
A mathematical model for
diffusion-induced grain boundary motion

O. Penrose and J.W. Cahn

Abstract. For a film of metallic alloy immersed in a suitable vapour, we use
a system of four coupled nonlinear differential equations to model the steady
diffusion-induced motion of: a grain boundary, the surfaces of the two grains,
and the triple junction where they all meet. One of the equations models
diffusion along the moving grain boundary; another models the force balance
which determines its speed. The remaining two equations model diffusion in
the surfaces of the two grains. The equations are linked by boundary condi-
tions at the triple junction. The resulting system of differential equations and
boundary conditions is solved here for the case of ‘trailing’ grain boundaries
(ones where the growing crystal grain develops as a layer beneath the surface
of the specimen rather than filling up the entire space between the two sur-
faces) in a limit where the elastic driving force is very small. The main result is
that for small values of ∆c, defined as the (experimentally controllable) jump
in mole fraction of solute at the triple junction, the growth velocity of the
trailing grain is approximately proportional to (∆c)4, but for large positive
∆c the velocity is approximately proportional to (∆c)5. The thickness of the
trailing grain is approximately proportional to (∆c)−2 for small ∆c and to

(∆c)−8/3 for large. There is a negative value of ∆c beyond which the model
predicts that the velocity and thickness are independent of ∆c, but this result
should be treated with caution because the solution may be unstable.

1. Introduction

Diffusion-induced grain boundary motion (DIGM) was first observed by Hillert
and Purdy in 1978 [9]. A thin foil of iron was placed in a vapour of zinc atoms.
The zinc diffused along the boundaries between the different crystal grains in the
foil, but not into the grains themselves, where the diffusivity is much lower. Parts of
these grain boundaries were then observed to move, the grain on one side growing
while the grain on the other side shrank. The zinc atoms which had diffused in
along the grain boundary were left behind in the newly grown part of the crystal,
thereby alloying it. Hillert and Purdy also demonstrated that DIGM occurred for
de-alloying by placing a foil of an iron-zinc alloy in a vacuum. DIGM has been
observed in many other alloy systems and with many geometries; for a review see
ref. [7].
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There has been controversy in the metallurgical community about the force
that drives DIGM. With a view to helping resolve the controversy, Cahn et al [2]
put forward a phase-field model1 in which the consequences of different assump-
tions about the driving force could be worked out and compared with experiment.
It was concluded that the most likely candidate was a mechanism suggested (in
a slightly different context) by Sulonen[14] and first studied quantitatively by
Hillert[8]; this mechanism is based on the energy of elastic deformations caused
by mismatch between the sizes of the two different types of atom2. It remains the
only mechanism consistent with all experiments and with some insightful gedanken
experiments.

The analysis given in ref. [2] is based on the assumption that the grain bound-
ary is flat, but real grain boundaries are not flat: they can curve in the middle
while still connecting the two sides of the foil, or they can curve so much that
they separate into two parts, one close to each face of the foil. Both types of
grain boundary were observed in the original experiments [9]. We shall call them
connecting and trailing grain boundaries; they are illustrated in Fig. 1.

To model these curved grain boundaries, Fife et al.[5] developed the mathe-
matics of the phase-field model further, deriving a sharp-interface approximation
which led to a system of differential equations for the shape of the grain boundary
(represented in this approximation as a geometrical surface). Some numerical stud-
ies of both phase-field and sharp-interface models were described at this conference
by Vanessa Styles (see also ref. [6]).

2. The equations for the grain boundary

The sharp-interface equations obtained by Fife et al. [5] can also be derived by
physical arguments which do not rely on the phase field model [1, 3]. There are two
differential equations. One of them, describing diffusion within the grain boundary,
can be written (in a specially chosen system of units, v.i.)

d2cgb

ds2
= (cgb(s)− ca(s))v cos θ (− 1

2π < θ < 1
2π) (1)

Here cgb denotes the local mole fraction of solute within the advancing grain bound-
ary, ca denotes the local mole fraction just in front of the advancing grain boundary,
s denotes arc length measured along the grain boundary, v is the (positive) velocity
of the grain boundary in the positive y direction (the y axis being taken parallel
to the faces of the foil, as shown in Fig. 1) and θ is the angle between the grain
boundary and the positive x-axis, which is taken to be perpendicular to the face
of the foil. The local mole fraction in the grain left behind by the advancing grain
boundary is equal to cgb

1For some existence and uniqueness results about the equations of this model, see ref. [4].
2For a detailed analysis of this interaction, arising out of discussions at the conference between
J Ockendon and one of the authors, see ref.[13].
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Figure 1. The two types of steadily moving grain boundary and
the notation used in this paper. In this paper we solve the trailing
case. Arc length in the grain boundary is denoted by s; in the solid-
vapour surface, by σ (with σ > 0 in the shrinking grain, σ < 0
in the growing grain). The angle between the grain boundary and
the x-axis is denoted by θ; the angle between the solid-vapour
interface and the y-axis, by φ.

Usually ca is equal to c0, the concentration in the shrinking grain well ahead of
the moving grain boundary, but near the surface there can be a thin zone in which
the metal in front of the grain boundary arrived there as a result of deposition
from the vapour; in this zone, ca is approximately equal to ceq, the concentration
of solute at a flat interface in equilibrium with the vapour. Let xm be the smallest
local minimum value of x reached by the surface of the shrinking grain at points
other than the triple junction, and let xtj be the x-coordinate of the triple junction.
If xm > xtj (as is the case in Fig.1(b)) then the zone, if it exists, does not meet the
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grain boundary, but if xm ≤ xtj then its inner boundary meets the grain boundary
at a point whose x-coordinate is xm. The rule determining ca can be written

ca =
{

c0 if 0 ≤ x < min(xm, xtj),
ceq if xm < x < xtj.

(2)

The second differential equation, expressing the local normal velocity v cos θ
of the grain boundary in terms of the elastic driving force and the surface tension
force due to the curvature of the grain boundary, is

v cos θ = dθ/ds + ε(cgb − ca)2 if − 1
2π < θ < 1

2π, (3)

where

ε := Y η2Dλ/Mγ2 (4)

is a dimensionless constant measuring the strength of the elastic interaction driving
the DIGM. In this definition, Y is a certain elastic modulus, η is the rate of change
of stress-free lattice spacing with respect to changes in mole fraction, D is the
diffusivity in the grain boundary, λ is its thickness, M is its mobility (velocity per
unit driving pressure) and γ is its energy per unit area.

The units of measurement have been chosen so that Dλ = 1 and also Mγ =
1. In a general system of units, s would be replaced by (Dλ/Mγ)s and v by
[(Mγ)2/Dλ]v, but the formula (4) would not change. Although the values of both
D and M are not known with any accuracy for real metals and are expected to vary
greatly with composition and with temperature (as an Arrhenius exponential of the
reciprocal of temperature) only their ratio, which is less sensitive to temperature,
appears in (4); hence the order of magnitude of ε can be estimated from theory
or experiment. Nevertheless, since η can vary widely (from near zero in silver-gold
to 0.15 in nickel-gold) we expect ε also to vary widely. In the present paper we
investigate the behaviour of this mathematical model in the limit of very small ε.

Eqns (1) - (3) are given here only in the form they take when −1
2π < θ < 1

2π
on the whole of the grain boundary. For values of θ outside this range the equations
are different, reflecting the possibility of the grain boundary’s passing a point in
the metal more than once; this generalization is considered in section 8.

The solutions of eqns (1) and (3) satisfy boundary conditions at each end of
the curve. One of these ends is the triple junction shown in Fig. 1, at which the
grain boundary meets the external surfaces of the two crystal grains. For connect-
ing grain boundaries, the other end is a similar triple junction at the corresponding
point on the other side of the mid-plane of the foil. Assuming that the grain bound-
ary is symmetrical about this plane, the concentration will be an even function of
displacement from this plane and the angle will be an odd function, so that we
need only consider one half of the grain boundary only, with suitable conditions
at the mid-point, which we also take as the origin of the arc length coordinate s:

θ = 0
dcgb/ds = 0

}
(5)
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For trailing grain boundaries, there is no symmetry, but instead there are condi-
tions in the far distance behind the triple junction, namely

θ → 1
2π

cgb − ca → 0

}
(6)

where the location of the point at which s = 0 is now arbitrary.
In addition to the condition (5) or (6) there are two conditions at the triple

junction itself. These conditions are the same for both cases. One of them (arising
from the requirement that the chemical potentials must be continuous at the triple
junction) can be written

ctj = ceq (7)
where ctj denotes the value of cgb at the triple junction and ceq is defined above.
By varying the partial pressure of solute atoms in the vapour, the experimenter
can control the value of ceq and hence that of ctj. The second boundary condition
concerns the direction of the tangent to the grain boundary at the triple junction,
i.e., the value of θtj := θ(stj) where stj denotes the value of s at the triple junction.
In refs [2, 5] the simplest possible approximation was used, namely that the grain
boundary is perpendicular to the surface (i.e. θtj = 0), but this approximation can
obscure some interesting effects. To complete the specification of the boundary
conditions, we need a condition from which θtj can be determined; this condition
is considered in the following section.

3. The Mullins theory for surface motion by surface diffusion

In the presence of a grain boundary the surface of the specimen is not flat because
there is a groove at the triple junction, where the angles are determined by the
surface tensions (free energies per unit area) of the three interfaces meeting there.
The resulting curvature affects the chemical potential at the surface, and gradients
in this chemical potential cause matter to diffuse along the surface so that it is
deposited in some places and removed from others.

A theory of this surface motion by diffusion in the case of a pure substance
was developed by Mullins[10]. According to his ideas, the chemical potential varies
linearly with the curvature, the material flux along the surface is proportional to
the gradient of the chemical potential, and the deposition rate on the surface is
minus the surface divergence of the flux; the resulting local normal velocity of
the surface is therefore proportional to minus the surface Laplacian of surface
curvature, in our case d3φ/dσ3 where σ is arc length along the surface and φ is the
angle between the surface and the y axis. If the surface profile of the metal moves
like a wave travelling in the y direction with velocity v, this local deposition rate
is −v sinφ, and so φ satisfies the differential equation

b d3φ/dσ3 = v sin φ (8)

where b is a dimensionless material constant. In a general system of units, b would
be replaced by the material constant B used by Mullins, which has dimensions
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(length)4 (time)−1 and is related to b by the formula B = b(Dλ)2/(Mγ). Eq
(8), which was given by Kanel, Novick-Cohen and Vilenkin [12], is the nonlinear
generalization of an equation formulated by Mullins[11], which in our notation
would read b d4x/dy4 = v dx/dy.

In ref. [11] Mullins found that the end of the moving grain boundary would
make a fixed angle with the x axis, independent of the speed v (though it would
change sign if the sign of v were reversed). His result can be written

θtj = − 1
6δ (9)

where δ is the discontinuity in φ, which is determined by the surface tension
equilibrium at the triple junction. One of the results of the present paper is a
generalization of (9), eqn (35) below. The extra term on the left side of (35) arises
from the nonlinearity of eqn (8). The right side of (35) would be replaced by zero
for the problems considered by Mullins and by Kanel et al.; this term arises from
a further effect which we now consider.

Eqn (8) was formulated for a pure substance in equilibrium with its vapour.
Here, however, we are concerned with an alloy whose concentration may vary
along the surface. Furthermore the formulation of the boundary condition at the
triple junction has to be amended to take account of flow into and out of the
grain boundary. The relevant generalization of Mullins’ theory has been considered
by Brener and Temkin [1], who (using the same linearization approximation as
Mullins[11]) obtain a pair of equations for the fluxes of both types of atom along
the surface. The present paper applies to an alloy (e.g. iron-zinc) where the solute
(zinc) is volatile while the solvent (iron) can be assumed non-volatile, in which
case only one equation is necessary; for a travelling wave the equation is [3]

b(1− ceq) d3φ/dσ3 = (1− ca)v sinφ (10)

where ca means essentially the same thing as in eqn (1), i.e. ca = c0 at points
which the surface is passing for the first time, and ca = ceq if the surface has been
there before. In the rest of this paper we confine ourselves to the case where ceq

and c0 are close enough together to justify treating the factors 1− ceq and 1− cde

as equal, so that (8) can be used in place of (10).
The boundary conditions on (8) at infinity are, naturally,

φ(σ) → 0 as σ → ±∞ (11)

At the triple junction (where we take σ = 0) the function φ(σ) is discontinuous.
The angles there are related to each other and to the angle at the end of the grain
boundary by

φ(+0)− φ(−0) = δ

φ(+0) + φ(−0) = −2θtj (12)

where in the second line we have assumed that the surface tensions of the two
external surfaces are equal, so that at the triple junction the tangent to the grain
boundary bisects the angle between the tangents to the two external surfaces. A
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second condition comes from requiring the chemical potential of the solute to be
continuous at the triple junction; since this chemical potential depends on the
curvature, the condition is

φ′(+0) = φ′(−0) (13)
where the prime attached to φ denotes a derivative.

Finally, there is a condition arising from the fact that matter is conserved
at the triple junction, so that the algebraic sum of the flows of solvent in the
three surfaces meeting there is zero. Since the flows in the outer surfaces are
proportional to the gradient of the curvature φ′ while that in the grain boundary is
proportional to the gradient of the concentration there, the conservation condition
can be shown[3] to take the form

φ′′(+0)− φ′′(−0) = b−1c′tj. (14)

where c′tj denotes the value of dcgb/ds at the outer end of the grain boundary,
i.e. at the triple junction. In a general system of units the coefficient b−1 would
be replaced by Mγ/Dλb = Dλ/B where B is the material constant mentioned
earlier, which is defined in Mullins’ papers[10, 11].

For the problem considered in refs [11, 12], there is no flow of matter along
the grain boundary, and so the right side of (14) is replaced there by 0.

4. Analysis of the nonlinear surface diffusion equation

In the phase space of the differential equation (8) there is a fixed point at (φ, φ′, φ′′) =
(0, 0, 0). Near this fixed point the equation can be approximated as the linear sys-
tem (d/dσ)[φ, φ′, φ′′]T = A[φ, φ′, φ′′]T where T denotes a transpose and A is the
matrix

A :=


 0 1 0

0 0 1
v/b 0 0


 (15)

The expanding subspace of this fixed point is one-dimensional and is spanned by
the vector (1, α, α2)T where α := (v/b)1/3, so that on it we have φ′ = αφ, φ′′ =
α2φ. The corresponding expanding manifold can be (locally) parametrized by the
variable φ : in some neighbourhood of the fixed point the other two coordinates can
be expressed as power series in φ whose linear terms correspond to the linearized
solution, namely

φ′ = αφ[1− 1
78φ2 + 79

628680φ4 − 1021
6521926320φ6 + . . . ] (16)

φ′′ = α2φ[1− 2
39φ2 + 98

78585φ4 − 5764
407620395φ6 + . . . ] (17)

These series were computed by requiring them to satisfy the equations φ′dφ′/dφ =
φ′′, φ′dφ′′/dφ = α3 sin φ

The contracting subspace of the fixed point is two-dimensional, being spanned
by the real and imaginary parts of the vector (1, αω, α2ω2) where ω is either of
the complex cube roots of 1. Since 1 + ω + ω2 = 0, any vector (φ, φ′, φ′′) in the
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subspace satisfies α2φ + αφ′ + φ′′ = 0. The corresponding contracting manifold
can be locally parametrized by the pair φ, φ′; in some neighbourhood of the fixed
point the remaining coordinate φ′′ can be expressed as a power series in these
parameters whose linear term corresponds to the linearized solution:

φ′′ = −p− q + 23
273p3 + 15

182p2q + 4
91pq2 + 1

91q3 − 125663
73162635p5 (18)

+ 12793
39020072p4q + 36256

14632527p3q2 + 3495
1393574p2q3 + 5961

4877509pq4 + 184
696787q5 + . . .

where p := α2φ, q := αφ′. This series was computed by requiring it to satisfy
φ′∂φ′′/∂φ + φ′′∂φ′′/∂φ′ = α3 sinφ.

5. The matching condition at the triple junction

For the shrinking grain, σ is positive and the function φ(σ) satisfies the boundary
condition (11) for σ → +∞; it therefore belongs to the contracting manifold and
satisfies (18). For the growing grain, σ is negative and the function φ(σ) satisfies
the boundary condition (11) for σ → −∞; it therefore belongs to the expanding
manifold and satisfies (16), (17). The two second derivatives in (14) can therefore
be written

shrinking grain : φ′′(+0) = −α2φ(+0)− αφ′(+0) + . . . by (18)
= −α2φ(+0)− αφ′(−0) + . . . by (13)
= −α2φ(+0)− α2φ(−0) + . . . by (16)

growing grain : φ′′(−0) = α2φ(−0) + . . . by (17)

(19)

so that (14) itself becomes

b−1c′tj = φ′′(+0)− φ′′(−0)

= −α2φ(+0)− 2α2φ′(−0) + . . . (20)

Using (12), which implies φ(±0) = −θtj ± 1
2δ, we can write (20) in the form

b−1α−2c′tj = 3θtj + 1
2δ + H(θtj, δ) (21)

where the higher terms in the series are incorporated in the function

H(θ, δ) := − 2
7θ3 + 3

91θ2δ − 8
91θδ2 − 1

273δ3 + O(|θ|5 + |δ|5) (22)

6. Solving the equations

Only trailing grain boundaries will be studied in this paper. The connecting grain
boundaries will be considered in a forthcoming paper[3]. To simplify the notation
we write c(s) or c in place of cgb(s) from here on.

The problem we consider is to find the speed v of the trailing grain boundary
for a given value of the experimentally controllable parameter ∆c := ceq − c0,
which lies in the interval [−1,+1]. Our method is to find a family of solutions for
eqns (1) and (3) satisfying the boundary condition (6), treating v as a parameter.
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Then we pick out the solution and the value of v so that the boundary conditions
(7) and (21) are satisfied.

We shall make the approximation of assuming that xtj − xm, if positive, is
negligibly small, so that (2) simplifies to ca = c0; this assumption will be justified
a posteriori — see the discussion of eqn (40). It is convenient also to introduce the
new variable ψ := 1

2π − θ, so that eqns (1), (3) become

d2c/ds2 = (c− c0)v sin ψ (23)
dψ/ds = ε(c− c0)2 − v sin ψ if 0 < ψ < π) (24)

with the boundary conditions c → c0, dc/ds → 0, ψ → 0 as s → −∞. In the range
where 0 < ψ < π, the order of the system can be reduced to two by going over to
ψ as independent variable:

(ε(c− c0)2 − v sin ψ)
∂

∂ψ

[
(ε(c− c0)2 − v sin ψ)

∂c

∂ψ

]
= (c− c0)v sin ψ (25)

with the boundary conditions c → c0, [ε(c− c0)2 − v sinψ]dc/dψ → 0 as ψ → 0.
The solutions of eqn (25) depend on the material parameter ε as well as on

the experimentally controllable parameter ∆c. We shall look for a linkage between
these two parameters which leads to a family of solutions which are asymptotically
self-similar in the limit ε → 0. To do this, we seek solutions whose asymptotic
behaviour in this limit is

c(ψ)− c0 ∼ εmĉ(ψ)
v ∼ εnv̂

}
as ε → 0 (26)

where m and n are constants, to be chosen later so that a useful self-similar family
is obtained. To begin the process of choosing m and n, let us require

2m + 1 < n; (27)

then it follows that v sin ψ becomes negligible in comparison with εc2 as ε → 0, so
that (25) simplifies to

ε2+4mĉ
d

dψ

(
ĉ2 dĉ

dψ

)
(1 + o(1)) = εnv̂ sinψ (28)

with the boundary conditions ĉ → 0, ĉ2dĉ/dψ → 0 as ψ → 0. To obtain a useful
result, we require

2 + 4m = n (29)
so that eqn (28) simplifies further to

ĉ
d

dψ

(
ĉ2 dĉ

dψ

)
= v̂ sin ψ (30)

The solution of this equation satisfying the boundary conditions at ψ = 0
can be computed as a series or by numerical integration. The series solution is

ĉ = ±
(

16v̂
15

)1/4

ψ3/4[1− 5
472ψ2 + 511

6683520ψ4 + 66797
357734071296ψ6 + . . . ] (31)
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To apply the concentration condition at the triple junction, eqn (7), we first
evaluate (31) at the triple junction, obtaining

ĉtj = ±
(

16v̂
15

)1/4

ψ
3/4
tj [1− 5

472ψ2
tj + . . . ] (32)

where ψtj := 1
2π − θtj is the value of ψ at the triple junction and ĉtj is defined, in

analogy with (26), by ctj − c0 = εmĉtj. Then (7) becomes ceq − c0 = εmĉtj, i.e.

∆c = εmĉtj. (33)

To apply the triple junction angle condition (21), we need a formula for dc/ds;
eqns (24), (26) and (31) give the asymptotic result

dc

ds
= [ε(c− c0)2 − v sinψ]

dc

dψ
∼ ε3m+1ĉ2 dĉ

dψ
= ±3ε3m+1

4

(
16v̂
15

)3/4

ψ5/4×

×[1− 85
1416ψ2 + 6305

4010112ψ4 − 7198697
357734071296ψ6 + . . . ]. (34)

The sign in (34) is the same as that of c − c0. When (34) is substituted into the
triple junction angle condition (21), using also (26), the result is

3θtj + 1
2δ + H(θtj, δ) = b−1(v/b)−2/3c′tj

= ±b−1/3(εnv̂)−2/3 3ε3m+1

4

(
16v̂
15

)3/4

ψ
5/4
tj [1− 85

1416ψ2
tj + . . . ](1 + o(1)). (35)

To make eqn (35) approach a useful limit as ε → 0, we require the right side
to be formally independent of ε, i.e.,

−2n/3 + 3m + 1 = 0 (36)

Then (35) simplifies (after dividing by 3 and taking the limit ε → 0) to

θtj + 1
6δ + 1

3H(θtj, δ)

= ±b−1/3

4

(
16
15

)3/4

v̂1/12ψ
5/4
tj [1− 85

1416ψ2
tj + . . . ] (37)

where the sign is the same as that of ĉtj. The solution of eqns (29), (36) is m =
1, n = 6, and these numbers also satisfy (27). Thus we can now be more specific
about the ansatz (26) and the formula (33), replacing them by

c(ψ)− c0 ∼ εĉ(ψ)
v ∼ ε6v̂

}
as ε → 0

∆c = εĉtj (38)

From these formulas we can obtain information about the sizes of the struc-
tures under study. The growing crystal grain forms a thin layer under the surface
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of the specimen. Its thickness is the sum of two parts; one part is the depth of its
inner surface below the triple junction, given by

h1 :=
∫ stj

−∞
cos θ ds =

∫ ψtj

0

sin ψ dψ

ε(c− c0)2 − v sin ψ
by (24)

∼ 1
ε3

∫ ψtj

0

sin ψ dψ

ĉ2
by (38)

=
1
ε3

(
15
16v̂

)1/2 ∫ ψtj

0

sinψ dψ

ψ3/2[1− 5
472ψ2 + . . . ]2

, (39)

by (31). The other contribution is the depth of the triple junction below the surface
of the shrinking grain, given by

h2 := − ∫ 0

−∞ sinφ(σ) dσ

= −(b/v)
∫ 0

−∞ d3φ/dσ3 dσ by (8)
= −(b/v)φ′′(−0)
= −(b/v)(α2φ(−0) + . . . ) by (19)
= (b/v)1/3(θtj + 1

2δ + . . . ) by (12)
∼ ε−2(b/v̂)1/3(θtj + 1

2δ + . . . ) by (38)

(40)

Since ε is small, the contribution h1 dominates, and the thickness of the growing
layer is of order ε−3. Obviously this must be less than the overall thickness of the
specimen, so it is a necessary condition for the applicability of these results that
the thickness of the specimen should be of order ε−3 or greater. If the specimen
is thinner than this, then DIGM is possible, if at all, only for connecting grain
boundaries, which are outside the scope of this paper.

Formula (40) shows that the depth of the triple junction below the surface
of the growing crystal is of order ε−2. The sizes of other features of the outer
boundary such as the depth of the triple junction below the surface of the growing
crystal, the difference in thickness of the two crystals, and the thickness of the zone
comprising the parts of the shrinking crystal that are deposited from the vapour
as the grain boundary advances, are likewise of order ε−2. From this it follows that
xtj − xm = O(ε−2) ¿ xtj = O(ε−3), justifying our neglect of xtj − xm in setting
up eqn (23).

7. The speed of DIGM

To complete the calculation we want to find v̂, which determines the speed of the
grain boundary and enters into the formula (31) for ĉ(ψ) from which the shape
and size of the grain boundary can be calculated. We treat ĉtj as known (from (4)
and (38)), so it is a question of solving the pair of equations (32) and (37) for the
two unknowns v̂ and ψtj. A reasonably accurate method of solution is first to take
the cube root of (32) and eliminate v1/12 between the resulting equation and (37)
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to obtain

(Kĉtj)1/3 =
F (ψtj, δ)

ψtj

(41)

where

K :=
4

225b
(42)

F (ψtj, δ) := [12π − ψtj + 1
6δ + 1

3H( 1
2π − ψtj, δ)]

[1− 5
472ψ2

tj + . . . ]1/3

[1− 85
1416ψ2

tj + . . . ]
(43)

As ψtj increases over its allowed range [0, π] at fixed δ the right side of (41)
decreases monotonically from +∞ to a negative value F (π, δ)/π. Eqn (41) therefore
has a unique solution for ψtj provided that (Kĉtj) ≥ −|F (π, δ)/π|3. The value
of |F (π, δ)/π|3 varies from (0.671 . . . )3 = 0.302 . . . at δ = 0 to (0.181 . . . )3 =
0.0059 . . . at δ = π.

An estimate of the value of v̂ for a given ĉtj can be derived from the following
(unproved) bounds, which were obtained from graphs of F (ψtj, δ)− 1

6δ against ψtj

for various δ:

0.35− 0.8ψtj < F (ψtj, δ)− 1
6δ < 1.5− 0.8ψtj (44)

Using these in (41) and solving for ψtj we find

ψtj =
N1 + 1

6δ

0.8 + (Kĉtj)1/3
(45)

where 0.35 < N1 < 1.5.
Solving (32) for v̂ and then using (45) together with the fact that 0.903 <

[1− 5
472ψ2

tj + . . . ] ≤ 1, we obtain

v̂ =
15ĉ4

tj

16ψ3
tj

[1− 5
472ψ2

tj + . . . ]−4

=
15ĉ4

tj

16

(
0.8 + (Kĉtj)1/3

N1 + 1
6δ

)3

N2

i.e. v =
15N2ε∆c4

16

(
0.8ε1/3 + (K∆c)1/3

N1 + 1
6δ

)3

(1 + o(1)) (46)

where 1 ≤ N2 ≤ (0.903)−4 = 1.504 . . . . Thus, provided always that Kĉ ≥
−|F (π, δ)/π|3, the speed of trailing DIGM is approximately quadratic in ε and
proportional to the fourth power of the applied concentration difference ∆c when
∆c is small (compared with (0.8)3ε/K), but linear in ε and proportional to the
fifth power of ∆c, when ∆c is large and positive.

Besides the speed, we can also calculate the thickness of the trailing layer.
To leading order the thickness is given by (39) as v̂−1/2 times an increasing
function of ψtj which is approximately proportional to ψ

1/2
tj at small ψtj and
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approaches a constant as ψtj → π. Consequently, by (45) and (46), the thick-
ness is approximately proportional to ε−3ĉ−2

tj = ε−1(∆c)−2 at small ∆c, and to
ε−3ĉ

−5/2
tj ĉ

−1/6
tj = ε−3ĉ

−8/3
tj = ε−1/3(∆c)−8/3 at large ∆c.

8. Generalizing the equations of the model

To treat the case Kĉ < −|F (π, δ)/π|3 we need to generalize the fundamental
equations of our model to values of θ outside the range − 1

2π < θ < 1
2π used

in (1) and (3). The new possibility is that cos θ may be negative, describing a
section of grain boundary along which s increases to the left instead of the right,
so that the moving grain boundary may be traversing material points that it has
already passed before. The formulation of the equations for such points does not
involve any new (local) physics, just rewriting the old equations in a more general
notation.

For points on the grain boundary where cos θ 6= 0, let us define a local unit
vector n which is normal to the grain boundary and makes an acute angle with
the positive y-axis. Because we are assuming a travelling wave, the local direction
of motion of the grain boundary is in the direction of n, and its normal velocity
in this direction is the positive quantity v| cos θ|. The extension of (1) to general
values of θ is therefore

d2cgb

ds2
= (cgb(s)− ca(s))v| cos θ|, (47)

where ca, as before, represents the mole fraction c just in front of the moving grain
boundary. If the relevant material point has not been passed before by the grain
boundary, ca is given by eqn (2); otherwise it is equal to the value of cgb at the
same value of x for the most recent previous passing, that is ca(x, y) = cgb(x, y1)
for the smallest y1 > y at which (x, y1) is on a grain boundary. Eqn (47) can
also be used at the places where cos θ = 0 since the normal velocity there is zero
regardless of the direction chosen for the unit normal vector.

The generalized force balance equation says that the normal velocity v| cos θ|
equals the sum of the curvature force and the elastic driving force, both reckoned as
positive if they are in the direction of the above unit normal vector. The curvature
force is dθ/ds in the direction of more usual normal vector which is on the left of
a person walking along the curve in the direction of increasing s. This more usual
normal vector is equal to nS(θ), where

S(θ) :=
{

+1 if cos θ > 0
−1 if cos θ < 0.

(48)

Therefore the curvature force in the direction of n is S(θ)dθ/ds. The elastic driving
force always acts in the direction of motion, and is therefore positive under our
sign convention and is given by the same expression as in (3). Combining the three
terms, we obtain the following generalization of the force balance equation (3)

v| cos θ| = S(θ)dθ/ds + ε(cgb(s)− ca(s))2 if cos θ 6= 0. (49)
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Here ca, as in (47), denotes the concentration just in front of the advancing grain
boundary. An equivalent form for (49), which we shall refer to later, is

dθ/ds = v cos θ − ε(cgb(s)− ca(s))2S(θ) if cos θ 6= 0. (50)

Unlike (47), eqn (49) cannot be used at the places where cos θ = 0; at such
places the normal velocity of the grain boundary is zero and so the elastic force on
the grain boundary is not given by the formula ε(cgb(s) − ca(s))2, which applies
only when the normal velocity is non-zero. Nevertheless, if we include the natural
stipulation that (so as to exclude kinks) θ must vary continuously with s, eqn
(49) does make a clear prediction about what happens at places where cos θ = 0,
provided also that sin θ < 0 there. To obtain this prediction, note that eqn (49)
implies, whenever cos θ 6= 0,

d

ds
| cos θ| = S(θ)

d

ds
cos θ

= − sin θ{v| cos θ| − ε(cgb − ca)2} by (49)

≤ v| cos θ|+ ε sin θ(cgb − ca)2 (51)

If we define f(s) := e−vs| cos θ(s)|, it follows that df/ds ≤ 0 whenever cos θ 6= 0
and sin θ < 0. Now let s0 be some value of s at which θ = −1

2π. At this value we
have f(s) = 0 and sin θ(s) < 0, and it follows3 from the non-positivity of df/ds
that f(s) = 0 for all s > s0, and hence that θ remains at the value −1

2π for all
s > s0.

This is a puzzling result. The model predicts that the grain boundary can
have a straight part, as illustrated in Fig.2, on which there is no normal velocity
and no curvature; yet the mole fractions at nearby points on the two sides of
the straight part are different, which leads one to expect an elastic force on it,
in violation of the force balance principle used to derive (49). Mathematically,
the difficulty is related to the singular character of the differential equation (50),
whose right side is not a continuous function of s as cos θ passes through the value
− 1

2π. The way round the paradox may be connected with stability; for although
the result shows that the straight section of the grain boundary is stable against
small perturbations within the class of travelling wave solutions, it does not prove
stability against perturbations which are outside this class. The theory of these
more general perturbations, in which the shape of the curve in Fig. 2 would depend
on time, is outside the scope of this paper; all we do here is to work out the
travelling wave solution from which such a stability analysis would start.

9. Predictions of the model for the case Kĉ < −|F (π, δ)/π|3
The result just derived implies that the grain boundary consists of two distinct
parts, as illustrated in Fig.2 : a curved inner part on which θ > −1

2π, smoothly
3If there were an s2 > s0 with f(s2) > 0, then by the continuity of θ(s) there would be an s1

satisfying s0 < s1 < s2 with 0 = f(s0) < f(s1) < f(s2), but this last inequality is incompatible
with the non-positivity of df/ds when cos θ 6= 0.
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joined to a straight outer part, parallel to the faces of the crystal, on which θ =
− 1

2π. The outer straight part would be a solution to (50) if the last term were set
to 0 by assumption when cos θ = 0.

triple junction

smooth join

shrinking grain

growing grain

direction 

of motion

straight section
of grain boundary

vapour

curved section
of grain boundary

Figure 2. Sketch of the grain boundary when ∆c < −(ε/K|F (π, δ)/π|3

On the straight part, eqn (47) is simply

d2c/ds2 = 0. (52)

At the smooth join c, dc/ds and ψ are continuous; let us denote their values there
by csj, c

′
sj and ψsj. Then eqn (52) tells us that

c(s) = csj + (s− ssj)c′sj

ctj = csj + (stj − ssj)c′sj

c′tj = c′sj 6= 0 (53)

For the curved part of the grain boundary the method of solving the equations
is nearly the same as in section 6; the only difference is that the places of ctj, c

′
tj

and ψtj are now taken by csj, c
′
sj and ψsj = π. The analogue of (41) can be written

ĉsj =
1
K

(
F (π, δ)

π

)3

= − 1
K

∣∣∣∣F (π, δ)
π

∣∣∣∣
3

(54)
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Putting this into the analogue of the first line of (46), we obtain

v̂ =
15ĉ4

sj

16π3[1− 5
472π2 + . . . ]4

= 0.0455ĉ4
sj

=
0.0455

K4

(
F (π, δ)

π

)12

by (54)

i.e. v =
0.0455ε6

K4

(
F (π, δ)

π

)12

(1 + o(1)) (55)

Provided ∆c is less than the critical value −(ε/K)|F (π, δ)/π|3, the velocity
is independent of ∆c : no matter how large and negative ∆c is made, the velocity
cannot be increased beyond the value given in (55). In a similar way it can be
shown, using (39) and (40), that the thickness of the grain boundary is independent
of ∆c under these conditions. Increases of |∆c| beyond (ε/K)|F (π, δ)/π|3 serve only
to increase the length of the straight part of the grain boundary, which according
to (53) and (54) is the positive quantity

stj − ssj =
(c0 − ctj)− (c0 − csj)

−c′sj

=
|∆c| − (ε/K)|F (π, δ)/π|3

|c′sj|
(56)

Apart from the number 0.0455, which comes from the solution of the grain
boundary equations, the scaled speed v̂ is determined entirely by the non-linear
Mullins theory, depending only on the angle δ at the triple junction and on the
value of K = 4/225b. However, although v̂ is independent of ĉ it is extremely
sensitive to the other parameters, particularly δ : for example, when δ = 0 the
coefficient of K−4 in equation (55) is 4× 10−4, but when δ = π this coefficient is
7×10−11 (the smallness of these numbers is deceptive, since K−4 could be large.).
Moreover, as we have mentioned earlier, the travelling wave solution underlying the
derivation of the results in this section may well be unstable against perturbations
which, if they move forward in the y direction at all, do so with speed less than v.
The stability against such perturbations would presumably get worse as |∆c| was
made larger, since any localized perturbation would (by (56)) have more time to
grow before colliding with the triple junction.
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