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1 Introduction

Although the microscopic laws of dynamics are symmetric under time re-
versal, many phenomena in Nature do not share this symmetry: they are
asymmetric under time reversal. Among these are : our subjective sense of
the flow of time, the fact that we remember the past and not the future, the
fact that we feel we can affect the future but not the past, the irreversibility
of thermodynamic processes as codified in the seond law of thermodynamics,
the fact that spherical waves (or waves on the surface of a pond) spread out
rather than contracting, the use of retarded rather than advanced poten-
tials in electromagnetic theory, the expansion of the Universe, and the fact
that black holes absorb matter but that there are apparently no white holes
spewing out matter. Some of these asymmetries are related; for example the
spreading out of electromagnetic waves is an immediate consequence of the
use of retarded potentials, and (it can be argued) our feeling that we can alter
the future but not the past is a consequence of the fact that we remember
(and therefore know) the past but not the future.

In this note it will be argued that most of the asymmetries listed above are
related, and the relationship will be expressed by deriving the time direction
of these phenomena from a single hypothesis, to be called here the ‘initial
independence hypothesis’ (IIH). One could say that the IIH is intended to
provide an explanation of the time direction of the various phenomena. Of
course, there is never any final explanation of anything, since the explanation
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itself then has to be explained in terms of something else, but if a number
of apparently unrelated time asymmetries can be derived from the IIH then
there is a sense in which it can be held to explain them. In a similar way
Newton’s law of gravitation, by showing that the fall of an apple and the
orbit of the moon could both be derived from a single hypothesis, provided
an explanation of both even though it left the origin and nature of gravitation
itself unexplained.

The initial independence hypothesis will be formulated in probabilistic
language. One may wish to interpret such language as saying that we are
thinking of our Universe as being selected at random from an ensemble of
universes. It is sometimes argued that one should not use probability in
talking about such matters, because the Universe is a unique object; how-
ever the view taken here is that our universe can be thought of as a typical
member of such an ensemble, in the sense that any property that is true with
probability 1 in such an ensemble is surely a property of our own Universe.
(In this respect we are following a similar philosophy to that of [2], a paper
in which the use of probabilities that are not very close to either 0 or 1 is
avoided altogether, and which includes the definition ‘ “typical” behaviour is
that which occurs with large probability with respect to the given initial en-
semble’. However we shall also be considering here probabilities that are not
close to 0 or 1, in order to be able to describe correlations between different
systems and different parts of space.)

It may be asked, how can we know the probabilities in this ensemble of
universes (which is in any case only a mathematical construction, not an
assumed reality), if we only have one of them to observe. The answer is
that in general we cannot know them, but that we can under the conditions
where we (as inhabitants of the Universe under consideration) normally use
probability theory. Consider a statistical experiment (for example, tossing a
coin) that is replicated a large number of times. As an idealization, suppose
that it were replicated an infinite number of times. Then the law of large
numbers, applied to the ensemble of universes, tells us that with probability
1 the limiting frequency of heads in the sequence of outcomes obtained in
our Universe is equal to the probability of heads at a single throw. So, by
measuring (or, rather, estimating) this limiting relative frequency, we can find
out the probability of heads in the hypothetical ensemble of universes. (An
alternative way of discussing this point would involve the assumption that the
probability distribution over universes is ergodic under spatial translations,
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so that the probability of any event can be measured in our own universe by
means of a space ensemble, as advocated in [3], but this assumption does not
appear to be essential.)

The approach used here is based closely on ideas in [3]. However, that pa-
per was influenced by the now defunct steady-state cosmological model, and
was confined to classical mechanics. The present paper is compatible with
‘big bang’ cosmological models, and also with the use of quantum mechanics.

2 A classical model Universe

We represent the Universe in a space-time manifold, with a special space-like
surface S0 on which the IIH will be specified. The special surface, which is
generally thought of as the time when the Universe came into existence, may
be singular in the sense that the space-like distance between any two of its
points is zero; such a singularity would correspond to the ‘big bang’.

Given any space-like surface S we can, if we are using classical mechanics,
specify the dynamical state of the Universe on that surface by giving the
positions and velocities of all the particles and the values of all the field
variables at every point on S. This dynamical state will be denoted by ω(S).
The set of all possible dynamical states of S will be denoted by Ω(S). Given
any two space-like surfaces S1 and S2, the laws of dynamics provide a one-
to-one correspondence C(S1, S2) between ω(S1) and ω(S2). The one-to-one
character of this correspondence is a reflection of the deterministic character
of the dynamical laws of classical mechanics.

Since we are regarding our universe as having been selected at random
from an ensemble of universes, the possible dynamical states ω(S) for a given
S have a probability distribution p over Ω(S). We denote the probability of
a given event (set of states) E from Ω(S) by p(E). Given any two space-like
surfaces S1 and S2, their probability distributions p1 and p2 are related by
p1(E1) = p2(E2), where E1 and E2 are any two events in Ω(S1) and Ω(S2)
that map one to the other under the one-to-one correspondence C(S1, S2).

In classical mechanics, we formulate the IIH as an independence condition
relating to the special space-like surface S0 :

Let R1, R2 be any two disjoint subregions of S0, and let E1, E2 be any two
events in Ω(S0) such that the answer to the question whether or not the state
ω lies in Ei depends only on the dynamical state of Ri, that is on ω ∩ Ri.
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The IIH asserts that all such sets of events are statistically independent:

p(E1 ∩ E2) = p(E1)p(E2) if R1 ∩R2 = � (1)

The implications of this hypothesis will be explored in section 3. It may
be that other hypotheses about the initial correlations could also be used,
but this one has the virtue of simplicity and is therefore compatible with the
principle of Occam’s razor.

IIH had its origins in Reichenbach’s [5] ‘principle of the common cause’, (a
similar point was emphasized by Feynman [1]) that if two events in different
systems are correlated, this correlation must have been produced by some
common cause in their past. Dynamically, a cause arises from an interaction,
so Reichenbach’s principle tells us that if two (spatially separated) systems
are correlated they must have interacted in the past, either with each other
or with some third system. At the initial time, there had been no past,
and therefore no past interactions to produce correlations, so that it seems
reasonable to assume that there were then no correlations between spatially
separated systems.

A possible way of thinking about the IIH is to imagine that, prior to the
time of S0, the Universe was an ideal gas in thermal equilibrium, so that
its spatially separated parts were independent of one another, and that at
the time of S0 the interactions were switched on; the subsequent history of
the universe is then the history of the effects produced by these interactions.
Another possibility is to use the hypothesis about the initial time used in
[2], where the initial probability distribution is taken to be one for which
the phase-space density is uniform over some appropriate macrostate: if this
initial macrostate is a direct product of macrostates defined on some set
of elementary regions, and if the interactions between particles in different
elementary regions are neglected, then we arrive at (1), at least in the case
where the regions Ri used there are both unions of some of the elementary
regions used in defining the initial macrostate.

3 Some implications of the IIH

The time direction of thermodynamics, as codified in the law of increasing
entropy, is derived in statistical mechanics from time-asymmetric assump-
tions about the initial conditions on an ensemble. Such derivations are given
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in many places, for example [4]. The time-asymmetric assumption, as formu-
lated in [4], is that if a succession of observations are made on some system
then the microscopic probability distribution used at any moment to describe
the system depends only on what has happened in the past, not on what is
going to happen in the future. In particular, if we prepare a system in some
way, then its initial microscopic probability distribution depends only on the
method of preparation.

To see how this time arrow is related to IIH, consider the idealized situ-
ation in which a system is prepared in the following way: first finding some
far-away matter that has never interacted at all with the experimenter’s part
of the Universe, then making some observations on that piece of matter (the
system to be investigated) to see whether or not it is suitable, then doing some
mechanical operations on it which do not depend on its microscopic state (for
example compressing it with a piston). Before the first step the matter is
(by IIH) microscopically uncorrelated with (i.e. statistically independent of)
the experimenter’s part of the Universe. After the first step (finding and se-
lection) it is still microscopically uncorrelated with the experimenter’s part
of the Universe, in the probability measure conditional upon the selection
criteria used by the experimenter. After the second step the system and the
experimenter are still uncorrelated in this conditional ensemble, since the
system’s dynamical evolution is independent of what state the experimenter
and his part of the the Universe are in. So at the moment the experiment
begins, the system under study is (conditionally) uncorrelated with the ex-
perimenter, and its probability distribution conditional upon the state of
the experimenter is therefore independent of the state of the experimenter,
and in particular independent of whatever experiments the experimenter is
proposing to do on it. It is this (conditional) probability distribution that
is the initial distribution for the system as used in all statistical mechanics
calculations, and from which such things as the law of increasing entropy
can be deduced (subject to the usual difficulties about the ergodicity of the
system).

Most of the other asymmetric processes listed in the Introduction can
have their time direction related to IIH in a similar way, but that is enough
for the time being.
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