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1 Introduction

The standard way of defining the (bulk) thermodynamic free energy density
in statistical mechanics is the one developed by Ruelle[3] and Fisher[5] and
expounded in Ruelle’s book [4]. One of the main consequences of this def-
inition is the theorem that the free energy density f for a classical system
with interactions of a suitable type depends only on the temperature T and
the particle number density ρ (or, in the case of a mixture of particle types,
the number densities of all the particle types). The free energy density does
not depend on the shape of the container. According to thermodynamic
limit theory, therefore, the system behaves like a fluid, offering virtually no
resistance to changes of shape, and there is no such thing as elasticity in the
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thermodynamic equilibrium theory: a body under a finite elastic strain is
regarded as being at best in metastable equilibrium.

Possibly as a result of this fact, very little work has been done on the
statistical mechanics of elasticity. That which has been done[1, 2, 6] con-
centrates on ideas which enable us to define the elastic moduli of linear
elasticity theory in terms of equilibrium properties of the system. How-
ever not all elastic effects are linear, and non-linear elasticity presents some
phase transition phenomena which should be very interesting to practioners
of statistical mechanics, particularly the austenite-martensite transition and
the possibility of designing shape-memory materials which take advantage
of this transition[8].

In non-linear elasticity theory the material is regarded as a continuous
medium which has reached its present state by deformation from an unde-
formed reference state; if we denote the position of a material point in the
reference state by a vector x and its position in the deformed state by y, then
the local elastic strain is determined by the deformation gradient ∇xy(x).
The fundamental assumption of the theory is that the total free energy of
the system is obtained by summing the contributions from the separate ele-
mentary parts of the material, and that the free energy of each elementary
part depends only on the local elastic state of that part. Thus, the total
free energy can be written as an integral over the region Ω0 occupied by the
undeformed system

F =
∫

Ω0

fel(∇xy(x)) dx (1)

where the ‘stored-energy function’ fel, a function of the deformation gra-
dient, is the free energy of the deformed material per unit pre-deformation
volume. The equilibrium state y(·) of the deformed specimen can be found
by minimizing F with respect to the function y(·) subject to boundary con-
ditions describing the tractions or other constraints applied at the surface
of the specimen. The minimization is not trivial, because the deformation
gradients at different points in the specimen cannot be varied independently,
and if in addition the function fel is non-convex a rich variety of phenom-
ena become possible, such as the austenite-martensite transition mentioned
above.

To apply statistical mechanics to nonlinear elasticity, it is clearly nec-
essary to do something different from the standard thermodynamic limit
theory based on the Gibbs canonical ensemble. The approach used in the
present paper is to use a modified ensemble, based on constraints which
model the fact that a real solid would take an absurdly long time to reach
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the equilibrium state predicted by the canonical ensemble. The philosophy
is similar to that used in the statistical mechanics of metastable states[12, 9],
where constraints can be used to model the fact that the nucleation of the
new phase may be extremely slow.

The main purpose of the present paper is to suggest a way of defining
the free energy fel appearing in eqn (1) in terms of a restricted partition
function, and to derive some of the simplest properties of this function,
particularly some convexity properties. It is to be hoped that, eventually, a
formula such as (1) will come out of the theory, but no such derivation will
be attempted here.

2 A microscopic model for a deformable solid

To see how statistical mechanics might be applied to deformed states of a
solid, consider for simplicity a two-dimensional monatomic system for which
the equilibrium state at sufficiently low temperatures and high densites is
a crystal in which the mean positions of the atoms lie on a square lattice.
The principles should be equally applicable in three dimensions and to other
lattices, but everything would be more complicated.

A microscopic model that appears to have this property is a system of
rotatable hard disks in which four special points or ‘poles’ are fixed to each
disk at equally spaced positions around the circumference, and there is a
two-body attractive interaction between any pair of disks with ‘poles’ that
are close together (see Fig. 1).

⊕⊕ ⊕⊕ ⊗⊗ ⊗⊗

⊗⊗ ⊕⊗ ⊕⊕ ⊕⊗
Fig. 1 A model whose molecules are interacting rotatable disks. The

four ‘poles’ of each disk are at the places where the cross meets the circum-
ference. For each pair of molecules in the top line the crosses are aligned
with the line of centres and so the molecules attract (i.e. their interaction
energy is negative); but none of the pairs in the bottom line are properly
aligned and so none of them interact.
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To illustrate the method, we shall consider a specific model in which
the disks have mass µ, moment of inertia I and diameter D, so that the
Hamiltonian is

H =
∑
i

(
p2
i

2µ
+
J2
i

2I

)
+ U (2)

where pi ∈ R2 is the linear momentum of the ith particle, Ji ∈ R is its
angular momentum, and the potential energy U is a sum of one-body terms
representing the interaction of the disks with the walls of the container
together with a sum of two-body terms representing their interaction with
each other:

U =
∑
i

uwall(qi) +
∑
i<j

[uhc(rij) + uang(qi, φi; qj , φj)]. (3)

In this last formula, the term uwall(qi) is defined to be zero if the disk centred
at qi lies entirely within the container and to be +∞ otherwise. The term
uhc(rij), depending only on the distance rij between the centres qi,qj of the
ith and jth disks, is the hard-core repulsion

uhc(r) =

{
0 if r ≥ D

+∞ if r < D

}
, (4)

while uang is an angle-dependent attractive potential, which we assume for
definiteness to be

uang(qi, φi; qj , φj) = − C

r2+ε
ij

cos2[2(φi − θij)] cos2[2(φj − θij)] (5)

where C, ε are positive constants (If C/r2+ε
ij in (5) were replaced by a Kac

potential, some quantititive properties of the model might be rigorously
obtainable, but that is not the purpose of the present paper.) In the angle-
dependent factor, φi ∈ [0, 2π) is the orientation of one of the polar axes of
the ith disk with respect to some fixed direction (say the x-axis), and θij is
the orientation of the relative displacement vector qi − qj with respect to
this same fixed direction. The variables qi and φi are canonically conjugate
to pi and Ji respectively.
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Fig 2a: undeformed state
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Fig 2b: deformed state
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Fig 2c: new equilibrium state

Fig. 2. Undeformed and deformed states of an elasic solid.

Suppose now that a system with the Hamiltonian (2) is put into a rect-
angular box. At sufficiently low temperatures and high densites we would
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expect its equilibrium state to be a crystal in which the mean positions
of the atoms form a square lattice. Such a state is illustrated in Fig. 2a,
where the circles indicate the ever-fluctuating positions of the atoms. If now
the shape of the box is changed, say to a parallelogram as in Fig. 2b, one
would expect the immediate response of the system to be an elastic defor-
mation, shifting the mean positions of the atoms as illustrated in Fig. 2b.
Equilibrium statistical mechanics, however, would be likely to predict (for
a sufficiently large system) a final equilibrium state such as is illustrated in
Fig. 2c: this state has more surface energy, but less bulk energy because
the local arrangement near each of the internal particles is closer to the
original equilibrium state shown in Fig. 2a. The most likely way for the
system to get from the state in Fig. 2b to the one in Fig. 2c. would no
doubt be for a dislocation to travel along the dotted line in Fig. 2c; but the
activation energy for the nucleation of dislocations can be large, especially
in three dimensions where the formation of a new dislocation involves the
organized motion of many atoms. Therefore one may expect, particularly in
three dimensions, that a deformed state such as the one illustrated in Fig.
2b may have a long lifetime despite not being a ‘true’ equilibrium, and that
the methods of equilibrium statistical mechanics may have something useful
to tell us about such states.

3 The unrestricted ensemble

To define the statistical mechanics more precisely, let us consider a system
consisting of MN disks, where M,N are positive integers, and define a
reference configuration which is similar to the one illustrated in Fig. 2a but
is tightly packed: it consists of a rectangular M × N lattice with spacing
D. This lattice will be denoted by Λ. When the molecules are in this
configuration they can be enclosed in a rectangular box Ω0 whose vertices
have position vectors 0,MDi, NDj,MDi+NDj where i and j are unit vectors
parallel to the x and y axes respectively. The sites of this lattice can be
labelled by ordered pairs of integers (m,n), with 1 ≤ m ≤ M, 1 ≤ n ≤ N ,
in such a way that the position of the (m,n) lattice site is

xmn = (m− 1
2

)Di + (n− 1
2

)Dj ∈ Λ (6)

We associate each molecule of the system with one of these sites, which may
be thought of as its ‘home’, and instead of using single subscripts i etc. as
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in eqn (2) to label the particles we now label them with double subscripts
to show which site of Λ is the particle’s home.

Given any two vectors A,B let us define ΩA,B to mean a parallelogram
with sides A,B and vertices at the points 0,A,B,A + B. Suppose the
system just described to be placed in a box ΩMa,Nb, where a,b are two
vectors with lengths somewhat greater than D and relative orientation such
that a×b is parallel to i× j rather than anti-parallel. In Fig. 2b the vector
a is a positive multiple of i, while b is a positive linear combination of i and
j. The standard (unrestricted) canonical partition function for this system
is

Z(ΩMa,Nb,M,N) =
λMN

(MN)!

M∏
m=1

N∏
n=1

[∫
ΩMa,Nb

dqmn
∫ 2π

0
dφmn

]
e−U/kT ;

(7)
here the momentum integrations are taken care of by the factor λMN , where

λ =
(2πkT )3/2µI1/2

h3
(8)

and Planck’s constant h is included only to ensure correspondence with the
analogous quantum system.

Following the methods developed by Ruelle and Fisher [4, 5], the ther-
modynamic specific free energy (free energy per lattice point) can be defined
by

f = −kT lim
M,N→∞

lnZ(ΩMa,Nb,M,N)
MN

(9)

where the limit is taken at fixed a,b. The specific free energy depends only
on the temperature T and on the specific area (area per lattice point), which
is 2a×b. It is a convex and continuous function of the specific area; it does
not depend on the shape of the container and is therefore the same as for a
rectangular container with the same specific area. The physical reason for
this independence is that, in the unrestricted ensemble, a configuration such
as the one illustrated in Fig. 2c has (because of its lower energy) a much
higher probability than the one illustrated in Fig. 2b, and so the free energy
per unit volume is always close to that of the square lattice, regardless of
the shape of the container.
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4 The restricted ensemble

To get a free energy that depends on the shape of the container, we use a
restricted ensemble. Adapting the notation used in (5), denote the direction
of the line joining the centres of the disks labelled mn and m′n′ by θmn;m′n′ .
In the reference configuration any particle not on the edge has four nearest
neighbours, with labels (m±1, n) and (m,n±1), and the directions to these
neighbours are θmn;m±1,n, etc. Let us denote the four angles subtended by
adjacent pairs of these neighbours by ψ(↙)

mn , etc, defined as in Fig. 3, or by
the formulas in eqn (10).

����
m− 1, n

````����mn    ��
��
m+ 1, n

�
�
�
��
����
m,n+ 1

D
D
D
DD����

m,n− 1

$�
���

��

ψ
(↙)
mn

&
��
��*

ψ
(↗)
mn

  
  

 
) θmn;m+1,n
�

Fig.3 Some of the angles used in defining the restricted ensemble.

In the undeformed configuration, these angles are all right angles. In
the configuration shown in Fig. 2c, however, some of the angles involving
molecules adjacent to the dotted line are close to 45 degrees or 135 degrees
(for example, ψ(↙)

12 = θ13,12 − θ22,12 is about 45 degrees). Thus, we can
exclude the configuration shown in Fig 2c from our restricted configuration
space by requiring all of the angles ψ(↙)

mn etc., to lie between (say) 60 and
120 degrees. In symbols, the inequalities describing these requirements are

ψ(↙)
mn ≡ θm,n+1;mn − θm+1,n;mn ∈ [π/3, 2π/3](1≤m≤M − 1, 1≤n≤N − 1)

ψ(↘)
mn ≡ θm−1,n;mn − θm,n+1;mn ∈ [π/3, 2π/3](2≤m≤M, 1≤n≤N − 1)

ψ(↗)
mn ≡ θm,n−1;mn − θm−1,n;mn ∈ [π/3, 2π/3](2≤m≤M, 2≤n≤N)

ψ(↖)
mn ≡ θm+1,n;mn − θm,n−1;mn ∈ [π/3, 2π/3](1≤m≤M − 1, 2≤n≤N)

(10)
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where the symbol ≡ means that the expressions it connects differ by an
integer multiple of 2π chosen so that all the angles ψ are in [0, 2π).

Besides these inequalities to prevent dislocations, which affect all the
molecules, we shall also impose some conditions which affect only the molecules
on the edge of the system, anchoring them to particular positions relative
to the nearby wall. Suppose, as before, that the system is contained within
the parallelogram ΩMa,Nb whose vertices are 0,Ma, Nb,Ma + Nb. This
parallelogram can be obtained from the rectangle Ω0 = ΩMDi,NDj, which
just fits around the disks when they are in the close-packed configuration Λ,
by the affine mapping x→ G · x, where G, a tensor of rank 2, is defined in
terms of dyadics as

G = (ai + bj)/D (11)

Alternatively, G can be thought of as 1/D times a 2×2 matrix [a|b], whose
first and second columns consist respectively of the components of the vector
a and those of b. By applying the same mapping to the close-packed lattice
Λ, the formula for whose points xmn is given in (6), we obtain a new lattice
GΛ whose points are

ymn = (m− 1
2

)a + (n− 1
2

)b (12)

It is to be expected that the average positions of the particles in the restricted
ensemble will be these lattice points, and our condition will ensure that the
particles on the edge of the lattice (but not the other particles) are indeed
very close to the appropriate lattice points ymn. The condition has to be
chosen carefully, because the proof of our main theorem will require that
when two parallelograms are joined together and the wall between them
removed, the new larger system has a demonstrably larger free energy than
the two smaller ones taken together. The condition is

|qmn − ymn| < δ if m = 1 or m = M or n = 1 or n = N (13)

where δ is a positive length parameter which can be arbitrarily small but
must not exceed a certain value, which depends on the vectors a,b in a way
to be specified later (see eqn(19)).

For the proof of our main theorem it will be necessary to ensure that
none of the particles can stray far from its average position; it may be that
the restriction (10) is already enough to ensure this, but to avoid having to
prove such things we shall impose one further restriction

|qmn − ymn| < R (14)
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where R is another length constant, which may be arbitrarily large. Since
this constraint affects all the particles, the value of R will affect the bulk
elastic free energy we are going to define, but it is to be hoped that for
large enough R the effect on the elastic free energy will be small, and can be
eliminated altogether by taking the limit R→∞ after the thermodynamic
limit.

Now we can define the restricted partition function. It is defined by

Zel(a,b;M,N) = λMN
M∏
m=1

N∏
n=1

[∫
ΩMa,Nb

dqmn
∫ 2π

0
dφmn

]
χ(q11 . . .qMN )e−U/kT ;

(15)
where χ is defined to be 1 if the position vectors satisfy all the inequalities
(10), (13) and (14), but to be 0 otherwise. There is no (MN)! in the formula
this time; such a factor would be inappropriate because the definition of χ
is not symmetrical under permutations of the particles. For some values of
its arguments Zel may be zero; in particular if the angle between a and b is
less than 60 degrees or greater than 120 then the angular constraints (10)
cannot all be satisfied.

Later on we shall need an upper bound on Zel. A simple modification
of the corresponding proof for central forces[11, 5] shows that the potential
defined in (3) is stable, i.e. there exists a positive constant B such that
the potential U for a system of MN particles satisfies U > −MNB, and it
follows from (15) and (14) that

Zel ≤ (λ(πR2)2π)MN (16)

5 Properties of the restricted free energy

The following theorem and its proof are modelled on the results of Ruelle[3,
4] and Fisher[5] for the unrestricted free energy.

Theorem 1 (i) The elastic free energy per particle, defined for parallelogram-
shaped regions by

fel(a,b) = −kT lim
k→∞

logZel(a,b; 2k, 2k)
4k

(17)

and taking values in R∪{+∞}, exists for all non-zero vectors a,b such that
the angle 6 (a,b) between these vectors satisfies π/3 < 6 (a,b) < 2π/3 (this
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angle being reckoned positive when the vector product a×b is parallel to i× j
rather than anti-parallel).

(ii) For given a,b, f(αa, βb) is a convex function of the positive real
numbers α, β, wherever it is bounded above.

The proof depends on the following lemma:

Lemma 1 Let a′,a′′,b′,b′′ be vectors such that a′′ is a positive scalar mul-
tiple of a′, and b′′ is such a multiple of b′, and let M ′,M ′′, N ′, N ′′ be positive
integers. Define M = M ′ +M ′′, N = N ′ +N ′′,a = (M ′a′ +M ′′a′′)/M,b =
(N ′b′ +N ′′b′′)/N . Then we have

Zel(a,b;M,N) ≥ Zel(a′,b′;M ′, N ′)Zel(a′,b′′;M ′, N ′′)×
×Zel(a′′,b′;M ′′, N ′)Zel(a′′,b′′;M ′′, N ′′) (18)
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ΩM ′a′,N ′b′ ΩM ′′a′′,N ′b′

ΩM ′a′,N ′′b′′ ΩM ′′a′′,N ′′b′′

Fig. 4: Four parallelograms fitted together to make the parallelogram
ΩMa,Nb.

Proof of lemma. Translates of the four parallelograms ΩM ′a′,N ′b′ etc. can
be fitted together as shown in Fig. 4 to make the parallelogram ΩMa,Nb.
Use the definition (15) to write the right side of (18) as the product of four
multiple integrals. In the integral representing Zel(a′,b′′;M ′, N ′′), transform
to new position variables defined by qm,n+N ′ = qmn+N ′b′, φm,n+N ′ = φmn;
the region of integration for the new position vectors qm,n+N ′ is the upper
left-hand parallelogram in Fig. 4. Likewise in Zel(a′′,b′;M ′′, N ′) use the
new variables qm+M ′,n = qmn +M ′a′, integrated over the lower right-hand
parallelogram, and in Zel(a′′,b′′;M ′′, N ′′) use qm+M ′,n+N ′ = qmn +M ′a′ +
N ′b′. Then the resulting product of four multiple integrals can be thought
of a single multiple integral over the position coordinates of all the MN
particles. This multiple integral differs from the one representing the one
on the left side of (18) in the following respects:
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1. the region of integration is smaller, since each particle is restricted
to one of the four smaller parallelograms in Fig. 4 instead of being
allowed to go into the other ones as well (as far as the constraint (14)
permits);

2. the condition (13) restricts the space available to the particles adjacent
to the boundary between any two of the smaller parallelograms;

3. the one-body contribution to the Boltzmann factor e−U/kT is smaller,
since the particle centres must keep their distance from the inner
boundaries separating the smaller parallelogams;

4. the two-body contribution to the e−U/kT is smaller, since the attrac-
tive interaction between particles in different sub-parallelograms is not
included.

All four of these differences make the integral representing the right side of
(18) smaller than the one for the left side. The only difference that could
spoil the inequality is that the constraint (10) is potentially less restrictive
on the right side of (18) than on the left, since on the right side it does not
include inequalities affecting particles that are adjacent to the boundaries
between different sub-parallelograms. However, by choosing the positive
number δ small enough, we can ensure that these particles do in fact satisfy
the additional inequalites, so that including these inequalities in the list does
not decrease the value of the integral. A suitable condition on δ to achieve
this is

arcsin[δ/min(|a′|, |a′′|, |b′|, |b′′|)] < 1
2

min(6 (a,b)− π/3, 2π/3− 6 (a,b))

(19)
The right side of (19) is positive, by virtue of the condition on a and b in

the statement of the theorem. The condition (19) ensures (for example) that
neither of the arms of the angle ψ(↙)

mN ′ , which involve particles on both sides
of the horizontal inner boundary in Fig. 4, can deviate from the directions of
a and b respectively by a large enough amount to permit ψ(↙)

mN to go outside
the interval allowed to it by the constraint (10) as it affects the integral for
the left side of (18). 2

Proof of part (i) of the theorem. In (18), set M ′′ = M ′, N ′′ = N ′,a′′ =
a′ = a,b′′ = b′ = b, then take logarithms and divide on both sides by
4M ′N ′. The result is

logZel(a,b; 2M ′, 2N ′)
(2M ′)(2N ′)

≥ logZel(a,b;M ′, N ′)
M ′N ′

(20)
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It follows by iteration that the sequence

logZel(a,b; 2k, 2k)
4k

(k = 1, 2, . . .) (21)

increases. However, by (16), the sequence is bounded above by log(2π2R2λ),
and it therefore has a limit.2

Proof of part (ii) of the theorem. In (18), set M ′′ = M ′ = N ′′ = N ′ = 2k.
Then, proceeding as in the derivation of (20), we obtain

logZel(a,b; 2k+1, 2k+1)
4k+1

≥ logZel(a′,b′; 2k, 2k)
4k

logZel(a′′,b′′; 2k, 2k)
4k

(22)

where a = (a′ + a′′)/2,b = (b′ + b′′)/2. Taking the limit k →∞ and using
(17), we obtain the convexity relation

fel(
1
2

[a′ + a′′],
1
2

[b′ + b′′]) ≤ 1
2

[fel(a′,b′) + fel(a′′,b′′)] (23)

in which a′ must be parallel to a′′ and b′ parallel to b′′. This result shows
that the function fel(αa, βb) in part (ii) of Theorem 1 is convex in α and β.
As we saw in the proof or part 1, this function is bounded below; therefore,
by the theorem[13] that a bounded convex function is continuous, f(αa, βb)
is continuous both with respect to α and to β in any region of the α, β plane
where f is bounded above. (For a proof that the definition (23) of convexity
implies the more usual one where the weights in the average on the right
need not be equal, see ref.[7]). 2

6 Concluding remarks

The restricted free energy defined above is not a useful concept for fluids
and gases. At very low densities, for example, our system would behave like
an ideal gas, but fel as defined would be different from the thermodynamic
free energy of an ideal gas, if only because of the constraint (14). In the
case of a solid phase, however, it is plausible that the fel does give a good
approximation to the actual free energy. If it does not, the most likely reason
is a failure of our assumption that the unconstrained equilibrium probability
of a violation of the angular constraints (10) due to the nucleation of a
dislocation is extremely small.

The theorem given above is only a part of what can be done with the
restricted free energy function defined in Theorem 1. It should be possible
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also to prove a theorem analogous to that of Fisher[5] that the specific free
energy is independent of the shape of the container. It should also be possible
to prove further convexity properties, in particular rank-1 convexity. Rank-
1 convexity is defined by the same formula (23) as was used in Theorem
1, but the requirement that a′ must be parallel to a′′ and b′ parallel to b′′

is replaced by the weaker requirement that the matrices [a′|b′] and [a′′|b′′]
must differ by a matrix of rank 1. The physical significance of this condition
is that if the crystal can form a pair of twins the deformation gradient
matrices for the two twins must differ by a matrix of rank 1. Looking
further ahead, it may also be possible to prove the integral formula (1) for
general deformations and derive the corresponding convexity property of fel,
which is known as quasi-convexity and which implies rank-1 convexity[10].

When martensitic crystals are discussed in non-linear elasticity theory,
much use is made of stored-energy functions which are not rank-1 convex; on
the contrary, they can have a separate minimum for each of two twin vari-
ants whose deformation gradient matrices are rank-1 connected. To bring
such stored-energy functions within the scope of the statistical mechanics
theory, it would probably be necessary to use a separate restricted ensem-
ble for each of the variants. The inequalities analogous to (10) would be
replaced by similar but more restrictive inequalities, the inequalities for the
different variants being incompatible with one another, so that a,b space
would split up into several parts with different free energy functions, one
for each variant, together with an intervening part in which the definition
of elastic free energy proposed here would be inapplicable.
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