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Abstract

In 1983 Hillert obtained the formula Y η2(c+−c−)2 for the driving
force per unit area of grain boundary arising from elastic misfit
in an isotropic alloy, where the mole fractions c+ and c− on the
two sides of the grain boundary are small, η is a measure of the
elastic misfit and Y = E/(1 − ν) where E is Young’s modulus
and ν is Poisson’s ratio. It is shown here that the formula is
still valid (with suitably defined Y, η) when c+, c− are not small.
The formula for Y in a general anisotropic solid is given. The
physical origin of the elastic force on the grain boundary is con-
sidered, with help from the ‘energy-momentum tensor’ devised
by Eshelby to quantify the forces on other crystal imperfections
such as dislocations. The theory also makes a prediction about
the direction of motion of an initially stationary grain boundary.

1 Introduction

When a thin polycrystalline film of a metal is placed in a vapour
consisting of another metal, it can happen that some crystal
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grains grow whilst others shrink, while atoms from the vapour
diffuse in along the grain boundaries and are left behind in the
newly-formed parts of the growing crystal grains. This phenomenon
of diffusion-induced grain-boundary motion (DIGM), first demon-
strated by Hillert and Purdy [1] in Fe-Zn, has since been observed
in many other alloy systems: for reviews see [2,3]. There is no gen-
eral agreement about the nature of the force that drives DIGM —
the various proposals are briefly reviewed in [2,4,5] — but there
is experimental evidence [3,6,7] that, in some cases at least, an
elastic driving force predominates.

The elastic mechanism appears to have been first proposed in
about 1960 by Sulonen [8] who says [9], “A zone, impoverished or
enriched in solute ... is formed ahead of the .. interface as a result
of rapid grain boundary diffusion ... . This zone ... is subjected to
... lattice misfit stresses... It is the lattice strain energy that gives
rise to the driving force ... because there is no counterpart ... on
the side of the new matrix”. A quantitative theoretical treatment
of this mechanism was given in 1983 by Hillert [10]. He found that
the driving force per unit area of grain boundary in an elastically
isotropic material is ?

Eη2

(1− ν)
(c+ − c−)2 (1)

where E is Young’s modulus, ν is Poisson’s ratio, η is the relative
change in lattice spacing per unit change in solute mole fraction,
and c+, c− (assumed by Hillert to be small) are the solute mole
fractions well in front of and well behind the grain boundary. The
physical origin of the formula (1) is that it is the elastic energy
per unit volume at a place where the solute mole fraction differs
by c+ − c− from its value at zero stress; this energy formula was
derived (for a case with sinusoidal composition dependence) by
Cahn [11].

? The formula in Hillert’s paper also contains a factor Vm, the molar volume, but
this factor appears to be due to the oversight of equating the force to a difference
in molar free energies rather than free energies per unit volume.
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In Hillert’s theory the grain boundary is treated as a very thin
layer of liquid, both faces of which are in equilibrium with the
neighbouring crystal. However, as pointed out in ref. [2], this
assumption imposes too many constraints, since it requires the
chemical potentials of both species of atom to be continuous at
the interface. Hillert avoids the difficulty by requiring only the
solute chemical potential to be continuous, but in order to treat
alloys of arbitrary composition one would like to have a theory
that treats both species of atom in the same way. In the present
theory, there is no liquid layer and no phase equilibrium, and so
neither chemical potential need be continuous; what does have
to be continuous is the diffusion potential of Larché and Cahn
[12–14]. For interstitial alloys, the diffusion potential is equal to
the solute chemical potential so that our continuity condition is
equivalent to the one used by Hillert, but for substitutional al-
loys the diffusion potential is equal to the difference between the
chemical potentials of the two species of atom. We shall show
that, for either type of alloy, Hillert’s formula (1) is a good ap-
proximation even when the solute mole fraction is not small.

The nature of the elastic driving force is quite subtle. Although
it arises from elastic stresses, it is not an elastic force in the usual
sense : even though the stress tensor is discontinuous across the
grain boundary, its normal component is continous and the ma-
terial is macroscopically in elastic (mechanical) equilibrium. The
usual kind of elastic force acts on all the atoms an a given re-
gion in the same way, tending to change the local macroscopic
configuration of the material, but the force considered here acts
differentially, tending to change the microscopic configuration of
the atoms in such a way that they fit the lattice of the grow-
ing grain rather than the shrinking one, but not changing the
macroscopic configuration. It is analogous to the forces acting
on dislocations and other crystal imperfections, discussed by Es-
helby in his paper [15] on the elastic “energy-momentum” tensor.
More detail about this application of Eshelby’s tensor is given in
section 7. The magnitude of the force acting on the grain bound-
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ary will be evaluated by equating it to the decrease in total free
energy (which is approximately the decrease in elastic energy)
when the grain boundary advances through unit distance. If the
grain boundary is curved, there will also be a capillary force, but
in the present paper this effect will be neglected and the grain
boundary will be treated as a plane ?? .

Following Larché and Cahn [14], we shall treat the metal as an
elastic continuum and model the diffusion in it by making the
diffusional flux proportional to the gradient of the diffusion po-
tential. The grain boundary is treated as a plane surface across
which the diffusion potential is continuous. This continuity of
diffusion potential does not, however, imply continuity of com-
position, because the diffusion potential depends also on the local
elastic stress, which is not continuous across the grain boundary.

To justify these modelling assumptions, the grain boundary speed
v must not be too large nor too small. If v is too large the solute
does not diffuse far enough ahead of the grain boundary to justify
the use of elastic continuum theory, so that the atomic structure
of the metal must be allowed for; if v is too small, the solute
diffuses so far ahead of the grain boundary that the thickness of
the specimen and/or the curvature of the grain boundary must
be allowed for. In either case, the elastic mechanism may still
be effective, but the treatment given here would be too simple.
The range of values for v over which our simple treatment should
apply is made more precise in section 8, particularly eqn (47).

In 1997 Cahn et al. [5] proposed a phase-field model for DIGM
which made possible a comparison of various different driving
mechanisms. It was concluded that the elastic driving force was
the best candidate, though perhaps not the only one. In that
paper, however, the elastic energy changes were modelled in an

??A mathematical model detailing the way in which the elastic driving force and the
capillary force due to curvature of the grain boundary interact with diffusion in the
grain boundary to determine the shape and velocity of the moving grain boundary
is studied in refs [16],[17]. The elastic driving force seems also to be important for
the theory of discontinuous preciptiation; see ref. [18].
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ad hoc way, while at the same time quite strong assumptions were
made about the internal structure of the grain boundary. The
model used here is quite different. It is not a phase-field model;
the grain boundary is represented not as a layer in which the field
variables vary continously but as a plane surface at which they
change discontinuously. Moreover the diffusivity in the crystal
grains is not neglected as it was in [5]; indeed it will play an
essential part.

2 The elastic energy and equilibrium conditions

The Helmholtz free energy of the specimen can be written ? ? ?

F :=
∫
Ω

[f0(c(x)) + w(x)] d3x, (2)

where f0(c) is the free energy per unit volume at zero stress and
solute mole fraction c, and w is the elastic free energy per unit
volume. The variable of integration x := (x1, x2, x3) is the posi-
tion vector of the relevant material point in some uniform refer-
ence configuration of the specimen, so that a given material point
always has the same value of x, regardless of where the elastic
deformation has taken it to. In this paper the reference configu-
ration is taken to coincide with the configuration of the crystal
far in front of the moving grain boundary. The region occupied
by the specimen in the reference configuration is denoted by Ω.

According to linear elasticity theory [20,21], the elastic free en-
ergy w per unit reference-configuration volume is a quadratic
function of the Cartesian components u1, u2, u3 of displacement
relative to the reference configuration:

w = 1
2

∑
i,j,k,l

λijkl(∆e)ij(∆e)kl (3)

? ? ? External tractions, such as the ambient pressure, can be taken into account
by adding another term to the formula (2). See, for example, eqn (10) of ref. [20].
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where λijkl is the elastic stiffness tensor and (∆e)ij means eij −
e
(sf)
ij where eij := 1

2(∂ui/∂xj + ∂uj/∂xi) is the strain relative to

the reference configuration and e
(sf)
ij is the stress-free strain, which

depends on the local composition and on the local crystal struc-
ture. If the crystal axes in the two grains are differently oriented,
λijkl will be different on the two sides of the grain boundary.

We shall model the dependence of stress-free strain on composi-
tion by assuming linearity (Vegard’s law), i.e. e

(sf)
ij = e

(0)
ij + (c−

c+)ηij, in which c+ is the solute mole fraction far in front of the

grain boundary, e
(0)
ij is the stress-free strain at solute mole frac-

tion c+, and the tensor ηij represents the misfit strain. In cubic
crystals the misfit strain is isotropic, i.e. ηij = const.δij where
δij is the unit tensor, but in hexagonal crystals it can be highly

anisotropic — see ref. [22]. The stress-free strain e
(0)
ij depends

only on the crystal structure and its relation to the reference
configuration. The value of e

(0)
ij is different for each crystal grain,

but is independent of position within the grain. In the shrinking
grain, far in front of the grain boundary, the definition of the
reference configuration ensures that the strain is zero; since this
part of the grain is also stress-free and has c = c+, it follows from
the above ‘Vegard’ formula that e

(0)
ij = 0 there, and hence that

e
(0)
ij = 0 throughout the shrinking grain. In the growing grain,

e
(0)
ij is still independent of position, but it is not zero. The reason

for the difference is that, as the grain boundary passes by, the
material recrystallizes, and the new crystal structure is related to
the reference configuration in a different way. The rearrangement
is equivalent to a plastic deformation without volume change (as

in toothpaste squeezed out of its tube), so that
∑3

i=1 e
(0)
ij = 0. The

equation for (∆e)ij is therefore

(∆e)ij = eij − e
(sf)
ij = 1

2




∂ui

∂xj
+

∂uj

∂xi


−

{
e
(0)
ij + (c− c+)ηij

}
(4)
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where e
(0)
ij = 0 in front of the grain boundary and

∑
i e

(0)
ii = 0

behind.

The elastic strains are determined by minimizing the total free
energy (2) with respect to the displacement field u(x), subject to
certain constraints. The Euler-Lagrange equations for this mini-
mization problem are the equations of elastic equilibrium [20,21]

∑
j

∂tij/∂xj = 0 (5)

where tij is the stress tensor given by

tij =
∑
kl

λijkl(∆e)kl . (6)

We shall assume that elastic equilibrium is reached instanta-
neously, so that (5) holds at all times and at all places other
than the grain boundary.

3 The elasticity problem

We represent the grain boundary as a plane, parallel to the x1, x2

plane in a suitable coordinate system, travelling in the positive x3

direction at a constant positive velocity v. With a suitable choice
for the time and space origins, the equation of the grain boundary
at time t is then x3 = vt. We assume that the solute mole fraction
and the stresses and strains are independent of x1, x2 and that
they approach limits (not necessarily the same) far in front of the
moving grain boundary (x3 → +∞) and far behind (x3 → −∞).
In particular, the stress is zero far from the grain boundary and
the solute mole fractions c+, c− far from the grain boundary are

lim
x3→±∞

c(x1, x2, x3, t) = c± . (7)

We shall look for a solution of the relevant elasticity problem
in which u := (u1, u2, u3) is a function of x3 only, continuous
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everywhere and differentiable except at the grain boundary. In
front of the grain boundary, we have e

(0)
ij = 0, and (4) becomes

(∆e)ij = 1
2

{
dui

dx3
δ3j +

duj

dx3
δ3i

}
−∆c ηij (x3 > vt) (8)

where ∆c := c−c+ (x3 > vt). The stress tensor, according to (6),
is therefore

tij =
∑
k

λijk3duk/dx3 −∆c
∑
k

∑
l

λijklηkl (x3 > vt) (9)

where we have used the symmetry relation λijk3 = λij3k.

The equation of elastic equilibrium (5) simplifies here to ∂ti3/∂x3

= 0; the value of ti3 is therefore equal to its value at +∞, which
is zero. It follows, on setting j = 3 in (9), that

0 =
∑
k

λi3k3duk/dx3 −∆c
∑
k

∑
l

λi3klηkl (i = 1, 2, 3; x3 > vt)(10)

This is a system of three linear equations for the three unknowns
duk/dx3 (k = 1, 2, 3). Its solution can be written

dui/dx3 = ∆c
∑
k

∑
m

∑
n

Zikλk3mnηmn (11)

where Zik denotes the inverse of the matrix (Z−1)ik := λi3k3.
Substituting (11) into (8) and the result into (3) we find that

w = Y (η∆c)2 (x3 > vt) (12)

where by definition η := 1
3

∑
i ηii and

Y :=
1

2η2


 ∑

i,j,k,l

λijklηijηkl −
∑

i,j,k,l,m,n

λi3jkηjkZilλl3mnηmn


 . (13)

It is a fortunate consequence of the special geometrical symmetry
assumed here (solutions depending only on x3) that even with
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anisotropic elasticity the free energy density w depends only on
the local value of c, i.e. the one at the same x3.

The formula (13) is easily generalized to the case where the nor-
mal to the grain boundary lies not along the third coordinate axis
but along an arbitrary unit vector n = (n1, n2, n3); since λijkl is
a tensor, the generalization is

Y (n) :=
1

2η2


∑

ijkl

λijklηijηkl −
∑

ijklmnpq

npλipjkηjkZil(n)nqλlqmnηmn


(14)

where [Z(n)−1]ik =
∑

p,q λipkqnpnq.

The expression (14), for the isotropic misfit case ηij = ηδij, ap-
pears in the theory of structural transformations in solids [23]
and in the theory of phase separation in alloys with coherent
elastic misfit (eqn (31) of ref. [20]). For isotropic elasticity and
misfit, eqn (14) reduces to Y = E/(1 − ν) where E is Young’s
modulus and ν is Poisson’s ratio, a formula due to Cahn [11];
Cahn also gave an approximate generalization to anisotropic cu-
bic crystals [24]. The formula for Y in the case of isotropic misfit
but anisotropic elasticity was given by Khachaturyan [25], in a
calculation of the energy of a crystal with space-dependent com-
position; an equivalent formula was obtained independently by
Hilliard [26]. A case with anisotropic misfit (a Zn-Cd alloy) is
considered in ref.[22], although the method used there appears
to neglect the elastic strain term eij in the formula (4) for (∆e)ij.

To use (4) behind the grain boundary, define modified displace-
ments ũ by

ui := ũi + α(x3 − vt)δ3i (15)

where α is a constant to be chosen so that ũ = 0 far behind the
grain boundary (i.e. limx3→−∞ ũ = 0); then (4) gives
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(∆e)ij = 1
2

{
dũi

dx3
δ3j +

dũj

dx3
δ3i

}
+ αδ3iδ3j− (c− c+)ηij − e

(−)
ij

(x3 < vt) (16)

where e
(−)
ij means the value of e

(0)
ij for x < vt. In the limit x3 →

−∞, both ũ and tij are zero so that, by (6), eqn (16) becomes

0 = αδ3iδ3j − (c− − c+)ηij − e
(−)
ij (17)

(whence α = 3η(c− − c+), since
∑

e
(−)
ii = 0). Subtracting, we find

(∆e)ij = 1
2

{
dũi

dx3
δ3j +

dũj

dx3
δ3i

}
−∆cηij (x3 < vt) (18)

where ∆c := c−c− (x3 < vt). Eqn (18) is formally the same as (8)
but with u replaced by ũ, and the consequent elastic equilibrium
calculation is likewise the same; so the formula for the elastic
energy is still (12), but with Y and ∆c now given their definitions
for the growing grain (i.e. for x3 < vt).

4 A diffusion problem

If a small isothermal change δc(x) is made in the composition
field, and the displacement field u(x) changes so as to maintain
elastic equilibrium, the changes in u(x) have no first-order effect
on the free energy, so that the first-order change is, by (2), simply

∫
Ω

[ df0/dc + ∂w/∂c ] δc(x) d3x, (19)

where ∂w/∂c denotes the derivative of w at constant strain.

Assuming for simplicity that the stiffness tensor λijkl does not
depend on c, we have from (3), (4) and (6)

∂w/∂c :=
∑

i,j,k,l

λijkl(∆e)ij(−ηkl) = −∑
k,l

tklηkl. (20)
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The local diffusion potential µ(x) can be defined as the coefficient
of δc(x) in (19), that is

µ(x) = µ0(c(x)) + ∂w/∂c = µ0(c(x))−∑
k,l

tklηkl (21)

where µ0(c) := df0(c)/dc is the stress-free diffusion potential.
The formula (21) (in the case of isotropic misfit) is due to Larché
and Cahn [14], although their derivation is a little different. To
evaluate the diffusion potential, we use (12) to evaluate the term
∂w/∂c in (21), obtaining

µ = µ0(c) + 2η2Y ∆c . (22)

The formula (22) was given (for isotropic elasticity) by Larché
and Cahn. The definition (21) is general, but (22) depends on
our geometrical symmetry assumption that the composition and
strain do not depend on x1 and x2.

The equation for diffusion in an elastic medium, as formulated by
Larché and Cahn, is (since we are assuming ∂/∂x2 = ∂/∂x3 = 0)

∂c

∂t
=

∂

∂x3

(
B(c)

∂µ

∂x3

)
(23)

where c is the mole fraction of solute and B(c) is a mobility co-
efficient. The mobility is related to the bulk diffusivity D (which
we assume to be independent of composition) by

B(c) = D


dµ0(c)

dc


−1

(24)

so that (23) reduces to Fick’s law ∂c/∂t = D∂2c/∂x2
3 when µ =

µ0(c), i.e. when the stress is zero.

We look for a solution of (23) using the “travelling wave” ansatz

c(x1, x2, x3, t) = φ(x3 − vt) (25)
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where the function φ(x) is continuous except possibly at x = 0,
and satisfies the conditions φ(x) → c± as x → ±∞. Substitut-
ing into (23) and using (24) we obtain an ordinary differential
equation for φ

−v
dφ(x)

dx
=

d

dx


B(φ(x))

dµ(φ(x))

dx




=D
d

dx


 µ′(φ(x))

µ′0(φ(x))

dφ(x)

dx


 (x 6= 0) (26)

where x means x3 − vt, µ(c) means the expression on the right
side of (22), and the primes denote derivatives, so that µ′(c) =
µ′0(c) + 2Y η2.

Integrating (26) and using the condition (7), we obtain a first-
order differential equation which can be rearranged as

dφ

dx
=

(
v

D

)
c+ − φ

1 + 2Y+η2/µ′0(φ)
(x > 0)

dφ

dx
=

(
v

D

)
c− − φ

1 + 2Y−η2/µ′0(φ)
(x < 0) (27)

where Y± denotes the value of Y in the grain where ±x > 0.
The quantity µ′0(φ) is positive, by thermodynamic stability. For
substitutional alloys this quantity can be estimated from ideal so-
lution theory (according to which µ0(c) = (RT/Vm) ln[c/(1− c)],
where R is the gas constant per mole and Vm is the molar vol-
ume) to be µ′0(φ) ≈ RT/Vm[c(1− c)], so that the correction term
2Y η2/µ′0(φ) in the denominator of (27) is roughly 2Y Vmc(1 −
c)η2/RT . There is a similar formula for interstitial alloys. The
correction is therefore small for dilute alloys, and since η is gen-
erally fairly small one expects the term to be quite small even
when the alloy is not dilute, although Larché and Cahn [14] give
an example which illustrates how it can be as large as 0.2. Their
example uses η = 0.05, c = 0.5 and the elastic constants for the
〈111〉 direction in copper.
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The boundary conditions on (27) are that φ(x) → c± as x → ±∞
(by (7)) and that the diffusion potential µ(φ) must be continuous
at x = 0. This last condition follows from our assumption that
the grain boundary is thin enough to be modelled as a geomet-
rical surface, so that there is a local equilibrium with respect to
exchanges of atoms across it. On the other hand the mole fraction
c need not be continuous across the grain boundary, and there is
in fact a small discontinuity there, which we calculate in the next
section. Moreover, in contrast to most diffusion problems, there
is no continuity condition on the normal component of mass flow
(i.e. on the gradient of c or of µ) due to conservation of matter;
this is because atoms can be emitted or absorbed by the grain
boundary, the necessary matter being supplied or removed by
diffusive transport within the grain boundary itself.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

φ

 Fig.1

Fig. 1. Sample trajectories of the differential equation (27) for a case where
c− = 0.1, c+ = 0.2. The solutions need not be continuous at x = 0. In the left-hand
part of the diagram, where x < 0 (i.e. x3 < vt), the only solution that is bounded
on the entire half-line is the constant solution φ = c−; but in the right-hand part,
where x > 0, there are many bounded solutions.

Consider the trajectories of the differential equation (27) in the
(x, φ) plane (see Fig. 1). They are in general discontinuous where
they cross the abscissa x = 0. There is one horizontal trajectory
φ = c± = const. on each side of this abscissa. Since the denomina-
tors in (27) are positive, the non-constant trajectories converge
on the relevant constant trajectory as x increases to +∞, but
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diverge from it as x decreases to −∞. On the half-line x < 0, the
only bounded solution is the horizontal trajectory φ = c−; but
on the half-line x > 0 the solutions are all bounded, converging
to c+ as x → +∞. In symbols, this conclusion can be written

φ(x) = c− (x < 0) i.e. c(x, t) = c− (x3 < vt)

φ(x) → c+ as x → +∞ i.e. c(x, t) → c+ as x3 → +∞ .
(28)

The solute diffuses ahead of the grain boundary a distance of
order D/v (as noted already, in the non-elastic case, by Cahn and
Balluffi [27]), but there is no diffusion behind the grain boundary.

5 The matching condition at the grain boundary

To complete the solution of (26) we apply the condition that the
diffusion potential is to be continuous across the grain boundary.

µ(c(vt− 0)) = µ(c(vt + 0)), (29)

where c(vt ± 0) := lim ε↘0 c(x1, x2, vt ± ε, t). Using (28) on the
left side of (29) and (22) on both sides, we obtain

µ0(c−) = µ0(c(vt + 0)) + 2η2Y+(c(vt + 0)− c+) (30)

where Y+ is the value of Y in front of the grain boundary, defined
by using the elastic constants for the shrinking grain in (13).

An approximate solution for (30) can be found with the help of
the mean-value theorem, which tells us that

µ0(c−)− µ0(c(vt + 0)) = [c− − c(vt + 0)]µ′0(c̄) (31)

where µ′0(c̄) := dµ0(c̄)/dc̄ is evaluated at c̄, a number lying some-
where between c− and c(vt + 0). Using (31) in (30), we obtain
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[c−−c(vt+0)]µ′0(c̄) = 2η2Y+(c(vt+0)−c+). It follows, on solving
this last equation for c(vt + 0), that

c(vt + 0) =
c−µ′0(c̄) + 2η2Y+c+

µ′0(c̄) + 2η2Y+
(32)

so that the total change in solute mole fraction across the shrink-
ing grain is

c(vt + 0)− c+ =
µ′0(c̄)

µ′0(c̄) + 2η2Y+
(c− − c+). (33)

The discontinuity in mole fraction at the grain boundary is

c(vt + 0)− c(vt− 0)= c(vt + 0)− c− by (28)

=
2η2Y+(c+ − c−)

µ′0(c̄) + 2η2Y+
by (32). (34)

6 The force on the grain boundary

The force on the grain boundary is the space rate of decrease of
the total Helmholtz free energy when the grain boundary moves
while the distribution of solute remains the same except just be-
hind the grain boundary. Since the composition is discontinuous
at the grain boundary, solute atoms must be supplied or removed
as it passes by. These atoms enter or leave the crystal by travel-
ling along the grain boundary, which will be represented here as a
reservoir whose diffusion potential µgb equals the diffusion poten-
tial in the crystal at the place where it meets the grain boundary;
this diffusion potential is the same for both crystals.

The total Helmholtz free energy is the sum of the free energy of
the specimen and that of the reservoir. The free energy of the

15



specimen per unit cross-section can be written, using (2), as

L∫
−L

[f0(c(x)) + w(x)] dx3, (35)

where L is half the length of the crystal (assumed to be so large
that we can take c(±L) = c±, etc.). The free energy of the
reservoir is equal to a constant plus µgb times the number of so-
lute atoms in it, and is therefore also equal to a constant minus
µgb times the number of solute atoms in the specimen, which is∫ L
−L c(x) dx3 per unit cross-section. Thus the total Helmholtz free

energy of crystal and reservoir together, per unit cross-section, is

L∫
−L

[f0(c(x)) + w(x)− µgbc(x)] dx3 + C

=
vt∫
−L

[$0(c(x)) + w(x)] dx3 +
L∫

vt

[$0(c(x)) + w(x)] dx3 + C(36)

where C is a constant and $0(c) := f0(c)− µgbc.

The force on the grain boundary is minus the space derivative
of the free energy with respect to the grain boundary’s position,
which in the formula (36) is denoted by vt. Applying the funda-
mental theorem of calculus, we find that the force per unit area
on the grain boundary in the positive x3 direction is

p :=− [$0(c(vt− 0)) + w(vt− 0)] + [$0(c(vt + 0)) + w(vt + 0)]

= Y+η2[c(vt + 0)− c+]2 + [$0(c(vt + 0))−$0(c−)] (37)

where w(vt± 0) := w(x1, x2, vt± 0, t). In the second line we have
used (12) to evaluate w(vt+0), and also (28), which tells us that
c(vt−0) = c−, with the consequence that w(vt−0) = 0. Taylor’s
theorem (with remainder term) tells us that

$0(c) = $0(c−) + (c− c−)$′
0(c−) + 1

2(c− c−)2$′′
0(¯̄c−) (38)
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where ¯̄c lies between c− and c. The definitions of $0, µ0 and µgb

give $′
0(c−) = f ′0(c−)−µgb = µ0(c−)−µgb = 0 and $′′

0(¯̄c) = µ′0(¯̄c).
Putting these expressions into (38), we can use it to write (37)
as p = Y+η2[c(vt + 0)− c+]2 + 1

2 [c(vt + 0)− c−]2µ′0(¯̄c) with ¯̄c lying
between c− and c(vt + 0). It follows, by (33) and (34), that

p=


Y+η2


 µ′0(c̄)

µ′0(c̄) + 2η2Y+


2

+ 1
2µ
′
0(¯̄c)


 2η2Y+

µ′0(c̄) + 2η2Y+


2


 (c+ − c−)2

=Y ∗
+η2(c+ − c−)2 (39)

where

Y ∗
+ :=

1 + 2η2Y+µ′0(¯̄c)/µ
′
0(c̄)

2

[1 + 2η2Y+/µ′0(c̄)]2
Y+ (40)

with c̄ and ¯̄c lying between c− and c(vt + 0) and therefore (by
(32)) quite close to c− . For isotropic elasticity, our result (39,40)
agrees with Hillert’s (1) apart from the factor multiplying Y+ on
the right of (40). The correction terms 2η2Y+µ′0(¯̄c)/µ

′
0(c̄)

2 and
2η2Y+/µ′0(c) are small under the dilute solution conditions envis-
aged by Hillert, although, for the reasons noted in the discussion
of eqn (27), they can be as large as 0.2 under some conditions.

7 Interpretation of the force

According to the first line of (39), the driving pressure (force per
unit area) on the grain boundary is the sum of two contributions;
the first is due to the decrease in elastic energy density when the
grain boundary moves, and the second (a relatively small correc-
tion when 2η2Y+µ′0(¯̄c)/µ

′
0(c̄)

2 is small) can be thought of as an
osmotic pressure associated with the small difference in composi-
tion between the two sides of the grain boundary. Hillert [10] calls
this force “the chemical driving force caused by a discontinuity
in composition at the grain boundary”.
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The elastic contribution to the force is not an elastic force of the
usual kind: the ith component of the elastic force across any plane
x3 =const. is t3i which as we have seen is zero. However, the grain
boundary can be thought of an interface between two different
phases; the “phase” behind the moving grain boundary, which has
the lower elastic energy per unit volume, grows at the expense
of the one in front, which has the higher elastic energy. This is
analogous to the growth of (say) an ice crystal in supercooled
liquid water, where the phase with the lower free energy per unit
volume grows at the expense of the other one.

Another way of thinking about the elastic force on the grain
boundary makes use of Eshelby’s “energy-momentum” tensor
[15]. He defines this tensor as

Pij = wδij −
∑
k

tkj∂ui/∂xk . (41)

It has the property that if S denotes any closed surface with
outward normal nj then the integral

Fi =
∑
j

∫
S

PijnjdS, (42)

is the ith component of the total force exerted by the elastic
medium on the dislocations and other lattice defects (including
misfitting solute atoms) enclosed by S. Let the surface in (42) be
a rectangular box with faces in planes parallel and perpendicular
to the grain boundary. The contributions to the integral from
opposite faces of the box which are perpendicular to the boundary
will cancel out, since the integrand is independent of x1, x2 and
the normal vectors on opposite faces are equal and opposite. As
for the faces parallel to the boundary, the contribution of the
sum in (41) to the integrals over both these faces is zero, because
tk3 = 0 as shown just before (10); so all that remains is the
contribution of the term wδij. The force on the crystal defects
inside S is therefore A(w(a)−w(b)) where x3 = a, x3 = b are the
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planes containing the faces parallel to the grain boundary and A

is the area of each of these faces.

To find the elastic force on the grain boundary, take a = vt+0, b =
vt− 0; then eqns (12) and (28) show that this force is

A[w(vt + 0)− w(vt− 0)]=AY+η2[c(vt + 0)− c+]2 (43)

agreeing precisely with the term containing Y+ in our expression
(37) for the total force. The other term in (37) represents the
“chemical” contribution to the driving force, due to the difference
in concentration across the grain boundary; this force, not being
of elastic origin, is not included in Eshelby’s formula.

8 Discussion

This paper uses a continuum theory to model the diffusive flow
and the elastic deformations in the crystal ahead of the moving
grain boundary. The grain boundary itself is modelled as an infi-
nite plane moving with constant speed. To justify these modelling
assumptions, it is necessary that the length scale for variations
of composition and elastic deformation in the crystal grains be
much larger than the atomic spacing and the thickness of the
grain boundary; in symbols this condition is

D/v À λ (44)

where D is the diffusivity in the crystal grains, v is the speed of
the grain boundary, and λ is its thickness ? ? ?? . Another nec-
essary condition (see ref. [5]) is that the time for diffusion to

? ? ?? According to the data in table 2 of ref.[2], the quantity D/v varies widely;
in the Cu-Ni system it can be as small as about 10−12m at temperature 550◦ C
or below, but as large as 10−6m at 900◦ C, whereas λ is of order 10−9m. Thus it
appears that the condition (44) is satisfied in some DIGM experiments, particularly
at high temperatures, but by no means all. Hillert [10] makes the same point.
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equalize the compositions on the two sides of the grain bound-
ary should be much less than the time for the grain boundary to
pass on, i.e. λ2/Dgb ¿ λ/v where λ is the thickness of the grain
boundary and Dgb the diffusivity within it. This last condition is
equivalent to Dgb/v À λ. Since the diffusivity is much smaller in
the crystal grains than in the grain boundary (indeed, in ref. [5])
the diffusivity in the crystal grains was taken to be zero), we have
D ¿ Dgb, so that Dgb/v is inevitably À λ if (44) is satisfied. The
case where (44) does not hold is discussed in [3].

At the same time, to justify neglecting space derivatives in di-
rections tangential to the grain boundary, the length scale for
variations in a direction normal to the grain boundary should be
much smaller than the length scale for tangential variations. An
upper bound on this latter length scale is the thickness of the
specimen, denoted here by h, so that one requirement is

D/v ¿ h (45)

In general, however, the length scale for tangential variations will
be smaller than h. An estimate of this (potentially) smaller length
scale can be obtained from the equation for diffusion in the grain
boundary, according to which Dgbλ d2c−/ds2 ∼ (c+ − c−)v (the
dimensional version of eqn (1) of ref. [19]); the length scale for
tangential composition variations in the grain boundary is there-
fore (Dgbλ/v)1/2 and the condition for it to be much greater than
the length scale for variations in the normal direction is

D/v ¿ (Dgbλ/v)1/2. (46)

Eqns (44), (45) and (46) can be combined in a single formula,

max


 D2

Dgbλ
,
D

h


 ¿ v ¿ D

λ
(47)

We have already noted that D ¿ Dgb, and so D2/Dgbλ ¿ D/λ;
moreover since the specimen is always much thicker than the
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grain boundary we have D/h ¿ D/λ; so there is always a wide
range of speeds v over which the theory in this paper can be used.

It is sometimes argued [1,28,29] that DIGM does not require any
specific driving mechanism, the decrease in free energy due to
the changes in concentration that accompany the motion being
a sufficient explanation. Against this, Balluffi and Cahn have ar-
gued [30] that this explanation, if correct, gives the implausible
prediction that DIGM can occur even when the two species of
atom are isotopes of one another. The present theory is consis-
tent with the argument of Balluffi and Cahn, predicting that a
mixture of isotopes would not exhibit DIGM, since the ‘Vegard’
coefficient η in the formula (39) for the driving force would be
zero. It might seem that the non-elastic ‘chemical’ term in the
formula (37) could still give rise to a force on the grain boundary
even though the elastic term is zero, but in fact the non-elastic
term is now zero as well because, in the absence of any elastic
contribution to the diffusion potential, the mole fractions are the
same on the two sides of the grain boundary (see eqn (34)).

Besides predicting the driving force for steady-state DIGM, the
present theory also gives a prediction about the direction in which
DIGM will start out, given an initially stationary grain boundary.
The mechanism is described by Sutton and Balluffi [4]: “Solute
atoms initially diffuse into the boundary. They then begin to
penetrate into the two adjoining crystals. ... coherency stresses
are generated in the thin diffused layers ... if they remain coher-
ent with the bulk. If the boundary layer is asymmetric ... the
boundary layer will be urged to move towards the crystal with
the higher strain energy in order to consume it. Once begun, this
process can continue in a self-sustaining manner.” To make this
description quantitative, suppose that the material is initially
unstressed on both sides of the grain boundary, at solute concen-
tration c∞ and diffusion potential µ0(c∞). Now let the diffusion
potential in the grain boundary be changed to a new value µgb.
In each grain the diffusion potential now varies from µgb at the
grain boundary to µ0(c∞) at large distances from it; the resulting
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gradients of diffusion potential cause material to diffuse, bringing
about elastic misfit strains on both sides of the grain boundary.
Making the plane x3 = 0 the initial position of the grain bound-
ary, with an arbitrary choice for the positive direction along the
x3 axis, and then carrying out a calculation like the one that led
to (37), it can be shown that the force per unit area on the grain
boundary before it has started to move is

p=(Y ∗∗
+ − Y ∗∗

− )η2(cgb − c∞)2 (48)

where cgb is defined by µgb = µ0(cgb). Here the definition of Y ∗∗
+

is like that of Y ∗
+, eqn (40), but with c− and c(vt + 0) changed

to c∞ and cgb in the definitions of c̄ and ¯̄c; the definition of Y ∗∗
−

is like that of Y ∗∗
+ but with Y+ replaced by Y−. If the crystal

is anisotropic, with differently oriented crystal axes in the two
grains, then Y , as defined in eqn (13), may take different values
on the two sides; there will then be an elastic force pushing the
grain boundary towards the grain with the larger value of Y , as in
Sutton and Balluffi’s explanation. A nice experiment of Liang and
King [22] using hexagonal Zn-Cd bicrystals confirms that DIGM
starts if and only if the crystal axes and the grain boundary are
oriented so as to make Y different in the two grains.

Once the motion has started, one expects the stress in the newly
grown piece of crystal to be small, except in a region near the
original position of the grain boundary; so by the time the grain
boundary has travelled a distance comparable to the thickness
of the specimen, the retarding effect of the elastic deformation
in the growing grain will have begun to die away and the force
will eventually be given by the steady-state formula (39) which
involves the elastic constants of the shrinking grain only.

If the grain boundary is not straight initially, the local direction
of the normal vector n varies with position and so the local value
of Y ∗∗

+ −Y ∗∗
− , which depends on n (see eqn (14)), also varies with

position (a possibility mentioned in ref.[22]) and may even have
different signs in different places. As a result the initial direction
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of motion may be different at different places on the same grain
boundary. Indeed some experiments do show different directions
of motion on different parts of the same grain boundary; for an
example see Fig 9 of ref. [2].

The mechanism for DIGM discussed here is akin to the mecha-
nism for liquid-film migration (LFM) proposed in 1984 by Yoon,
Cahn, Handwerker, Blendell and Baik [31,32], but there are im-
portant differences. LFM is a phenomenon similar to DIGM but
with a layer of liquid between the two crystal grains. Yoon et al.
assume, just as in the present paper, that diffusion just ahead of
the advancing liquid film sets up a stress field whose effect on the
chemical potentials must be allowed for; but there are now two
interfaces, at each of which both chemical potentials, rather than
just their difference, must be continuous. Moreover, the role of
diffusion in controlling the speed of migration is also quite differ-
ent: for LFM, the controlling factor is the rate at which atoms can
cross from one face of the film to the other, whereas for DIGM it
is the rate at which they can be transported by lateral diffusion
from one part of the grain boundary to another (and, ultimately,
to or from the environment of the specimen).
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