uk+

1 = k−
1 Rau, (26)[

R0 − (Rau + Rav )
]
vk+

2 = k−
2 Rav . (27)

If the transition rate is proportional to the number of activated receptors,Rau +Rav ,
we find from (26) and (27) that

Rau + Rav = R0(k
+
1 k−

2 u + k+
2 k−

1 v)

k−
1 k−

2 + (k+
1 k−

2 u + k+
2 k−

1 v)
. (28)

More generally, for the case ofn species,u1, . . . , un, we defineRaui
to be the

number of receptors activated by chemical speciesui andR0 to be the total number
of receptors. Following the above procedure we derive

n∑
i=1

Raui
= R0

[∑n
i=1 uiKp/Ki

]
Kp + [∑n

i=1 uiKp/Ki

] , (29)

whereKj = k−
j /k+

j andKp = ∏n
j=1 Kj .

With the above expression for the transition rate, we find that for a gradient
model the chemotactic sensitivity for thej th species is given by

χj = 2DβKpKj(
Kp + [∑n

i=1 uiKp/Ki

])2 . (30)
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The only variation in the sensitivity for each individual species results from the
different values ofKj .

It follows that the total chemotactic flux is given by

2Dβp(
Kp + [∑n

i=1 uiKp/Ki

])2 ∑
j

KpKj∇uj , (31)

and the direction of the flux is determined by a linear function of the individual
chemical gradients.

3.2.3. Nonlinear interaction sensitivity laws

Thus far the transition rates are simply assumed to be a linear combination of the
total number of activated receptors, which means that are a number of independent
signaling pathways whose outputs are additive. However, there may also be parallel
pathways, both of which must be activated to induce movement. Thus we assume a
dependence based on the product of the activated fraction of receptors, which gives

T = R0,uu

(Ku + u)

R0,vv

(Kv + v)
. (32)

The chemotactic sensitivities for the gradient model are therefore given by

χu = χ0,uv

(Ku + u)2(Kv + v)
, χv = χ0,vu

(Kv + v)2(Ku + u)
. (33)

whereχ0,u ≡ 2DβKuR0,uR0,v andχ0,v ≡ 2DβKvR0,vR0,u. Notice that the above
implies that for lowv the chemotactic sensitivity response to speciesu is much
weaker than the response at high concentrations ofv. Thus, by reducing the level
of v the chemotactic response of the cell may be drastically reduced despite the
presence of gradients ofu. This introduces another level of control, if for example,
the production of the signaling chemicals depends on the cell density.

4. Spatial response to multiple cues

The patterns of the spatial distribution of a cell population responding to multiple
cues is illustrated in the following theoretical model. We consider a Turing system
[39] as a mechanism for providing spatially heterogeneous chemical distributions to
which a cell population chemotactically responds. More formally, a cell population
density,n(x, t), is defined on the spatial domain� ∈ Rn. Chemicalsu andv,
which are called morphogens, evolve according to a system of reaction-diffusion
equations. The cell population responds chemotactically to both chemical species,
leading to the equations

∂n

∂t
= ∇ · {Dn∇n − nχ1(u, v)∇u − nχ2(u, v)∇v}, (34)

∂u

∂t
= ∇(Du · ∇u) + f (u, v), (35)

∂v

∂t
= ∇(Dv · ∇v) + g(u, v), (36)
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whereχ1 and χ2 are the chemotactic sensitivity functions andf and g define
the chemical kinetics. Herein cell and chemical diffusion coefficients,Dn, Du and
Dv, are taken as constant. In this first model we assume that the evolution of the
morphogens is independent of the cell density. We will refer to the above equations
as thehybridmodel.

We first consider a uniformly distributed cell population and, without loss of
generality, setn(x, 0) = 1. Initial conditions for the chemical concentrations are
taken as small random perturbations about the homogeneous steady state. Boundary
conditions are taken to be zero flux. The application of the boundary conditions with
the zero population kinetics imposes a conservation law on total cell population,
viz. ∫

�

n(x, t)dx =
∫

�

n(x, 0)dx. (37)

We assume that the equations (34)–(36) have a single positive homogeneous steady
state(n0, u0, v0), where without loss of generality we taken0 = 1. It is also assumed
that the structure off andg is such that (35) and (36) have a stable nonconstant
steady state solution (a Turing pattern) for suitable choices of the kinetic parameters,
and that the uniform steady state is unstable to small perturbations.

4.1. Patterning in one dimension

We first consider the one-dimensional domain,� = [0, L], and suppose that the
kinetics are described by a simplified model for the glycolysis reaction [27,9]. The
model (34)–(36) is then given by

∂n

∂t
= ∂

∂x

[
Dn

∂n

∂x
− nχ1(u)

∂u

∂x
− nχv(v)

∂v

∂x

]
, (38)

∂u

∂t
= Du

∂2u

∂x2
+ δ − κu − uv2, (39)

∂v

∂t
= Dv

∂2v

∂x2
+ κu + uv2 − v, (40)

with zero-flux boundary conditions:

Dn

∂n

∂x
− nχ1(u)

∂u

∂x
− nχv(v)

∂v

∂x
= 0 (41)

∂u

∂x
= ∂v

∂x
= 0 (42)

at x = 0 andx = L. Thus all three components satisfy a homogeneous Neumann
boundary condition.

The absence of cellular feedback results in a decoupling of the cell move-
ment equation from the reaction-diffusion system. Thus, temporarily we ignore
the cell equation (38) and focus on evolution of pattern in the reaction-diffusion
model. A linear analysis of Equations (39)–(40) about the homogeneous steady
state,(u0, v0) = (

δ/(κ + δ2), δ
)
, gives a prediction for initial pattern evolution
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and the parameter region wherein Turing instabilities can develop. It does not pro-
vide a specific analytical prediction of the pattern at the heterogeneous steady state
because, as the solution grows, nonlinear terms become dominant and the linear
analysis is no longer valid. An analytical approximation for the time independent
solutions to Equations (39)–(40) can be obtained, and the results are summarized
in the Appendix. The general approach can be found in a number of texts [13,16].
To first order in the deviation from the uniform steady state, the spatial distribution
of the morphogens is given by

u(x) = u0 + u1 cosjx, (43)

v(x) = v0 + v1 cosjx, (44)

whereu1 andv1 can be determined explicitly for a particular set of parameters
through the asymptotic expansion. In Figure 1 (a) we compare analytical and nu-
merical approximations for the concentrations ofu andv, using the parameters of
the figure caption. The validity of solutions derived from a bifurcation analysis,
given by Equations (43)–(44), is demonstrated by the very close correspondence
with the numerically derived concentrations.

When the chemotactic sensitivities are non-zero it is possible that patterning
of the cell population via the response to the nonuniform distribution of the mor-
phogens, given (43)–(44). The steady state cell distribution that satisfies the bound-
ary conditions is given by

n(x) = K exp

(∫ x

0

1

Dn

(
χ1

du

dx
+ χ2

dv

dx

)
dx

)
, (45)

where the constantK can be evaluated using the conservation equation (37), once
theu andv distributions are known.

One of the primary characteristics of a spatial pattern of the cell population
(or chemical species) is the number of maxima and minima. For chemical patterns
that arise via a Turing instability (with zero flux boundary conditions and close
to the bifurcation point), this is relatively straightforward: the pattern possesses
a common wavelength with equally spaced peaks. Moreover, the spatial location
of turning points is the same for both chemical species – they are either in phase
(for pure activator-inhibitor kinetics) or in antiphase (for cross activator-inhibitor
kinetics) [9]. The glycolysis reaction is an example of a cross activator-inhibitor
reaction system: peaks ofu occur at troughs ofv andvice versa.

4.1.1. Patterning in response to a single cue

The effect of taxis on cell patterning can be evaluated by a comparison between
the critical points of the cell density and the critical points in the chemical concen-
trations. The response to one chemical is considered by takingχ2 = 0 in Equation
(45) and assuming thatχ1 is a function ofu only. We determine

dn

dx
= K

Dn

exp

(
1

Dn

∫
χ1(u)

du

dx
dx

)
χ1

du

dx
. (46)
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Thus, providingχ1 is non-zero and continuous for allu(x) > 0, the turning points in
the cell density coincide with the turning points in the chemical distribution, since

K exp
(

1
Dn

∫
χ1(u) du

dx
dx
)

is positive. All standard response laws, i.e. constant,

logistic and receptor, satisfy these conditions, although one can construct abiphasic
form that does not to fall into this category.

We suppose that the chemicalu binds to two different cell surface receptorsR

andS. The fraction of occupied receptors of each type will be given byR0u/(k1+u)

andS0u/(k2 + u) respectively. We further assume that activation ofR receptors
induces an attractive response, while activation ofS receptors induces a repulsive
response. Then if the transition rate is a linear combination of the activated receptors
we have that

T(u) = T0 + T1R0u

k1 + u
− T2S0u

k2 + u
. (47)

We setα = T1R0 and choosek1 = 1 andT2S0 = 1 for convenience. One finds that
the chemotactic sensitivity (using a gradient-based transition rule) is

χ1(u) = αk2
2 − 1 + 2u(αk2 − 1) + u2(α − 1)

(1 + u)2(k2 + u)2.
(48)

If we setα < 1 andαk2 > 1, then in addition to turning points that coincide with
those of the chemical concentration, there additional critical points correspond-
ing to locations at whichχ1 changes sign. Thisbiphasiclaw models chemotactic
attraction at lower chemical concentrations, and chemotactic repulsion at higher
concentrations. Consequently, cells aggregate at an intermediate level of concen-
tration. In response to the guidance cue BDNF (brain-derived neurotrophic factor),
nerve growth cones have been shown to display both chemoattraction and chemore-
pulsion, depending on the level of cAMP [35].

4.1.2. Cell patterning in response to both chemicals

If we specify that the chemotactic sensitivities are constantsχ1 = α andχ2 = β,
then the solution for cell density at a heterogeneous steady state can be obtained
analytically, and one finds that

n(x) = Kc exp

(
αu + βv

Dn

)
, (49)

whereKc is a constant. Thus the spatial distribution of the cell density is determined
by the linear combinationαu+βv of the morphogens. In Figure 1 (b) – (d) we plot
the functionαu + βv for constantβ and increasingα, using the analytically- and
numerically-computedu andv shown in Figure 1(a). Ifα is sufficiently different
from−βv1/u1, there is little difference between the numerically- and analytically-
derived values ofαu + βv, as seen in Figure 1(b). However, asα is increased the
structure of the analytically- and numerically-computed profiles diverges, as in (c),
and for a small range ofα near−βv1/u1 the numerical solution displays greater
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structure, with two peaks in the density (cf. (d)). Although the patterns show very
differentstructure, the maximum difference between the two profiles for allα, β

is always of the orderε2, where a definition forε can be found in the appendix.
This arises from the fact that the difference between the numerical and anlytical
approximations of the chemical concentrations is of orderε2. As α is increased
above−βv1/u1 the two profiles again display the same structure.

These results suggest that the analytical approximation forn(x) is only valid
outside a neighborhood of the lineα = −βv1/u1. This restriction can be under-
stood by examining the second order terms in the asymptotic expansion for the
chemical concentration done in the Appendix. The second order approximations

Fig. 1.(a) Comparison between analytical and numerically derived chemical concentrations.
u numerical (solid) and analytical (dashed),v numerical (dot-dash) and analytical (dotted).
The discrepancy is very small, reflected by these lines overlying one another. (b) – (d)
Comparison betweenαu + βv using the analytical and numerical solutions foru andv
plotted in (a). This function reflects the form of the cell density at steady state under constant
sensitivity rules. (b)α/Dn = β/Dn = 1.0, (c)α/Dn = 2.8 andβ/Dn = 1.0, (d)α/Dn = 2.87
andβ/Dn = 1.0. For the majority ofα/Dn − β/Dn space the two predictions match. For
example, in (b) the solutions lie on each other and are difficult to discern. Asα/Dn is increased
towards−v1β/Dnu1, the two forms diverge, (see (c)) until they have different structure, (see
(d)). Simulations useδ = 1.2,κ = 0.06,L = π ,Du = 1.0 andDv = 0.09809. The analytical
forms, as determined by the Appendix, useu0 = 0.8, v0 = 1.2, u1 = 0.0545, v1 = −0.1561
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of the chemical concentrations are given by functions of the form

u(x) = u0 + u1ε cosjx + ε2 (u20 + u21 cosjx + u22 cos 2jx) (50)

v(x) = v0 + v1ε cosjx + ε2 (v20 + v21 cosjx + v22 cos 2jx) . (51)

From the expansion in the Appendix, we only know the magnitudes ofu0, u1, u20,
u22, v0, v1, v20 andv22. The bifurcation analysis does not determine the magnitudes
of u21 andv21, but does determine theratio, which is given byu21/v21 = u1/v1.

For the above forms, the critical points in cell density are the solutions to the
equation

εj (αu1 + βv1 + ε(αu21 + βv21)) sinjx + 2jε2(αu22 + βv22) sin 2jx = 0,

(52)

which, in turn, has solutions

sinjx = 0, (53)

4ε(αu22 + βv22) cosjx = −(αu1 + βv1 + ε(αu21 + βv21)). (54)

The former defines the same primary turning points as for the first order approx-
imations, which correspond with those of the chemical concentrations. The latter
only has solutions ifαu1 + βv1 = O(ε), and therefore we choose chemotactic
coefficients such thatαu1 + βv1 = 0. From the analysis in the appendix we have
αu21 + βv21 = 0, and thus ifαu22 + βv22 6= 0, Equation (54) predicts additional
critical points that are out of phase with the primary critical points. For the param-
eters considered here, this assumption above is valid. If we fixβ > 0 and increase
α from below the line−v1β/u1, the cell density profiles change nature from a
form equivalent to the chemical profiles to one with a greater number of turning
points, and the latter arise as the result of the superposition of cosjx and cos 2jx

waves. Hereafter we label such cell patterns ascomplexto distinguish them from
the simple patterns in which the critical points coincide with those of the chemical
concentration.

The validity of the above analysis is strengthened by a comparison of analytical
and numerical solutions for the special case,α = −v1β/u1. We use this solution
to obtain an analytical determination of the amplitude of the cell density for the
cos 2jx wave type pattern, as all cosjx terms drop out (at least up to second order),

n(x) = K exp

((
αu0 + βv0 + ε2αu20

)+ ε2 (αu22 + βv22) cos 2jx

Dn

)
. (55)

When this is evaluated for the parameters of Figure 1 withα/Dn = 5.5 and
β/Dn = 1.92, we obtain an amplitude of 0.00046, which compares favorably
with the amplitude of the pattern derived via numerical simulation, 0.00048. The
discrepancy isO(ε3), where a definition forε can be found in the Appendix. Thus
cells may exhibit density patterns of greater spatial complexity than that of the un-
derlying chemical concentration profiles in response to multiple chemotactic cues.
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Next we compare these results with those obtained using sensitivities of the
form

χ1 = α

(k1 + u)2
, χ2 = β

(k2 + v)2
, (56)

whereα, β, k1 andk2 are constants andk1, k2 > 0. In this case, the form of the cell
density at the heterogeneous steady state can be found as

n(x) = Kr exp

(
− 1

Dn

(
α

k1 + u(x)
+ β

k2 + v(x)

))
. (57)

whereKr is a constant. A calculation of the locations of non-trivial turning points
gives the following solutions,

αu1(v0 + k2 + v1y)2 + βv1(u0 + k1 + u1y)2 = 0, (58)

wherey = cosjx. Rearranging this expression gives the following solutions fory,

y∓ =
±(v0 + k2)

√−αu1
βv1

− u0 + k1

u1 ∓ v1

√−αu1
βv1

. (59)

Of course the only real solutions lie in the range [−1, 1], and it is easy to verify that
either there is no solution or one solution that satisfies this criterion, depending on
the parameters. When one solution does lie in this range we predict that complex
patterns develop. These predictions are confirmed by a comparison of numerical
and analytical results. Examples of complex patterns are shown in Figure 2. While
similar to those observed for constant laws, these patterns have greater amplitude
and occur for a larger range of parameters.

Fig. 2. Patterns predicted by the model with receptor response laws given by (56). We use
the analytical predictions determined in the Appendix for the parameters given in Figure 1
(u0 = 0.8, v0 = 1.2, u1 = 0.0545,v1 = −0.1562). Figures (a) through (c) demonstrate
increasing complexity as we move throughα-β space. Notice that the amplitude of the
complex patterns is larger than corresponding patterns (Figure 1) that arise for constant
sensitivity laws
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4.2. Patterning in two dimensions

In two dimensions, we assume chemical concentrations of the form,

u(x, y) = u0 + u1 cos

(
nπx

Lx

)
cos

(
mπy

Ly

)
, (60)

v(x, y) = v0 + v1 cos

(
nπx

Lx

)
cos

(
mπy

Ly

)
. (61)

For the above forms two elementary pattern types exist: Ifn andm are non-zero,
we have a checkerboard type pattern composed of peaks and troughs, namelyspots,
whereas if only one ofn or m is non-zero then the pattern consists ofstripes.

Using the receptor law sensitivities, it is straightforward to analytically demon-
strate that the one-dimensional results carry over to two dimensions. The types
of complex patterns formed in the cell density can be classified as (1) rings, (2)
interspersing large and small spots and (3), interspersed broad and narrow stripes.
Figure 3 illustrates these pattern types.

We now consider more complicated chemotactic sensitivity laws. Extending the
derivation of the biphasic sensitivity law earlier to two chemical species, we assume
a transitional response,

T(u) = T0 + T1R1u

k1 + u
− T2R2u

k2 + u
+ T3R3v

k3 + v
− T4R4u

k4 + u
. (62)

For this transitional response, the chemotactic sensitivities termsχ1 andχ2 take
the form given by Equation 48. Analytical results under these laws give rise to
more complicated patterns than for the “standard” laws considered earlier. In two
dimensions, we observe patterns such as the spots inside rings or variant stripes, as
shown in Figure 4.

Fig. 3.Typical examples of the complex patterns observed in two dimensions. (a) Rings (b)
Interspersed large and small spots and (c) Alternating broad and narrow stripes. Patterns
obtained using receptor type laws for underlying chemical patterns such thatu0 = 0.8,
v0 = 1.2, u1 = 0.2 andv1 = −0.6. We takeβ/Dn = 1.0, k1 = 0.8, k2 = 1.0 andα/Dn =
(a) 2.5, (b) 1.8, (c) 1.8. A threshold has been chosen for clarity of presentation
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Fig. 4. Typical examples of patterns obtained under more complicated sensativity responses.
(a) Spots inside rings and (b) Series of stripes. In both simulations, we use the parameters
T1R1 = 1.0, T2R2 = 3.85, T3R3 = 1.0, T4R4 = 3.85, k1 = 0.5, k2 = 2.0, k3 = 0.5, k4 =
1.95, u0 = v0 = 1.0, u1 = +0.5, v1 = −0.3. Once again we have chosen a threshold in the
cell density to demonstrate the pattern more clearly. For (a) we use an underlying spotted
chemical pattern, whereas (b) uses an underlying striped pattern

4.3. Robustness of patterns

As we have shown, when the chemotactic sensitvity depends on two chemicals each
of the different types of sensitivity laws examined leads to increased complexity
of the spatial distribution of the cells. For constant chemotactic sensitivities this
complexity is dependent on the fine structure of the chemical distributions (which
analytically corresponds to the higher order terms of the asymptotic expansions),
whereas with receptor laws it arises through nonlinear terms in the sensitivity func-
tion. This fundamental difference may lead us to expect differences with respect
to robustness of the patterns, and hence the applicability of different mechanisms
to biological pattern formation. Robustness here refers to pattern characteristics
such as amplitude of the patterns and the parameter region in which they occur. For
constant sensitivity laws the amplitude of the patterns is very small, and they occur
in a very restricted range of parameter space. However receptor laws produce larger
amplitude pattern and these patterns exist in a larger region of parameter space.

These results are significant when the underlying chemical concentrations are
less regular. For kinetic parameters that lie in a small neighborhood of the point
at which the Turing instability occurs in the chemical system the pattern is very
regular since the power spectrum of the solution is dominated by the amplitude
of the unstable mode. However, the pattern may be much less regular far from the
primary bifucation points.

In Figure 5 (a)–(c) we display the chemical concentrations derived by numerical
simulation of the two dimensional reaction-diffusion system. The patterns illustrate
the two pattern types commonly observed in Turing systems: A hexagonal array ((a)
and (b)) and stripes (c). Increasing the domain size in (a)–(b) results in less regular
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Fig. 5. Cell patterning under chemical concentrations obtained by numerical simulation
of the Turing system. Left column shows heterogeneous steady state chemical patterns
(v species) (a) Hexagons,δ8qwe = 2.8, κ = 0.06, Du = 1.0, Dv = 0.0125, domain
[0, π ] × [0, π ]. (b) For the larger domain [0, 2π ] × [0, 2π ], the hexagonal patterns show less
regularity. (c) Stripe solutions for parameter valuesδ = 1.2,κ = 0.06,Du = 1.0, Dv = 0.08,
domain [0, 5π ]× [0, 5π ]. Cell patterning under constant and receptor sensitivities are shown
in the middle and right columns respectively. With the regular chemical concentrations (a),
both constant and receptor laws can demonstrate ring type patterns, however those obtained
for receptor law have a larger diameter and greater amplitude. Under less regular patterns
such as the hexagons of (b) and the stripes (c), receptor laws can give clearly defined rings
or thick and thin stripes, whereas no coherent pattern emerges under the constant laws

patterning. The middle and right columns show the complex patterns produced in
the cell density for constant and receptor sensitivity laws, respectively. Constant
laws (d) produce rings of small circumference and amplitude. Receptor laws (g),
however, produce large rings of large amplitudes. Furthermore, the region ofα −β

parameter space over which these patterns are observed is much greater in the latter
case than in the former. This aspect is critical for the production of such patterns
on a large domain. A comparison of the last two columns shows that distinct rings
of large amplitude (h) or alternating broad and narrow stripes (i) are obtained with
receptor laws, whereas no coherent pattern occurs for the constant sensitivity laws,
(e) and (f). Thus non-constant sensitivities lead to more accurate tracking of the
underlying morphogen distribution.
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5. Applications

5.1. Animal skin patterns

A theoretical application of the Turing model is that of Murray ([23], [24], [25]), (see
also [2] and [40]), who considered a reaction-diffusion system as the underlying
mechanism for pigment patterns on mammalian coats. A reaction-diffusion sys-
tem establishes an underlying nonhomogeneous morphogen field which provides
the information for pigment cells to differentiate into a particular type depending
on the local morphogen concentration. This theory of pigmentation is attractive due
to the similarity between patterns generated by the model and coat markings, but
even a cursory glance through an encyclopedia of animal patterns yields exceptions.
These include alternatingthick and thin stripes, which most notably occur in species
of fish (e.g. the lionfish) or reptiles (for example, the tail of the gila monster),rings,
which are commonly observed on species of wild cat such as the jaguar, leopard and
ocelot. More complex patterns include those shown by the thirteen lined ground
squirrel which display stripes interspersed with a line of spots.

5.1.1. Animal markings through the hybrid model

We can apply the complex patterns exhibited by the hybrid model in the context of
animal coat markings. Essentially, we propose a mechanism whereby pigment cells
organize themselves spatially via a chemotactic movement response to gradients
of chemicals in the reaction-diffusion system. Further differentiation into a specific
pigment type may then arise through sensing a threshold of local cell density. Bio-
logical evidence suggests that the mechanism under which pigment cell precursors
migrate to dermal layers of the skin may be chemotactic ([10], [18], [21], [17]) and
it is not an unreasonable suppositon to assume organisation of cells in the skin also
occurs through chemotaxis.

In Figure 6, we compare patterns observed with the hybrid model with patterns
seen on animal coats. Ring patterns obtained by numerical simulation of the model
are compared with those on the jaguar, and broad and narrow stripes predicted by
the model are compared with the lionfish. Theoretically, a third type of common
complex pattern was obtained in two-dimensions; the large and small spots shown
in Figure 3(b). Both rings and broad and narrow stripes can be observed in large
regions of parameter space (under receptor sensitivity laws), and are relatively
insensitive to the regularity of the underlying chemical kinetics – see section on
robustness above. The large and small spots, however show much greater sensitivity
to the underlying pattern. Despite the appearance of such patterns in theory or under
highly regular chemical concentrations (such as in Figure 3(b)), they are less likely
to arise in biological systems, where greater variation is to be expected. Intriguingly,
this may be reflected in pigmentation markings. Both rings and broad/narrow stripes
have been observed on the skins of a variety of animals, yet we have been unable
to find biological examples of the third type.
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Fig. 6. Comparison between complicated animal skin patterns and patterns produced by
the hybrid model. The right column compares thick and thin dark stripes with the pig-
mentation patterns seen on the lionfish. The left column compares ring patterns with
those of the young jaguar. The lionfish picture appears by courtesy of Steve Hogan
(http://www.diversionoz.com/Steve/)

5.2. Bacterial chemotaxis

We now consider a simple model for pattern formation in bacteria (for exam-
ple,E. coli) in an environment containing two chemotactic substances. A detailed
model for signal transduction of a single attractant at the individual cell level has
been analyzed [36], but here we use a simpler continuum description that uses
the receptor-based schemes developed earlier. This model illustrates how differ-
ences in the local movement rules with two species leads to significantly different
macroscopic patterning. In one dimension, the cell density evolves according to the
equation,

∂n

∂t
= Dn

∂2n

∂x2
− ∂

∂x

(
nχ1(u, v)

∂u

∂x

)
− ∂

∂x

(
nχ2(u, v)

∂v

∂x

)
(63)

Experimentally, techniques have been developed which allow the creation of sta-
tionary linear chemical gradients in chemotaxis chambers, [14]. Consequently we
shall assume stationary chemical profiles of this type in the above model. The
chemotactic sensitivity functions considered are derived using transitional rates
of the types considered in Section 3, summarized here in Table 1. We choose
α = β = 10.0, Dn = 1.0, k1 = k2 = k3 = 1.0. We assume an initially ho-
mogeneous cell distribution, with no net flux of cells across the boundary. The
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Table 1.Classification and functional form of the chemotactic sensitivities for the simulations

Sensitivity type χ1 χ2 Classsification

Same receptor α/(k1 + k2u + k3v)2 β/(k1 + k2u + k3v)2 Type 1
Different receptor (linear) α/(k1 + u)2 β/(k2 + v)2 Type 2

Different receptor (nonlinear)αv/(k1 + u)2(k2 + v) βu/(k2 + v)2(k1 + u) Type 3

time-independent version of this equation can be solved analytically to obtain the
heterogeneous steady state.

5.2.1. Competing attractant gradients

Chemoattractant gradients ofu andv are plotted in Figure 7 (left). Here we as-
sume competing linear attractant concentrations of equal slope and maxima. The
cell density at the heterogeneous steady state under the sensitivities of Table 1 in
response to these attractant gradients are shown in Figure 7 (right). When both
attractants are assumed to bind to the same surface receptor (Type 1), the chemo-
tactic fluxes balance, resulting in a homogeneous cell density (solid line, Figure
7 (c)). For attractants binding to different cell surface receptors(Type 2 and Type
3), however, cell density peaks emerge at a point between the maxima of the two
chemoattractants (Figure 7 (a) = linear, Figure 7 (b) = nonlinear). The saturation of
response at higher chemical concentrations results in a weaker chemotactic effect
at these regions, and cells aggregate in the centre.

By varying the maximum concentration (and hence slope) ofv, we observe
further differences in the macroscopic cell density for the various sensitivity types.
In Figure 8, (a), we plotu (solid) andv (dashed) concentrations and now consider
varying the maximum ofv, Vm. Cell densities under Type 1 sensitivities are plot-
ted in Figure 8 (b). WithVm < 1.0, the gradient ofu is larger andu dominates
cell movement. Consequently, cell aggregations occur at maxima ofu. As Vm is
increased above 1.0, however, the gradient inv is stronger, resulting in switching
the cell aggregation tov maximum. A similar effect is observed for Type 2 sensi-

Fig. 7.Cell density response to competing attractant signals. Left: Chemical concentrations
of u, solid line, andv, dashed line. Right: heterogeneous cell densities in response to these
signals for (a) Type 2 sensitivities, (b) Type 3 sensitivities and (c) Type 1 sensitivities
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Table 2. Table summarising the results for the bacterial cell model. Results classified in
terms of the position of the aggregation with respect to the high concentrations ofu or v.
Note that “atu” may mean the the aggregation isbiasedtowards the higher concentrations
of u, rather than at the maximum. Where the aggregation response is particularly small, we
have indicated this. Summaries in bold face demonstrate where the behaviour is particularly
different for one sensitivity law, as compared with the others

Equiv. attractants Comp. attract: variousVm Gradient vs constant

Sensitivity Aggregation Agg.Vm Agg. Vm low Agg. Vm high Agg.Vm low
Type high

Type 1 None Agg. atv Agg. atu Small agg. atu Agg. atu
Type 2 Centre Agg. atv Agg. atu Agg. atu Agg. atu
Type 3 Centre Agg. at u Small agg. Agg. atu Small

at v agg. atu

tivities, Figure 8 (c), yet in a region aroundVm = 1.0, the cell density maximum
lies between the peaks in chemical concentration. A completely different behavior
occurs under Type 3 sensitivity functions, Figure 8 (d). Low values ofVm (e.g., 0.1)
decrease the effective response both tou andv. Consequently, a small aggregation
occurs which is biased towards the maximum concentration ofv. This may initially
appear counterintuitive, however from Table 1 we see that for Type 2 sensitivities
andv small,χ1 is small. A reverse effect is observed at larger values ofVm, e.g. 5.0,
and the aggregation is shifted towards theu maximum. Here, a shallow gradient
can be detected by the cells, despite the presence of a much stronger second signal.

5.2.2. Attractant gradient vs constant attractant level

We study the response to a single attractant gradient, yet with a uniform concen-
tration of a second attractant. The forms for the concentrations ofu (solid) andv

(dashed) are plotted in Figure 9 (a), and once again we examine responses to the
three sensitivity laws under variation ofVm. At high concentration levels ofv and
Type 1 sensitivities, cell aggregations at theu maximum is minimal, Figure 9 (b).
This occurs via high levels ofv resulting in occupacy of the receptors which satu-
rates the response. DecreasingVm results in an enhanced aggregation. For Type 2
sensitivities, the aggregation tov is the same, regardless of the level ofVm, Figure
9 (c). The opposite behaviour to that described for Type 1 sensitivities occurs under
Type 3 sensitivity rules. Here, the aggregation in response tou is minimised at very
low levels ofVm, and maximised at high levels, Figure 9 (d).

5.2.3. Summary of the bacteria response

The aggregation in response to two gradients demonstrates highly different be-
haviour, depending on the choice of sensitivity functions. These differences are
summarised in Table 2. Experimental techniques which allow the creation of linear
attractant gradients in chemotaxis gradients may be used to test the effect of two
attractant cues, and subsequently test which sensitivity functions may apply in real
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Fig. 8. Cell density response to competing attractant signals. (a) Chemical concentrations
for u, solid line, andv dashed line, maximum concentration ofv determined byVm. (a)
Cell densities under Type 1 sensitivities, (c) cell densities under Type 2 sensitivities, (d) cell
densities under Type 3 sensitivities

systems. Type 3 sensitivities assume that the transduction from external signal to
internal cell movement occurs via some nonlinear combination of the two attrac-
tant cues. The response tov for these sensitivity laws demonstrates how cells can
respond to very low levels of a specific signal, despite the presence of stronger
signals from other sources.

6. Discussion

In this paper we developed a model for the response of a cell population to two
distinct chemicals, either of which may be an attractant or repellant, and we an-
alyzed some of the properties of this model. We generalized the Othmer-Stevens
approach [29] by modeling the tactic response to multiple signals and considered,
in turn, strictly local, barrier, and gradient models. We also considered several dif-
ferent types of chemotactic sensitivity laws, and demonstrated that when organisms
can respond to more than one chemical cue, the integration of signals via differ-
ent combinations of receptor based-response laws leads to many new behavioral
responses. We have shown that one manifestation of this more complex response
is more complicated spatial patterns.

For instance, the model can exhibit spatial pattern of thick and thin stripes as
was shown earlier in a model that involves a single chemotactic substance [30], and
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Fig. 9.Cell density response to a single gradient, while another attractant is fixed at a uniform
level. (a) Chemical concentrations foru, solid line, andv dashed line, concentration ofv
determined byVm. (b) Cell densities under Type 1 sensitivities, (c) cell densities under Type
2 sensitivities, (d) cell densities under Type 3 sensitivities

we suggest that this may be applicable in the context of animal coat markings. The
application to bacterial chemotaxis shows how signals may be filtered such that
very low levels of one stimulus can be detected in the presence of large gradients in
a second stimulus. We have also shown that certain types of sensitivity laws favour
robust patterning.

The patterns determined by the mechanism presented here derive from the
local interpretation by cells of positional information provided by the nonuniform
morphogen distribution. Because cells respond by moving, this leads to global
patterning and in essence, a non-local interpretation of the positional information.
This is in contrast to other models that do not involve chemotaxis, in which the
complex patterns are obtained via the superposition of two linearly unstable modes
[34,26] and the response is strictly local. These models can also generate complex
patterns, but the one presented here is simpler: we rely on a single pattern generator
(the reaction-diffusion mechanism) to create a spatially heterogeneous field and
it is the subsequent interpretation of the field that forms the complex patterning.
An important question that modeling alone cannot answer is what mechanisms are
used in a particular context.
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7. Appendix

We obtain analytical approximations for time independent solutions to the model
below using standard bifurcation analysis (see, for example, Fife (1979) or Grindrod
(1993)). On the scaled one-dimensional domain [0, π ] the model is given by:

∂u

∂t
= ∂2u

∂x2
+ γ 2

(
δ − κu − uv2

)
, (64)

∂v

∂t
= d

∂2v

∂x2
+ γ 2

(
κu + uv2 − v

)
, (65)

with given initial conditions and zero flux at the boundaries. The parameterγ

corresponds to a scaling of both spatialandtemporal scales.
The homogeneous steady state solution for (64)–(65) is given by(u0, v0) =(
δ

κ+δ2 , δ
)

. We definef (u, v) = γ 2
(

δ − κu − uv2

κu + uv2 − v

)
. The dispersion relation,

obtained by looking for solutions of the form exp(λt+ikx) for the system linearized
around the steady state(u0, v0), is given by

(λ(k2))2 + a(k2)λ(k2) + b(k2) = 0, (66)

where,

a(k2) = (d + 1) k2 + γ 2
(
κ + v2

0 + 1 − 2u0v0

)
, (67)

b(k2) = dk4 + γ 2k2
(
1 − 2u0v0 + d

(
κ + v2

0

))
+ γ 4

(
κ + v2

0

)
. (68)

Examination of the dispersion relation, Equation (66), demonstrates that eigenval-
ues have positive real part forb < 0, whereb is determined by Equation (68).
Algebraic manipulation of (68) givesb = 0 when:

d = γ 2 (2u0v0 − 1) k2 − γ 4
(
κ + v2

0

)
k2
(
k2 + γ 2

(
κ + v2

0

)) , (69)

which is positive fork2 >
γ 2(κ+v2

0)

2u0v0−1 . We taked as our bifurcation parameter. We
let k = j (∈ Z) and defined∗ to be the solution of Equation (69). Assume, asd is
decreased, that stability of the homogeneous solution is lost to thej th mode first.
Settingd = d∗ − ε2, for ε small, we consider solutions(u, v) of the form:(

u

v

)
=
(

u0
v0

)
+

∞∑
n=1

εn

(
un

vn

)
. (70)

and expandf as a Taylor series in powers ofε.
Let L be the differential operator:

Lw =
(

∂2

∂x2 − γ 2
(
κ + v2

0

) −2γ 2u0v0

γ 2
(
κ + v2

0

)
d∗ ∂2

∂x2 + γ 2 (2u0v0 − 1)

)
w (71)
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for suitable functionsw : R2 → R. We further define the matrixLj by the action
of L on terms of the form cosjx.

At O(ε):

L

(
u1
v1

)
= 0 and u1x, v1x = 0 at x = 0, π. (72)

This has a solution, (
u1
v1

)
= A

(
u∗
v∗
)

cosjx, (73)

where(u∗, v∗)T is an eigenvector parallel to(
u∗
v∗
)

=
(

2γ 2u0v0

−j2 − γ 2
(
v2

0 + κ
)) , (74)

and A is a constant to be determined.
The solution toO(ε2) is determined uniquely up to the constantB,

(
u2
v2

)
=− MA2

γ 2(v2
0+κ)

(
1
0

)
+B

(
u∗
v∗
)

cosjx + MA2

Q

(−4j2d∗ − γ 2

4j2

)
cos 2jx.

(75)

where

M = γ 2

2

(
u0v

∗2 + 2u∗v∗v0

)
, (76)

Q = 16d∗j4 + 4j2γ 2
(
d∗ (v2

0 + κ
)+ 1 − 2u0v0

)+ γ 4
(
κ + v2

0

)
(77)

At O(ε3):

L

(
u3
v3

)
= γ 2

(
2u0v1v2 + 2v0(u1v2 + u2v1) + u1v

2
1

)( 1
−1

)
+ v1xx

(
0
1

)
= 9.

(78)

The Fredholm Alternative (cf. [11]) states that the above equation has a solution
if and only if 9 is orthogonal to solutions of the adjoint equation. This gives,

0 = ν

(µ − ν) γ 2

∫ π

0
v1xxR cosjx dx +

∫ π

0

(
2u0v1v2 + 2v0 (u1v2 + u2v1) + u1v

2
1

)
× R cosjx dx. (79)

where R is a constant and(µ, ν) is an eigenfunction ofLt corresponding toj2.
This is parallel to (

γ 2
(
v2

0 + κ
)

j2 + γ 2
(
κ + v2

0

)) .
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We can evaluate the above to give:

A

(
A2 − v∗νj2

2γ 2C(µ − ν)

)
= 0 (80)

where

C =
[

2u0v
∗Mj2

Q
+ 2v0u

∗Mj2

Q
− v0v

∗M
γ 2
(
v2

0+κ
)− 2v0v

∗M
4Q

(
4j2d∗ + γ 2

)
+ 3u∗v∗2

8

]
.

Equation (80) implies that asd decreases through the critical value,d∗, two non-
trivial equilibria bifurcate from(u0, v0) according to:(

u

v

)
=
(

u0
v0

)
± ε

(
v∗νj2

2γ 2C(µ − ν)

)1/2(
u∗
v∗
)

cosjx + O(ε2). (81)
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