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Abstract

A type of reversible cellular automaton is proposed, which can be used to
discuss the question of irreversibility in statistical mechanics. It lives on an
infinite lattice in space-time, whose nodes are points with integer coordinates,
either all even or all odd, and whose edges join all pairs of nearest-neighbour
nodes. The states of the edges in the immediate future of each node are
related to those in its immediate past by a ‘dynamical rule’ which is deter-
ministic and invertible. The assumed probability measure makes the nodes
at time 0 independent, and correlations develop as the time variable t in-
creases because of the dynamical rule. Two types of entropy are defined:
one, analogous to the Gibbs entropy in statistical mechanics, is shown to be
independent of t, while the other, analogous to Boltzmann entropy in statis-
tical mechanics, can change with t and is shown to increase in the sense that
it is minimal at t = 0.

Key words: entropy, irreversibility, direction of time, reversible cellular
automata, probability measures on infinite graphs, Gibbs states.

1 Introduction

Ever since Boltzmann’s time, the problem of irreversibility has been one of
the most fundamental issues in statistical mechanics, and it is still the subject
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of much discussion : see, for example, [12]. The question is this: given that
the laws of mechanics, such as Newton’s laws of motion, are symmetrical un-
der time reversal, how can it be that the behaviour of real physical objects,
which is supposed to be explained by these laws, does not have this sym-
metry? Or, in Boltzmann’s words [3], “is the apparent irreversibility of all
known natural processes consistent with the idea that all natural events are
possible without restriction?” Boltzmann’s explanation of the time-reversal
asymmetry of natural processes is that “ this one-sidedness lies uniquely and
solely in the initial conditions”, by which he means “not ... that for each
experiment one must specially assume just certain initial conditions” but
rather that “it is sufficient to have a uniform basic assumption about the
initial properties of the mechanical picture of the world”. He proposes to
“conceive of the world as an enormously large mechanical system ... which
starts from a completely ordered initial state, and even at present is still in
a substantially ordered state”.

According to this programme, then, the way to understand irreversibility
is to deduce the behaviour of everything in a unified way from the reversible
laws of mechanices plus a suitable assumption about the initial state of the
world. This paper is part of an attempt to carry out the programme implied
by these remarks of Boltzmann, using a greatly simplified model of the world.
An important feature of the thoery is its assumption about the initial state.
This assumption is that at the initial time there are (in a precise sense)
no spatial correlations. Whatever spatial correlations appear later on are
produced by the action of the laws of mechanics. These laws are modelled
here by treating space-time as an infinite lattice, in which the states of the
edges meeting at each node are related by a local rule in the manner of
cellular automata. The local rule is both deterministic and invertible with
respect to time, so that the (microscopic) state of the world at any time
is uniquely determined by its state at any other time, before or after. The
lattice is constructed in such a way that there is an upper bound to the speed
with which causal influences can travel, analogous to the speed of light in
the real world; there is no instantaneous action at a distance.

The assumption that there are no spatial correlations at the initial time
may seem to contradict Boltzmann’s conjecture that the world ‘starts from a
completely ordered initial state’, making it start instead from one that seems
as disordered as could be. However we shall see at the end of the paper
that the Boltzmann entropy of this initial state is at least as small as at any
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later time, so that according to Boltzmann’s own measure of (dis)order, the
entropy, this initial state is at least as ordered as at any later time. Moreover,
it accords with our usual way of thinking to assume that at the beginning
of time there were no spatial correlations, and that whatever correlations
exist now were brought about by subsequent interactions. Our star maps are
correlated with the actual positions of the stars because we have interacted
with those stars by receiving light from them. But we cannot sensibly make
a star map of a part of the universe so far away that the light from it has
not yet reached us: until the light reaches us, the correlation that would be
implied by a realistic star map does not exist.

I have called this theory “the game of everything” (GOE) because its local
rule is like the rule of a board game and its automaton-like character makes
it like Conway’s “Game of Life” [4], while its aim to provide a simplified
model of some important features of the world as a whole could be compared
with the optimistic description “a theory of everything” sometimes used in
describing the search for a quantum theory of gravitation.

Among the questions one might hope to answer using the GOE theory is
this: how is it that we can reliably calculate the macroscopic behaviour of an
isolated system (such as a gas in a box) from its initial macro-state, giving
equal probabilities to all the microstates compatible with this initial macro-
state, regardless of how this initial macro-state was reached? Apparently
the universe has some kind of Markovian character, so that the macroscopic
behaviour of an isolated system depends (in a probabilistic sense) only on
its intial macro-state and not on what happened to it before it got into
that macro-state. Indeed, it is possible to take this Markovian character as
one of the basic axioms of statistical mechanics [16]. But such an axiom
is open to the same objection as the Stosszahlanzatz used by Boltzmann to
derive his kinetic equation for a gas: since it refers to probabilities at many
different times, it may not be compatible with the equations of motion. The
hope (unfortunately not realized here) of deriving a Markovian macroscopic
description from something more fundamental is analogous to what Lanford
actually achieved in his derivation of Boltzmann’s kinetic equation [10] for
a gas using, in place of the the Stosszahlansatz, a probability axiom which
refers only to the initial time.

Within the GOE framework, there are many different possible dynamical
rules, and therefore many different possible models. To show their variety, a
few of the simplest ones are described in section 2. But the main concern of
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this paper is to prove some general results which apply to any GOE model.
The most important ones concern the entropy. Two different types of entropy
are considered. One of them, analogous to the Gibbs entropy in the statistical
mechanics of isolated systems, is shown to be independent of time. The
other, analogous to the Boltzmann entropy, need not be constant and is
shown to have a tendency to increase with time. (For the distinction between
Boltzmann’s definition of entropy and the statistical definition due to Gibbs,
see [16]).

2 Definition of the model

The model lives on an infinite space-time graph Γ consisting of nodes and
edges in Rd+1, where d is the number of space dimensions and the remaining
dimension represents time. The nodes of Γ are points in this space-time
whose d + 1 coordinates have integral values, which must either be all even
or all odd. The edges of Γ are the line segments joining each node to all
its nearest neighbour nodes, i.e. the ones whose space and time coordinates
differ from its own by ±1.

For example, in one space dimension the nodes are the points with integer
coordinates (x, t) which are such that x + t is even. The edges are line
segments joining nearest-neighbour nodes, i.e. from (x, t) to (x ± 1, t ± 1)
(see Figs 1 to 4).

Formally, the model includes both positive and negative values for all the
space coordinates and also for the time coordinate, but we shall not use the
part of Γ with negative t. The physical reason for this is that t = 0 represents
the time when the world began. The model does yield information about the
properties of the part of Γ with negative t, but they are no more than a
mirror image of the corresponding properties of the part with positive t.

The second ingredient of the model is a set ΩE of possible states for each
edge of Γ. The set of conceivable states for Γ is then (ΩE)ΓE , where ΓE
means the set of edges in Γ. The simplest non-trivial case is for ΩE to have
two elements, e.g. {empty, occupied} in which case the state of Γ can be
specified by saying which edges are occupied and which are empty. There
are many other possibilities, but for simplicity it will be assumed here that
the set ΩE is finite.

Given any node with time coordinate t we define its inputs to be the
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states of those edges connecting it to nodes with time coordinate t− 1, and
its outputs to be the states of the edges connecting it to nodes with time
coordinate t + 1. The third ingredient of the model is a dynamical rule
relating the inputs and outputs of each node. This rule is required to be the
same at each node, and to be deterministic (meaning that the two inputs
together determine the two outputs) and invertible (meaning that the two
outputs together determine the two inputs). The set of states of Γ that are
consistent with the dynamical rule is a subset of (ΩE)ΓE which we shall call
Ω.

As an example, the rule could be that each output from a node is the
same as the input to that node in the same space-time direction. If we think
of the occupied edges as the space-time trajectories of a set of particles, the
particles controlled by this rule behave like photons: they always travel at
the same speed and never interact. The one-dimensional case is illustrated
in Fig 1. The name ‘photon’ for this GOE system is not quite as fanciful as
it might appear at first sight: in one dimension, if the state space of an edge
is taken to be < instead of having only two elements, and if we denote the
states of the edges with slope 1 by u and those of edges with slope −1 by
v, then the variable u+ v, evaluated at the nodes, satisfies a finite-difference
approximation to the wave equation.
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Fig 1. The ‘photon’ model in one space dimension. The occupied edges
are shown thicker than the unoccupied ones.

Another possible rule is that each output is the same as the input on the
same (spatial) side of the node. This time, if we think of the occupied edges
as space-time trajectories of particles, each particle is trapped on a particular
bond of the space lattice obtained by projecting Λ on the hyperplane {t = 0}.
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The one-dimensional case (for which the projection on {t = 0} is just the
x-axis) is illustrated in Fig 2.
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Fig 2. The ‘trapped particle’ model in one space dimension, with the
same initial conditions as in Fig 1.

Fig 3 illustrates a one-dimensional variant of the ‘photon’ model in which
the right-hand output is always the same as the left-hand input, but the
left hand output is the same as the right-hand input if and only if the left-
hand input bond is occupied. The effect of this rule, with the same initial
conditions as before, is shown in Fig3. If the space dimension is taken to be
periodic instead of infinite, this model is equivalent to the Kac ring model
[9], [17], in which particles of two colours move in step from site to site on a
ring containing fixed ‘scatterers’, and every time a particle passes a scatterer
it changes colour. In Fig 3, the thick lines with slope +1 are the trajectories
of the scatterers (which are now moving to the right rather than being fixed),
the thick lines with slope −1 are the trajectories of particles of one colour
and the thin lines with slope −1 are the trajectories of particles of the other
colour.

6



x

t

�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

@
@

@
@
@

@

@
@
@

@
@
@

@
@
@

@
@
@
@

@

@
@
@

@
@
@
@
@

@
@

@
@
@

@
@
@
@
@

@
@

@
@
@
@

@
@
@
@
@

@

@
@

@
@

@
@

@
@
@

@

@
@

@
@

@
@
@

@
@
@

@
@

@
@
@

@
@
@
@
@

@
@
@

@
@
@
@
@

@
@
@
@
@
@

@
@
@
@

@
@

�� �� @@
@@�� @@�� @@
@@ @@��@@ @@�� @@
@@ @@ ��@@ @@��@@
@@ @@ ��@@ ��
@@ @@ �� @@��
@@ @@��@@ @@��
@@ @@ ��@@ @@��

@@ ��@@ @@��
@@ ��@@ @@��

Fig 3. A GOE system analogous to the Kac ring model, with the same
initial conditions as in Fig 1.

The last of the four essentially different possibilities with one space di-
mension and with just two states per bond is a modification of the trapped
particle system in which the left-hand input and output are always the same,
but the right-hand input and output are the same if and only if the left-hand
input and output are occupied. For an an initial state with just one occupied
bond, this rule produces a Sierpinski gasket pattern, as illustrated in Fig 4.
If more than one bond is initially occupied, the patterns produced by this
rule can become quite complicated.
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Fig 4 The ‘Sierpinski’ GOE model with just one bond occupied initially.

The GOE system need not be one-dimensional. A simple two-dimensional
example is provided by the dynamic lattice gas of Hardy, de Pazzis and
Pomeau [7], [8]. Here the rule is as in the ‘photon’ model described earlier
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in this section, but for one change: if the inputs to a node correspond to
two particles coming in from opposite directions in space, then the outputs
correspond to two particles going out in the two directions at right angles to
the inputs. Closely related to this ‘HPP’ model is the ‘BBM’ (billiard-ball
model) reversible cellular automaton of Margolus [13], which differs from the
HPP model in that if two incoming particles come in at right angles to each
other, or if there are more than two incoming particles, then they go out
in the same directions as they came in. Margolus shows that his model is
(like Conway’s Game of Life [2]) rich enough to perform any kind of digital
computation if it is started in the right initial state.

This equivalence between the Margolus cellular automaton and a GOE
system is by no means accidental; it turns out that every GOE system is
equivalent to a cellular automaton. The equivalence can be set up in various
ways, of which the following seems the most straightforward. Define the state
of a node to comprise all its inputs — or, equivalently, all its outputs. In
the case of one space dimension, the state of the node at postion x at time
t + 2 is determined by the states of the nodes at positions x − 1 and x + 1
at time t+ 1, and hence by the states of the nodes at positions x− 2, x and
x+ 2 at time t; thus the model is equivalent to a certain cellular automaton
whose clock ticks at even integer times and whose sites are the space points
with even integer coordinates. In the case of d space dimensions, a similar
construction shows that the model is equivalent to a certain d-dimensional
cellular automaton whose sites are the space points all of whose coordinates
are even integers.

3 Probabilities and ergodic properties

The ‘actual’ state of the model of our Universe provided by a GOE system
is a particular element ω of the set Ω comprising all the states of Γ com-
patible with the dynamical rule. Like the state of the real Universe, some
parts of which are completely empty while others contain galaxies, planets,
and even living matter, this state may contain complicated structures and
vary strongly with position. We shall, however, assume that if looked at
on a sufficiently large scale the statistical features of the state (such as the
mean density of matter in the real Universe) are independent of position.
More precisely, we shall assume that there is some translationally invariant
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probability measure µ such that any event having probability 1 under this
measure will happen in the actual state — the actual state is “typical” with
respect to this measure.

Let us define Λ to mean the set of all nodes of Γ, and Λt to mean the
time slice consisting of all nodes whose time coordinate has the value t. For
each node a, we denote by ω(a) its state, defined as before to comprise all
its inputs, or equivalently all its outputs, taken together. Since the number
of inputs to a node in d space dimensions is 2d, the state space of a single
node a is Ωa = (ΩE)2d. Likewise, if A is subset of Λ, i.e. any set of nodes
of Γ, we define its state ω(A) to mean the states of all the nodes in A taken
together, i.e. ω(A) =

⊗
a∈A ω(a). The state space of A is ΩA =

⊗
a∈A Ωa.

Because of the dynamical rule, the state of any node (x, t) is fully deter-
mined by the states of a finite set of nodes in the initial time slice Λ0. This
finite set of nodes, which we shall call the domain of dependence of (x, t) and
denote by D0(x, t), is

D0(x, t) = {(x′, 0) ∈ Λ0 : ‖x′ − x‖ ≤ |t|} (1)

where ‖x − x′‖ means
∑d
i=1 |xi − x′i| with xi the ith coordinate of x. The

notation allows for the mathematical possibility of t being negative, but this
possibility is not important physically.

A measure on Ω can be specified by giving, for each finite subset A of Λ
and each α ∈ ΩA, the probabilities µ({α}) where {α} means {ω : ω(A) = α}.
However, because of the dynamical rule, the state of each A is completely
determined by the state of its domain of dependence, the finite subset of Λ0

obtained by taking the union of the domains of dependence of the elements
of A. So, to specify µ it is sufficient to specify the probabilities µ({α}) as A
runs through all the finite subsets of Λ0.

We take these probabilities to be those for a product measure on Λ0,
defined by

µ({α}) =
∏
a∈A

p(α(a)) for all α ∈ ΩA and all A ⊂ Λ0 (2)

where α(a) means the state of node a when the set A of nodes is in state
α, and p(·) is some probability distribution on the state space Ωa of a single
node (that is, a set of non-negative numbers {p(φ) : φ ∈ Ωa} which sum
to 1). The probabilities for events depending on the states of other finite
subsets of Λ can then determined using the dynamical rule.
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Under the probability measure µ defined in this way, the correlations at
any time t have finite range. That is to say, if Λt denotes the set of all
nodes of Λ having time co-ordinate t, then two finite subsets A and B of
Λt are uncorrelated (statistically independent) if their spatial separation is
sufficiently large :

µ({α} ∪ {β}) = µ({α})µ({β}) if d(A,B) > 2t (3)

where d(A,B) is the spatial distance between A and B, defined by

d(A,B) = min
(x,t)∈A,(y,t)∈B

‖x− y‖ (4)

The reason is that if d(A,B) > 2t the domains of dependence of the two
sets A and B are disjoint, and are therefore uncorrelated under the product
measure (2).

For each time t, let us denote by Ωt the state space of the time slice Λt,
that is, Ωt =

⊗
a∈Λt Ωa. The probability measure on Ω0 defined by (2) can

be thought of as a Gibbs measure corresponding to the formal Hamiltionian

H =
∑
a∈Λ0

Φ0(ω(a)), (5)

where
Φ0(α) = − log p(α) (α ∈ Ωa) (6)

It turns out that the measure on the state space Ωt of a general time slice
Λt is also a Gibbs measure. Since the dynamical rule is deterministic and
reversible, each state of Λt corresponds to exactly one state of Λ0. To find
the state at time 0 from which a given state at time t came, we can apply
the dynamical rule in reverse to find the state of each node in Λ0 separately.
The state of the node (x, 0) is a function of the state of its ‘inverse domain
of dependence’ at time t, that is to say a function of the state of the set of
nodes

Dt(x, 0) = {(x′, t) ∈ Λt : ‖x′ − x‖ ≤ |t|} (7)

Denoting this function by gt(·), we have

ω(x, 0) = gt(ω(Dt(x, 0))) for all ω ∈ Ω (8)
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So the formal Hamiltonian given in (5) can be rewritten in terms of the state
of Λt :

H = −
∑
a∈Λ0

Φt(ω(Dt(a))) (9)

where Φt(·) is defined by

Φt(α) = Φ0(gt(α)) (α ∈ ΩDt(x,0)) (10)

Since the dynamical rule implies a one-to-one correspondence between the
state at time 0 and the state at time t, the probability distribution at time
t is formally exp(−H) with H given by (9). Each term in the right side
of (9) depends only on the state of a set of vertices in Λt, namely the set
Dt(a), a ∈ Λ0, which has diameter 2t in the ‖ · ‖ norm. In other words, the
interactions in this Hamiltonian have the finite range 2t, and so the measure
on Λt is a Gibbs measure, obeying the DLR condition [11].

The product measures on Λ0 defined by (2) are invariant under the spatial
translation operators X1, . . . , Xd defined by the relation

Xiµ({ω : ω(A) = α}) = µ({ω : ω(A+ 2ei) = α}) (α ∈ ΩA) (11)

where A + 2ei is the set of nodes obtained by shifting each element of A by
a distance of two units in the direction of the ith coordinate axis. Since the
dynamical rule is also invariant under spatial translations, it follows that the
measure on Λ obtained by combining (2) with the dynamical rule is invariant
under such translations.

In addition to being invariant under space translations, the product mea-
sures are (by (3)) mixing, and therefore ergodic, with respect to each of the
space translation operators Xi. It follows that the measures obtained by
applying the dynamical rule to these product measures are also ergodic and
mixing with respect to each of the space translations. The ergodic property
that concerns us here is

lim
L→∞

1

(2L)d
∑

−L<n1≤L

∑
−L<n2≤L

. . .
∑

−L<nd≤L
δ(α, ω(Xn1

1 Xn2
2 . . . Xnd

d A)) = µ(α)

almost surely (12)

where A is any finite subset of Λ, α is any state of A (i.e. any element of
ΩA), and δ(α, β) is defined to be 1 if α = β and 0 otherwise.
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It is sometimes argued that we should not apply probability theory to
the universe as a whole, since the universe is a unique object : it was not (so
far as we can ever know) drawn at random from some ensemble of universes.
Equation (12) shows, however, how probability theory can still be quantita-
tively useful even though our universe is unique. If it is found empirically
that limits of the kind shown on the left hand side of (12) appear to exist,
than a reasonable explanation is that the actual universe is ‘typical’ with
respect to some probability distribution which is invariant and ergodic with
respect to space translations. Here saying that the actual universe is ‘typ-
ical’ means that if the probability distribution implies that a certain event
has probability 1, then that event does happen in the actual Universe. More-
over, eqn (12) then gives us, in principle, a method of measuring the relevant
probability distribution — or, if the measurements are too difficult to carry
out in practice, at least it gives us a method of defining the probability dis-
tribution in terms of empirically measurable quantities in a unique universe.
This method of defining probabilities in a unique universe, using a space
ensemble, was suggested in [15] but the idea goes back much further, e.g.
[14].

Under the recipe (2), each single-node initial probability distribution p
gives a different measure µ, but the case where p(·) makes all the states in
Ωa equally probable is particularly important. For this measure the nodes
in every time slice, not just those in the one at time 0, are statistically
independent, that is to say eqn (2) holds with Λ0 replaced by Λt for any
integer t. This measure will be called here the equiprobable measure.

4 Time translations and equilibrium measures

In addition to the space translations Xi defined in (11) we can also consider
a time translation operator T defined by

Tµ({ω : ω(A) = α}) = µ({ω : ω(A+ 2e0) = α}) (α ∈ ΩA) (13)

where A+ 2e0 is the set of nodes obtained by shifting each element of A by
a distance of two units in the direction of the time axis.

A measure that is invariant under T will be called an equilibrium measure.
It is easily checked that the equiprobable measure is an equilibrium measure.
For some dynamical rules there are other equilibrium measures as well. For
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example, in the ‘photon’ model illustrated in Fig 1, there is an equilibrium
measure for which the measure in the initial time slice Λ0 (and, consequently
in all other time slices as well) is of the form (2) with p given by

p(α) = q(u)r(v). (14)

Here u ∈ {0, 1} is the input from the left and v is the input from the right,
while q(u) means q0(1−u)+q1u with q0 and q1 non-negative numbers adding
to 1, and r(u) = r0(1− v) + r1v analogously. Of course q0 is the probability
of the event u = 0, r1 is that of v = 1, and so on. Any allowed values for
q0, q1, r0, r1 give an equilibrium measure; the special values q0 = q1 = r0 =
r1 = 1

2
give the equiprobable measure.

The ‘trapped particle’ model illustrated in Fig 2 also has equilibrium
measures of this type, but only if q0 = r0 (so that q1 = r1, i.e. all bonds are
equally likely to be occupied). The ‘Kac’ model illustrated in Fig 3 has such
equilibrium measures too; this time q0 is arbitrary but r0 and r1 must equal 1

2
,

that is, the left-moving particles are equally likely to be of either colour. The
‘Sierpinski’ model illustrated in Fig 4 has, however, no equilibrium measures
of this type other than the equiprobable measure.

There appears to be a link between these non-equiprobable product mea-
sures and conservation laws. For the photon system, there are two conserved
quantities at each node — the numbers of photons travelling in each direc-
tion —, and there are two arbitrary numbers q0 and r0 in the formula for
the product measure. For the trapped particle model there is one conserved
quantity at each node, the number of particles, and there is one arbitrary
number in the formula. For the ‘Kac’ model there is again one conserved
quantity at each node, the number of particles moving to the right, and
again one arbitrary number in the formula. For the ‘Sierpinski’ model there
are no conserved quantities and no non-equiprobable equilibrium measures.

Even for the very simple systems considered in these examples, there can
also be equilibrium measures which are not product measures. The ‘Kac’
model provides an example. If its initial probability distribution has the
form (2) with p given by (14) with q0 and r0 both different from 1

2
, then

the probability distribution on Λt approaches a limit as t→∞ which is not
a product measure. In this measure the probabilities for the two possible
inputs from the right to a given node are 1

2
, as in the equilibrium product

measure, but it is not a product measure because the different nodes in a
time slice are correlated.
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To deomonstrate that this correlation exists consider two neighbouring
left-moving particles. The probability that they have the same colour at time
0 is r2

0 +r2
1. The probability that during the time interval from 0 to t they will

both meet the same number of right-moving particles is q2
0 + q2

1, and so the
probability that they still have the same colour at time t is (r2

0 + r2
1)(q2

0 + q2
1).

Add to this the probability that they started with different colours and that
one of them met one more right-moving particle than the other, which is
(2r0r1)(2q0q1), and we find that the total probability for the two particles to
have the same colour is 1

2
[1 + (r1− r0)2(q1− q0)2] 6= 1

2
, regardless of the value

of t. So, however large t is, the colours of the two neighbouring left-moving
particles remain correlated, even though for each of them individually the
two colours eventually become equally likely.

5 Entropy

Given any finite subset A set of the GOE lattice of nodes Λ, we can define
its entropy in the usual way (see, for example, [1]), as

S(A) := −
∑
α∈ΩA

µA({α}) log µ({α}) (15)

with the convention 0 log 0 = 0. Given another finite set of nodes B, the
conditional entropy of A with respect to B is defined as

S(A|B) = −
∑
α∈ΩA

∑
β∈ΩB

µ({α} ∩ {β}) log
µ({α} ∩ {β})

µ({β})
= S(A ∪B)− S(B) (16)

where {β} means {ω : ω(B) = β}. Since the logarithms are non-negative, it
follows from this definition that

S(A ∪B) ≥ S(B) (17)

i.e. the entropy is a non-decreasing set function. Also, it can be shown
using Jensen’s inequality that S(A|B) ≤ S(A), and hence by (16) that S is
a sub-additive set function:

S(A ∪B) ≤ S(A) + S(B) (18)
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Let A and B be any two subsets of Λ such that the state of A is determined
by the state of B. We shall write this relationship A � B. The relationship
holds whenever A ⊂ B, but also in other cases, in particular when B is
the domain of dependence of A as defined in section 3 above. Whenever
A � B the set of dynamically admissible states for B is the same as the
corresponding set for A∪B and the probabilities of these states are also the
same, so that S(A|B) = 0 by (16). Since also S(B|A) ≥ 0 eqn (16) gives

S(A|B) = 0
S(B)− S(A) = S(B|A) ≥ 0

}
if A � B (19)

If A consists only of nodes in time slice 0, then the statistical independence
rule (2) implies that S(A) is equal to the number of nodes in A multiplied
by the entropy of a single node at time 0, which we denote by s0 :

s0 := −
∑
ω∈ΩE

p(ω) log p(ω) (20)

Consider now a set A of nodes in a general time slice Λt. The nodes are
no longer statistically independent, but we can still (following Goldstein [5])
define an entropy per site in the limit where A is a very large hypercube:

s(t) = lim
n→∞

S(An(t))

#(An(t))
(21)

where
An(t) =

⋃
−n<x1≤n

. . .
⋃

−n<xd≤n
(x1, . . . , xd, t) (22)

and #(An(t)) denotes the number of nodes in An(t), namely nd. Since this
definition reduces in the case of one space dimension to the Kolmogorov-
Sinai entropy of the probability measure with respect to the space translation
operator X1, we shall call it the Kolomgorov-Sinai entropy per site.

For the case t = 0 the right side of (21) is equal to s0 as defined in eqn
(20) for all n as well as in the large-n limit. The following theorem gives us
the value of the K-S entropy at any other time :

Theorem 1 The Kolmogorov-Sinai entropy per site at time t is independent
of t and is equal to s0, i.e.

s(t) = s0 for all t (23)
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Proof: We have already seen that the result is true for t = 0. For other
values of t, consider any n greater than t and define An−t(0) and An+t(0)
in accordance with eqn (22). Our dynamical rule ensures that An−t(0) �
An(t) � An+t(0). Since the nodes at time 0 are statistically independent, the
entropies of the sets An−t(0) and An+t(0) are respectively #(An−t(0))s0 =
(n− t)ds0 and #(An+t(0))s0 = (n+ t)ds0. Hence, by (19), we have

(n− t)ds0 ≤ S(An(t) ≤ (n+ t)ds0 (24)

On dividing by #(An(t)) = nd, taking the limit n → ∞ and using (21), the
result follows. Q.E.D.

Physically, the reason why the K-S entropy per site, as defined above,
is independent of t is that its definition refers to very large sets of nodes.
Even though some of the information contained in the initial conditions is
escaping with the speed of light, the very large sets of nodes used in the
definition (21) of s(t) are large enough to “recapture” all the information.
No information about the initial state is lost, and so the entropy, defined as
above using arbitrarily large subsets of Λ, does not increase. In this respect
the K-S entropy is analogous to the microscopic Gibbs entropy

∫
ρ log(1/ρ)

of statistical mechanics. For an isolated system, the Gibbs entropy is inde-
pendent of time, and the physical reason for this constancy is essentially the
same as in our case : since the system is isolated, no information can escape.

In contrast to the K-S entropy, which concerns the probability distribu-
tions of arbitrarily large sets of nodes at a fixed time, the entropy of a set
of nodes with fixed size does have a tendency to increase with time. This
tendency made precise in the following theorem.

Theorem 2
S(An(t)) ≥ S(An(0)) (25)

Proof: The proof depends on putting together An(t) and 2d− 1 of its spatial
translates to make a set which is a spatial translate of A2n(t). These 2d sets
are obtained by applying to An(t) the translation operators (Zr)

n, where Zr
is defined by

Zr =
d∏
i=1

(Xi)
r (r = 0, . . . , 2d − 1) (26)

where ri is the ith digit in the binary representation of the integer r. The
sets (Zr)

nAn(t) are disjoint, and their union is a space translate of A2n(t) and
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therefore has the same entropy as A2n(t). It follows, by the sub-additivity
property (18) of the entropy and the invariance of entropy under spatial
translations, that

S(A2n(t)) ≤
2d−1∑
r=0

S((Zr)
nAn(t))

= 2dS(An(t)) (27)

and hence that
S(A2n(t))

#(A2n(t))
≤ S(An(t))

#(An(t))
(28)

Replacing n in the above argument by 2n, then by 4n, and so on, and com-
bining the results, we find that

S(A2kn(t))

#(A2kn(t))
≤ S(An(t))

#(An(t))
(29)

for any positive integer k. But by the definition (21) of KS entropy, the left
side of (29) approaches the limit s(t) as k bcomes very large. The desired
result now follows by using Theorem 1, Q.E.D.

This result is easily generalized to some other shapes for the set A, for
example (in two dimensions) rectangles.

Theorem 2 shows that S(An(t)) increases with t in the sense of being
larger than its initial value, but not that the increase is monotonic. There
are some cases where the increase is indeed monotonic, but there are others
where it is not. For example, in the ‘Kac’ model of section 2 S(A1(t)) in-
creases monotonically to an equilibrium value, but in the ‘trapped particle’
model it does not go to equilibrium at all, being periodic with period 2. In
the ‘Sierpinski’ model a long calculation shows that S(A1(t)) approaches an
equilibrium value, but not monotonically.

The tendency of S(An(t)) to increase with time suggests that this quantity
may be related to Boltzmann entropy, which also tends to increase with time.
Such a relationship has been found by S. Goldstein [5]. Consider a large
block of nodes at time t, namely An(t) for some large number n, and define
its macro-state as the function giving the distribution of these nodes over the
single-node state space Ωa, i.e. the function f defined by

f(α) = #{b ∈ An(t) : ω(b) = α} (α ∈ Ωa) (30)
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The Boltzmann entropy of this macro-state is (in units where Boltzmann’s
constant equals 1)

SB(An(t)) = log
(
∑
α f(α))!∏
α f(α)!

≈ −
∑
α

f(α) log
f(α)∑
α f(α)

(31)

by Stirling’s formula. In the large-n limit we obtain, using the ergodic prop-
erty (12),

lim
n→∞

SB(An(t))

#(An(t))
= S(A1(t)) almost surely (32)

Thus the two different types of entropy in the GOE model correspond to
the two different types of entropy, Gibbs and Boltzmann, that are used in
non-equilibrium statistical mechanics. Theorem 1 shows that the analogue
of Gibbs entropy is constant in time; Theorem 2, when combined with eqn
(32), that the analogue of Boltzmann entropy tends to increase with time.

6 Acknowledgements

I am grateful to Jean Bricmont, Sheldon Goldstein, Christian Maes and
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