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Abstract When molecular dynamics is used to find time-dependent properties, such as correlation

functions, at a prescribed temperature, there is a conflict between the need for the thermostat to perturb

the time evolution of the system as little as possible and the need to establish equilibrium as quickly

as possible. In this article we define a quantity called the ‘efficiency’ of a thermostat which relates the

perturbation introduced by the thermostat to the rate of convergence of average kinetic energy to its

equilibrium value. We show how to estimate this quantity analytically, and carry out the analysis for

several thermostats, including the Nosé-Hoover-Langevin thermostat due to Samoletov et al (J. Stat.

Phys. 128, 1321-1336 , 2007) and a generalization of the ‘stochastic velocity rescaling’ method suggested

by Bussi et al (J. Chem. Phys 126, 014101, 2007). We find efficiency improvements (proportional to

the number of degrees of freedom) for the new schemes compared to Langevin Dynamics. Numerical

experiments are presented which precisely confirm our theoretical estimates.

1 Introduction

The question considered in this paper is how best to use molecular dynamics to compute time-

dependent properties (such as autocorrelation functions) when the temperature rather than the energy
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is specified. One approach is to perform simulations using straightforward Hamiltonian dynamics, at-

tempting to choose the energy of the system so that the temperature (as determined from the kinetic

energy of the particles) has the desired value; this can be difficult to achieve in practice for any in-

dividual trajectory, so one would typically need to employ an ensemble of trajectories. Generating a

good representative ensemble is itself a challenging task; errors in the initial ensemble may manifest

themselves in subtle drifts in kinetic energy in long simulations. Moreover, the presence of numerical

errors means that the energies may exhibit a slow drift in the course of simulation, biasing the com-

puted statistics. To help address these difficulties, various methods (“thermostats”) have been devised

in which some kind of perturbation is introduced into the dynamics; this perturbation can be thought

of as representing the effect of a heat bath at a prescribed temperature. If the goal is to calculate

time-dependent properties, the perturbation should be small enough so as not to affect seriously the

dynamics of the system on short times, while at the same time being able to rapidly drive the system

into equilibrium with the thermostat, so as to give results that are effectively independent of the initial

conditions with a minimal investment in computing time. It is not obvious a priori that it is possible

to achieve both of these aims simultaneously, so that confidence in the validity of temporal correlation

functions computed from thermostatted simulations is often low [16]; nevertheless, these methods are

frequently used in practice despite the lack of a solid theoretical foundation. The purpose of the present

paper is to put forward a quantitative criterion, which we term the ‘efficiency,’ for determining how

well a given thermostatting method can satisfy these two conflicting requirements.

A straightforward way of controlling the temperature in simulations is to model the random inter-

action with the heat bath by a stochastic perturbing force. The simplest such method is the so-called

Langevin dynamics [8,4], in which the modelled system is effectively immersed in a fluid of much smaller

and lighter Brownian particles which perturb its motion. It is possible to give a rigorous analysis of

the convergence to thermodynamic equilibrium in Langevin dynamics.

An alternative approach was discussed in Samoletov et al. [15] which combines the kinetic energy

control technique devised by S. Nosé and W. Hoover [13,5] with a single stochastic perturbation. We

term this method the ‘Nosé-Hoover-Langevin thermostat’ abbreviated to NHL. Leimkuhler et al [11]
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have demonstrated that this scheme is ergodic for a harmonic system under a mild non-resonance

assumption.

A different method of improving on the Langevin thermostat has been proposed by Bussi et al[1,2].

They call their method stochastic velocity rescaling. Instead of using independent random forces acting

on all the degrees of freedom of the system, they use a single random force which (like the deterministic

force in Nosé-Hoover dynamics) acts so as to multiply all the velocities by the same factor at each time

step. They give numerical results [2] indicating that (for a system of 108 particles) their modification

of Hamiltonian dynamics disturbs the motion of the system less than the corresponding Langevin

dynamics when the parameters are chosen so as to drive the system to equilibrium at the same rate.

Like the Nosé-Hoover thermostat, this is a ‘gentle’ thermostat in the sense that the perturbing force

acting on each particle in the system acts along the direction of motion of that particle. Hoover[5] has

argued that this is a desirable feature in a thermostat.

With the exception of Langevin dynamics, little is known about the theoretical rates of convergence

of these schemes to thermodynamic equilibrium. In this article we examine each of the methods in

turn, calculating the rate of convergence to equilibrium using certain approximations analogous to the

constitutive relations used in hydrodynamics and continuum mechanics, and the rate of accumulation of

perturbation error at small times by an exact method based on Maclaurin’s expansion. On the principle

that the most efficient thermostat is the one that gives rise to the smallest cumulative deviation from

Hamiltonian dynamics during the time necessary to bring the system to equilibrium at the thermostat

temperature, we define the efficiency of a thermostat as the reciprocal of that deviation. We find that,

for systems with a large number (n) of degrees of freedom, the NHL thermostat and the stochastic

velocity rescaling thermostat (in a form which generalizes the original proposal of Bussi et al) are more

efficient than Langevin dynamics, by a factor of order n.
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2 Methods for Molecular Simulation

2.1 Hamiltonian dynamics and phase-space averages

We consider a system obeying classical mechanics, with a Hamiltonian function of the form

H(p1, . . . , qn) :=

n
∑

i=1

p2
i

2mi
+ V (q1, . . . qn), (1)

where n is the number of degrees of freedom, p1, . . . , pn are the momentum coordinates and q1, . . . , qn

are the position coordinates. The function V is the potential energy and mi is the mass associated

with the ith degree of freedom and is assumed to be constant. The Hamiltonian equations of motion

are:

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −

∂H

∂qi
(i = 1, . . . n). (2)

For future reference, we define the kinetic energy

K :=
1

2

n
∑

i=1

pi
∂H

∂pi
=

n
∑

i=1

p2
i

2mi
. (3)

The phase points (p1, . . . , qn) denoting the possible dynamical states of the system lie in a 2n-

dimensional ‘phase space’ Γ := Rn × Rn or (if the particles are confined in a periodic box of side

ℓ) Rn × (R/ℓZ)n. Points in phase space will sometimes be denoted x rather than (p1, . . . , qn). The

volume element in phase space will sometimes be denoted d2nx rather than dp1 . . . dqn.

To model the randomness in the choice of the initial dynamical state and also (for the stochas-

tic thermostats) in the time evolution, we shall treat the time-dependent dynamical state x(t) as a

stochastic process — i.e. a family of random variables, parametrized by the non-negative real variable

t. Likewise, we treat the time-dependent positions and momenta p1(t), . . . , qn(t) as stochastic pro-

cesses. Associated with these stochastic processes is a space Ω comprising all the possible trajectories

(realizations) of the stochastic process, and a probability measure on Ω describing the probabilities of

the various events that can be defined in terms of these trajectories. Expectations with respect to this

probability measure (which depends on the way the system or ensemble is started out) will be denoted

by E{·}.



5

An important case arises when the system is started out by choosing the initial dynamical state

(p1(0), . . . , qn(0)) at random according to the Gibbs canonical distribution over Γ , whose density is

ρeq(x) :=
1

Z(T )
e−H(x)/kT (4)

where T is the temperature, k is Boltzmann’s constant and Z(T ) is the phase integral

Z(T ) :=

∫

Γ

e−H(x)/kT d2nx. (5)

For Hamiltonian dynamics and two of the three thermostats considered here, it turns out that with

this initial condition the probability distribution of the random variable x(t) ∈ Γ is also canonical, for

each positive value of t. The resulting stochastic process serves as a model for thermal equilibrium at

temperature T. Expectations with respect to the probability measure of this stochastic process will be

denoted by Eeq{·}.

In the following, we shall usually write the random variables p1(t), . . . , qn(t) more concisely as

p1, . . . , qn, while at the same time writing E as Et. Thus, Et{piqi} means the same thing as E{pi(t)qi(t)},

and Et
eq{pi(0)pi} means the same as Eeq{pi(0)pi(t)}.

2.2 Langevin dynamics

For the Langevin thermostat, a frictional term and a stochastic term are added to the equations of

motion (2), so that they are replaced by the system of (Ito) stochastic differential equations1

dqi =
∂H

∂pi
dt, (6)

dpi = −
∂H

∂qi
dt − γpi dt +

√

2γmikT dWi, (7)

where γ is a positive parameter measuring the strength of the coupling between the system and the

thermostat, and W1(t), . . . , Wn(t) are n independent Wiener processes (Brownian motions).

For each t, the joint probability density of the random variables p1(t), . . . qn(t) will be denoted

by ρt(p1, . . . , qn). It satisfies the following Fokker-Planck equation (also known[14] as Kolmogorov’s

1 For general information about stochastic differential equations, see ref. [14].
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forward equation)

∂ρt

∂t
= −

∑

i

∂

∂qi

(

∂H

∂pi
ρt

)

+
∑

i

∂

∂pi

((

∂H

∂qi
+ γpi

)

ρt + γmikT
∂ρt

∂pi

)

. (8)

The Gibbs probability density defined in (4) is a stationary solution of (8).

Equation (8) is referred to as a “degenerate diffusion equation,” since the differential operator on the

right side is elliptic in the momentum variables but not the position variables. Nonetheless, it is possible

to demonstrate [12] that this operator is hypoelliptic [6,7], which implies regularity in C∞, uniqueness

of the stationary measure, and therefore ergodicity. Moreover, assuming that V (q1, . . . , qn) is smooth

it is possible to demonstrate exponentially rapid convergence to the canonical Gibbs distribution (4)

[12].

2.3 Stochastic velocity rescaling thermostats

In this method, the equation for dqi is again (6)) but the equation for dpi is now (generalizing the

original proposal of Bussi et al.[1,2])

dpi = −
∂H

∂qi
dt − Ψ(K)pi dt +

√

2kTΦ(K)pidW, (9)

where W (t) is a single Wiener process, Φ is an arbitrary positive-valued function and the function Ψ

is defined by

Ψ(K) := (2K − (1 + n)kT )Φ(K) − 2kTK
dΦ

dK
. (10)

This definition is chosen so as to make the Gibbs probability density ρeq a stationary solution of the

Fokker-Planck equation for the SDE system (6), (9). The original proposal of Bussi et al. corresponds

to the choice

Φ(K) =
γ′′

2K
, so that Ψ(K) = (1 − (n − 1)kT/2K) γ′′, (11)

in which γ′′ is a positive constant (they call 1/2γ′′ the ‘relaxation time’).
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2.4 The Nosé-Hoover-Langevin thermostat

The NHL thermostat combines a negative feedback control of the kinetic energy with a stochastic

perturbation. The SDE system for this thermostat, which involves an additional stochastic process

ξ(t), is

dqi =
∂H

∂pi
dt, dpi =

(

−
∂H

∂qi
− ξpi

)

dt (i = 1, . . . n), (12)

dξ =
1

µ
(2K − nkT ) dt − γ′ξdt +

√

2γ′kT

µ
dW, (13)

where γ′ and µ are positive constants and W (t) is a single Wiener process.

It can be checked that the augmented Gibbs density

ρ′eq(x, ξ) :=
1

Z(T )

√

µ

2πkT
e−H(x)/kT−µ ξ2/2kT (14)

is a stationary solution of the Fokker-Planck equation for the NHL system (12), (13). This distribution

therefore takes the place of the Gibbs canonical distribution in the description of equilibrium for the

NHL thermostat. It is known [11] that the scheme is ergodic for the case of a harmonic system with a

mild assumption on its spectrum.

3 The rate of convergence to the thermostat temperature

The point of using any of these thermostats is to get from an arbitrary initial dynamical state or

probability distribution, which may have the wrong energy for the prescribed temperature T, to a state

or probability distribution with the right energy. In this section we estimate the length of time this

takes, by estimating how long the energy takes to get from an arbitrary initial value to its equilibrium

value at the thermostat temperature T. For simplicity the calculations will be done for a system of

particles all having the same (constant) mass m.
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3.1 The convergence rate for Langevin dynamics

Consider a system which is started in equilibrium at a given temperature T0 different from the ther-

mostat temperature T and then evolves according to Langevin dynamics; that is to say, the initial

phase point is chosen at random from the Gibbs distribution (4) with T = T0, and the subsequent

time evolution is given by the equations of the Langevin thermostat, (6) and (7), with a value for T

which is different from T0.

As a simple criterion for convergence to equilibrium with the thermostat we consider the time

evolution of the expectation of the energy, Et{H} where H is the random variable defined in terms of

p1, . . . qn using the formula (1). By the Ito-Doeblin formula (Theorems 4.1.2 and 4.2.1 in ref. [14]), it

follows from equations (6) and (7) that

dH =
∑

i

∂H

∂pi

(

−γpi dt +
√

2γmikTdWi

)

+ nkTγdt. (15)

Taking the expectation of (15), dividing by dt and using the formula (3), we obtain

d

dt
Et{H} = γ[nkT − Et{2K}]. (16)

To use this differential equation we need a constitutive relation connecting, at any time t, Et{H} and

Et{2K}. To formulate such a relation, we shall make the following assumption, which has something

in common with the constitutive relations used in hydrodynamics and continuum mechanics:

Assumption 1 There is a time-dependent ‘empirical temperature’ θ(t) such that the expectation at

time t of any phase space function that is even in the momenta is approximately the same as it would

be in a canonical distribution at the temperature θ := θ(t).

As a formula, this assumption asserts that there is a function θ such that, for all phase-space functions

f that are even in the momentum variables,

Et{f(p1, . . . , qn)} ≈
1

Z(θ)

∫

Γ

d2nx f(x)e−H(x)/kθ, (17)
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where

Z(θ) :=

∫

Γ

d2nx e−H(x)/kθ. (18)

In particular, taking f to be the kinetic energy, (17) gives

Et{K} = 1
2nkθ. (19)

Exceptionally, we write this application of (17) as an exact equality, since it will be used as our

definition of θ. From this definition it follows that θ(0) = Et=0{2K}/nk = T0.

If instead we take f to be the total energy, (17) gives

Et{H} ≈ U(θ) :=
1

Z(θ)

∫

Γ

d2nxH(x)e−H(x)/kθ . (20)

Using (19) and (20) we can bring (16) to the form

C(θ)
dθ

dt
= nkγ(T − θ), (21)

where C(θ) is the heat capacity at temperature θ, defined by

C(θ) := dU(θ)/dθ. (22)

It can be verified, using the definition of U in (20), that C(θ) is positive.

The differential equation (21) has an equilibrium point, obviously stable, at θ = T. An estimate of

the rate of convergence to this equilibrium point can be obtained by considering the linearized version

of (21), whose general solution is

θ = T + const × e−nkγt/C(T ); (23)

thus we can estimate the rate of convergence to the thermostat temperature as nkγ/C(T ). This is the

convergence rate that has been entered into Table I.
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3.2 Convergence rate for stochastic velocity rescaling

The equations for this method are (6) and (9), with Ψ defined by (10). The Ito-Doeblin formula now

gives

dH =
∑

i

∂H

∂pi

(

−Ψ(K)pi dt +
√

2kTΦ(K)pi dW
)

+ 2kTΦ(K)Kdt, (24)

so that

d

dt
Et{H} = Et{2K(kTΦ(K)− Ψ(K))}

= Et {2K ([(2 + n)kT − 2K]Φ(K) + 2kTKΦ′(K)} . (25)

where Φ′(K) := dΦ/dK

According to Assumption 1 (equation (17)), we may approximate the left side of (25) by C(θ) dθ/dt

and the right side by its expectation under the Gibbs canonical measure at temperature θ. The prob-

ability density for K under this measure is proportional to e−K/kθKn/2−1, so that the expectation of

the right-hand side of (25) is

1

ZK(θ)

∫ ∞

0

2K ([(2 + n)kT − 2K]Φ(K) + 2kTKΦ′(K)) e−K/kθKn/2−1dK, (26)

where

ZK(θ) :=

∫ ∞

0

e−K/kθKn/2−1dK. (27)

Assuming that Φ(K) does not grow too fast as K → 0 and ∞, partial integration gives

∫ ∞

0

K2Φ′(K)e−K/kθKn/2−1dK

= −

∫ ∞

0

Φ(K)
d

dK

(

e−K/kθK2Kn/2−1
)

dK

= −

∫ ∞

0

Φ(K)e−K/kθ

(

−
1

kθ
Kn/2+1 + (1

2n + 1)Kn/2

)

dK. (28)

With the help of this result the integral in (26) simplifies to

4

(

T

θ
− 1

)
∫ ∞

0

Φ(K)e−K/kθKn/2+1dK, (29)
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so that our approximate version of (25) can be written

C(θ)
dθ

dt
≈ 4

(

T

θ
− 1

)

∫∞

0 Φ(K)e−K/kθKn/2+1dK

ZK(θ)

= 4

∫

dp1 . . . dqnK2Φ(K)e−K/kθ

∫

dp1 . . . dqne−K/kθ

(

T

θ
− 1

)

. (30)

Equation (30) has a stable equilibrium point at θ = T. The approximating linearized equation is

C(T )
dθ

dt
= 4Eeq{K

2Φ(K)}
T − θ

T
, (31)

whose solutions converge to equilibrium at the rate 4Eeq{K
2Φ(K)}/TC(T ). This is the rate of conver-

gence recorded in Table I. For the choice Φ(K) = γ′′/2K used in (11), eqn (30) takes the particularly

simple form

C(θ)
dθ

dt
≈ γ′′nkθ

(

T

θ
− 1

)

, (32)

with convergence rate γ′′nk/C(T )

3.3 Convergence to the thermostat temperature for the NHL thermostat

Again we consider a system whose initial dynamical state x(0) is chosen at random from a canonical

phase-space probability distribution at temperature T0, but now, in addition, an arbitrary initial value

for ξ(0) is prescribed, and the subsequent evolution is determined by the NHL equations (12), (13).

The Ito-Doeblin formula now gives

d

dt
Et{H} =

∑

i

Et

{

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt

}

= −
∑

i

Et

{

∂H

∂pi
piξ

}

= −Et{2Kξ}. (33)

The left-hand side can be approximated using Assumption 1, just as in (21) and (30), but for the

right-hand side we need an additional assumption:

Assumption 2
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The random variables ξ(t) and K(t), which are obviously uncorrelated when t = 0, remain uncorrelated

for all t > 0:

Et{ξK} ≈ Et{ξ}Et{K}. (34)

A test of Assumptions 1 and 2, described later in the paper (see Figures 1 and 2), indicates that both

of them are reasonably accurate approximations.

Using (17) to evaluate the left side of (33), and (34) followed by (19) for the right side, we obtain

C(θ)
dθ

dt
≈ −Et{2K}Et{ξ} = −nkθEt{ξ}, (35)

where C(θ) is the heat capacity, defined in (22). To obtain information about Et{ξ} we take the

expectation of (13) and use the definition (19), obtaining

d

dt
Et{ξ} =

1

µ
Et {2K − nkT } − γ′Et{ξ} =

nk

µ
(θ − T ) − γ′Et{ξ}. (36)

Equations (35) and (36) constitute a dynamical system for the two variables Et{ξ} and θ, which

can be studied using the phase plane method. This system has a unique equilibrium point at Et{ξ} =

0, θ(t) = T. The equilibrium point is stable; one way to see this is to consider the Lyapunov function

Λ(Et{ξ}, θ) := 1
2 (Et{ξ})2 +

∫ θ

T

C(θ1)(θ1 − T )

µθ1
dθ1 , (37)

which is a measure of the distance of the phase point (Et{ξ}, θ) from the equilibrium point in the phase

plane. The time derivative of Λ equals −γ′(Et{ξ})2, and hence Λ decreases monotonically (strictly so,

except at those instants when Et{ξ} = 0) and the phase point moves closer and closer to the equilibrium

point. A numerical study illustrating this approach to equilibrium, and also indicating that the system

(35), (36) gives a reasonably accurate approximation, is given in section 6.2.2 below.

An analytic estimate of the rate of approach to equilibrium can be obtained by linearizing the

system (35), (36). After eliminating Et{ξ} the linearized equations reduce to

d2θ

dt2
+ γ′ dθ

dt
+

n2k2T

µC(T )
(θ − T ) = 0. (38)
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This is the equation of a damped harmonic oscillator. If γ′ is less than the critical damping value

γ′
crit := 2

√

n2k2T

µC(T )
, (39)

the amplitude of the oscillations dies out exponentially like e−0.5γ′t and therefore more slowly than

e−0.5γ′

critt; on the other hand if γ′ > γ′
crit there are no oscillations but the amplitude again dies out

more slowly than than e−0.5γ′

critt. Thus, for a given γ′
crit, the most rapid convergence to the thermostat

temperature is obtained by choosing γ′ = γ′
crit. This convergence rate, 0.5γ′

crit, has been entered in

Table I.

If γ′ is chosen to be zero, which means using the deterministic Nosé-Hoover thermostat rather than

NHL, our method predicts that the oscillations will continue for ever, with whatever amplitude they

were given initially. This possibility suggests that the deterministic Nosé-Hoover thermostat may be

non-ergodic. Other authors [10,9,3] have also drawn attention to this possibility.

4 The rate of accumulation of the thermostat perturbation

In each of the thermostats described above at least one extra term is inserted into the Hamiltonian

equation of motion dpi/dt = ∂H/∂qi. Over a period of time the extra term or terms will take the

motion of the perturbed system further and further away from the motion of the Hamiltonian system

it is meant to approximate, making the methods potentially unreliable for the calculation of properties

of the system, such as time-dependent correlation functions, which are determined by the Hamiltonian

trajectories. In this section we estimate the rate at which the resulting perturbation of the motion

builds up over time, with a view to comparing this rate with the rate at which the thermostat brings

the system to thermal equilibrium, as calculated in the previous section. As a concrete example, we

shall calculate how much this perturbation affects the velocity autocorrelation function (VAF) at small

values of t.

Assuming for simplicity that all the particles have the same mass m, the VAF can be defined as

F (t) :=
1

nmkT

n
∑

i=1

Eeq{pi(0)pi(t)} =
1

nmkT

∑

Et
eq{pi(0)pi}. (40)
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The prefactor 1/nmkT has been chosen so as to make

F (0) = 1 (41)

In this formula, the evolution of p is defined by Hamiltonian dynamics. We shall estimate F (t) for small

times using Maclaurin’s expansion, under the assumption that one of the thermostatted dynamics has

been used instead of Hamiltonian dynamics. For this it will be necessary to calculate the first derivative

dF/dt at t = 0 and, in the case of the NHL thermostat, the second derivative as well.

4.1 Langevin dynamics

Multiplying eqn (7) by pi(0), taking the expectation with respect to the equilibrium measure and

dividing by dt we obtain, since pi(0) and dW (t) are statistically independent if t > 0,

Et
eq

{

pi(0)
dpi

dt

}

= Et
eq

{

pi(0)

[

−
∂H

∂qi
− γpi

]}

(t > 0) (42)

Substituting into (40) and taking the limit t ց 0 we obtain

dFγ(t)

dt

∣

∣

∣

∣

t=0+

= −
γ

nmkT

n
∑

i=1

Eeq{pi(0)2} = −γ (43)

so that (having regard to (41))

Fγ(t) = 1 − γt + O(t2) (t > 0) (44)

where the dependence of F on the Langevin parameter γ is now shown explicitly. Since Hamiltonian

dynamics is the same as Langevin dynamics with γ = 0, the error in F (t) due to the use of Langevin

rather than Hamiltonian dynamics is

∆LDF (t) := Fγ(t) − F0(t) = −γt + O(t2) (t > 0) (45)

Thus for small t the magnitude of the error is γt. This result has been entered into column 3 of Table

I.
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4.2 Stochastic velocity rescaling

Multiplying eqn (9) by pi(0), taking the equilibrium expectation and dividing by dt we obtain

Et
eq

{

pi(0)
dpi

dt

}

= Et
eq

{

pi(0)

[

−
∂H

∂qi
− Ψ(K)pi

]}

(t > 0) (46)

Substituting into (40) and taking the limit t ց 0 we obtain the following equation for F = FΦ:

dFΦ(t)

dt

∣

∣

∣

∣

t=0+

= −
1

nmkT

n
∑

i=1

Et=0+
eq {Ψ(K)pi(0)2} = −

2

nkT
Eeq{KΨ(K)} (47)

Using the definition (10) of Ψ and then simplifying the resulting expression by means of integration

by parts, as in (28), it can be shown that Eeq{KΨ(K)}) = kTEeq{KΦ(K)}; therefore, since this

thermostat reduces to Hamiltonian dynamics in the case Φ = 0, the error in F (t) for small t is

∆V RF (t) := FΦ − F0 = −
2

n
Eeq{KΦ(K)}t + O(t2) (t > 0). (48)

The magnitude of this expression has been entered into column 3 of Table I.

4.3 The NHL thermostat

The error introduced by this thermostat depends on the initial value of ξ. In the following calculation

we assume that both this intial value and the initial dynamical state of the system are chosen at

random using the augmented Gibbs distribution defined in Equation (14) .

Multiplying the second equation in (12) by pi(0), taking the equilibrium expectation and dividing

by dt we obtain

Et
eq

{

pi(0)
dpi

dt

}

= Et
eq

{

pi(0)

[

−
∂H

∂qi
− ξpi

]}

(t > 0) (49)

Substituting into (40) and taking the limit t ց 0 we find that F (for given µ) satisfies

dFµ(t)

dt

∣

∣

∣

∣

t=0+

= −
1

nmkT

n
∑

i=1

Eeq{ξ(0)pi(0)2} = 0 (50)
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because the augmented Gibbs density (14) is an even function of ξ. Thus, the Maclaurin series for F (t)

begins with a quadratic term, for which we need the second derivative of F (t) at t = 0.

The equation for dpi in (12) can be written dpi = yidt, where

yi := −
∂H

∂qi
− ξpi (51)

Using the Ito-Doeblin formula and then the equations (12), (13) which define this thermostat, we

obtain

dyi = −
∑

j

∂2H

∂qi∂qj
dqj − ξdpi − pidξ

= −
∑

j

∂2H

∂qi∂qj

∂H

∂pj
+ ξ

(

∂H

∂qi
+ ξpi

)

dt −

−pi

(

1

µ
(2K − nkT ) dt − γ′ξdt +

√

2γ′kT

µ
dW

)

(t > 0) (52)

so that, omitting terms which turn out to be zero,

d2

dt2
Eeq{pi(0)pi(t)}

∣

∣

∣

∣

t=0+

=
d

dt
Eeq{pi(0)yi(t)}

∣

∣

∣

∣

t=0+

= − Eeq







pi(0)
∑

j

∂2H

∂qi∂qj

∂H

∂pj







∣

∣

∣

∣

∣

∣

t=0+

+ Eeq{pi(0)2ξ(0)2} − Eeq{pi(0)2
1

µ

(

2K|t=0+ − nkT
)

}

= − Eeq







pi(0)
∑

j

∂2H

∂qi∂qj

∂H

∂pj







∣

∣

∣

∣

∣

∣

t=0+

+
m(kT )2

µ
−

2m(kT )2

µ
(53)

This thermostat reduces to Hamiltonian dynamics in the limit µ → ∞; hence, using Maclaurin’s

expansion in the formula (40), we obtain (with the help of (41) and (50))

∆NHLF (t) = Fµ(t) − F∞(t) = −
1

nmkT

n
∑

i=1

m(kT )2

µ

t2

2
+ O(t3) = −

kT

µ

t2

2
+ O(t3) (54)

Thus, the error after a small time t is roughly −kT
2µ t2. The magnitude of this expression has been

entered into column 3 of Table I
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5 The efficiency of a thermostat

Our analytic results are summarized in the first three columns of Table I. To define a numerical measure

of the efficiency of a given thermostat, consider the amount of error that accumulates during the time

that the the system is brought to equlibrium at the thermostat temperature. The larger this amount of

error, the less efficient the thermostat; so we define the efficiency as the reciprocal of the amount of error

that accumulates during that time. For the Langevin and stochastic velocity rescaling thermostats, the

error accumulates linearly, and so we can take the efficiency to be the rate of convergence to equilibrium

divided by the rate of error accumulation. This ratio is the entry in the last column of Table I. For the

NHL thermostat, the error accumulates quadratically. If the parameter γ′ is given its optimal value,

i.e. the critical damping value shown in (39), the rate of decay to equlibrium is 0.5γ′
crit and so the time

to reach equilibrium is of order 2/γ′
crit =

√

µC(T )/n2k2T . The amount of relative error in F (t) that

builds up in this time is, by the result (54), roughly

kT

µ

1

2

(

2

γcrit

)2

=
kT

2µ

µC(T )

n2k2T
=

C(T )

2n2k
. (55)

Our estimate of efficiency at critical damping is the reciprocal of this quantity, as shown in Table I.

Table I. Estimated rates of convergence to the thermostat temperature, rates of error accumulation,

and efficiencies for various thermostats.
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thermostat convergence rate error (to lowest efficiency

order in t)

Langevin nkγ
C(T ) γt nk

C(T ) ≈ 1

velocity rescaling 4
Eeq{K2Φ(K)}

TC(T )
2
nEeq{KΦ(K)} t O (n)

VR with Φ(K) = γ′′

2K
nkγ′′

C(T )
γ′′

n t n2k
C(T ) ≈ n

NHL
γ′

crit

2 =
√

n2k2T
µC(T )

kT
2µ t2 2n2k

C(T ) ≈ 2n

(at critical damping)

The entry in the final column is the reciprocal of the number obtained from the entry in the previous

column by setting t equal to the reciprocal of the entry in the first column (i.e. to our estimate of the

time taken for the system to come to equilibrium with the thermostat.) To estimate C(T ) we used

Dulong and Petit’s experimental law C(T ) ≈ nk

6 Numerical results

In this section we we compare our theoretical predictions about convergence and error build-up with

numerical simulation of a two-dimensional system comprising 108 particles in a square periodic box

interacting via the Lennard-Jones potential

V =
∑

ϕLJ(rij) :=
∑

4ǫ

[

(

σ

rij

)12

−

(

σ

rij

)6
]

, (56)
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where ǫ, σ are positive parameters, rij denotes the distance between the ith and jth particle and

the sum goes over all pairs of particles. In theoretical work with the Lennard-Jones potential it is

customary to state the results in terms of the reduced temperature and reduced density, defined (for

a two-dimensional system) by

T ∗ :=
kT

ǫ
, ρ∗ :=

N

L2
σ2.

where N is the number of particles and L is the side length of the periodic box. In our simulations we

used the values N = 108 and ρ∗ = 0.86, and various values for T*.

For Langevin dynamics we used a weak second-order method. The equations of the velocity rescaling

thermostat, (6) and (9), are more difficult to integrate accurately, because of the multiplicative noise

(i.e. the fact that the coefficient of dW (t) is not constant). We first split the equations into the

deterministic (Hamiltonian dynamics) and stochastic parts. For the deterministic part, we used a

Verlet method and for the stochastic part an Euler-Muruyama method [14]. The choice (11) was used

for the functions Ψ and Φ, with various values of γ′′.

For the NHL thermostat (Equations (12), (13)) we used the following numerical integrator:

ξ̂k+1/2 = e−γ′∆t/2ξk +

√

kT

µ
(1 − eγ′∆t)ηk

pk+1/2 = pk −
∆t

2

∂V

∂q
(qk) −

∆t

2
ξ̂k+1/2pk+1/2

ξk+1/2 = ξ̂k+1/2 + ∆t
2K(pk+1/2) − nkT

µ

qk+1 = qk + ∆tM−1pk+1/2

pk+1 = pk+1/2 −
∆t

2

∂V

∂q
(qk+1) −

∆t

2
ξk+1/2pk+1/2

ξk+1 = e−γ′∆t/2ξk+1/2 +

√

kT

µ
(1 − eγ′∆t) ζk

where ηk and ζk are standard normal random variables. It can be shown that the above method is

second-order (in the weak sense). We used step size ∆t = 0.01 for most simulations, but a much smaller

step size (∆t = 0.001) was needed to examine the error growth in the autocorrelation functions using

the two gentle thermostats.
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Fig. 1 Computed values of Et{H} plotted against those of θ, for the simulation of a Lennard-Jones system as
described in the text. The axes are labelled with values of the corresponding ‘reduced’ quantities, i.e. H∗ := H/ǫ
and θ∗ := kθ/ǫ. Ensemble averaged energies are shown by crosses at reduced temperatures T ∗ = 0.6, 0.7, 0.8.

6.1 Testing the assumptions used in Section 3

The theory of convergence to the thermostat temperature presented in Section 3 depends on Assump-

tions 1 and 2. We checked the validity of these assumptions using a sample of 10,000 trajectories

calculated with the NHL integrator described above. The initial states of the system were chosen at

random using the Gibbs probability distribution (4) at (reduced) temperature T ∗
0 = 0.5. The initial

value of ξ was 0 for all trajectories. The reduced temperature of the thermostat was T ∗ = 1.

Assumption 1 implies (see Equation (20)) that the graph of Et{H} against θ should be the same as

the graph of the thermodynamic internal energy U(T ) against temperature T , whose slope is equal to

the heat capacity. To test this, we computed estimates of Et{H} and θ by averaging H and 2K/nk over

the 10,000 trajectories at each time step during the evolution until the empirical reduced temperature

θ∗ := kθ/ǫ reached the value 0.9. The results, plotted in Figure 1, show Et{H} varying linearly with θ,

Three points from the graph of U against T ∗, obtained from simulations using the Gibbs equilibrium

ensemble, are shown on the same diagram; the fact that they lie close to the graph of Et{H} against

θ provides evidence supporting Assumption 1.
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Fig. 2 Computed estimates of Et{ξK} and of Et{ξ}Et{K} (in reduced units), plotted against time. As
predicted by Assumption 2, the two curves are almost identical.

A separate calculation of the heat capacity, using the Gibbs fluctuation formula C(T ) = dU(T )/dT =

(1/kT 2)Eeq

(

(H − Eeq(H))2
)

gave the values C(T ) = 209.0, 208.4, 211.4 at reduced temperatures

T ∗ = 0.6, 0.7, 0.8. As predicted by Assumption 1, these numbers agree approximately with the slope

of the graph, which is about 200.

Assumption 2 asserts that in the NHL thermostat the random variables ξ and K are uncorrelated

(i.e. that Et{ξK} = Et{ξ}Et{K}) for all t. Using the same sample of trajectories as in the previous

test, we estimated the relevant expectations as the sample means of ξK, ξ and K at a succession

of times t. The estimates of Et{ξK} and Et{K}Et{ξ} are plotted against t in Figure 2. The close

agreement of the two curves indicates that Assumption 2 is a good approximation.

6.2 Convergence to the thermostat temperature

To test the conclusions about convergence rates reached in Section 3, we used some new samples of

10,000 trajectories (still for the 108-particle Lennard-Jones system). For each sample the initial states

were chosen at random using the Gibbs probability distribution (4) at (reduced) temperature T ∗
0 = 1
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Fig. 3 Relaxation of the empirical temperature θ calculated as the mean of 2K/(nk) over a sample of 10,000
trajectories, both for the Langevin thermostat and the stochastic velocity rescaling thermostat (VR). The
graph confirms that θ approaches the target temperature with exponential rate γ for the Langevin thermostat
and γ′′ for velocity rescaling.

and the temperature of the thermostat was T ∗ = 0.7, but different thermostats and different values

for the parameters γ, etc. were used for the subsequent evolution.

6.2.1 Langevin and velocity rescaling thermostats

According to the theory in Section 3, both Langevin and the stochastic velocity rescaling method

give exponential decay to equilibrium with the rates given in Table I. We tested this prediction for the

Langevin thermostat with two samples of 10,000 trajectories using two different values of γ, computing

the empirical temperature θ at various values of t as the sample mean of 2K/nk and comparing with

the theoretical prediction θ∗(t) = 0.7 + 0.3e−γt given in equation (23). The results, shown in Figure

3, show that the calculated results are quite well represented by the theoretical curve. Figure 3 also

shows the results of a similar test of the velocity rescaling thermostat, using the formula (11) for Φ(K)

with two different values for γ′′; again the theory agrees quite well with the simulation results.
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Fig. 4 Comparison of the relaxation of θ, obtained as the mean of 2K/nk over a sample of 10,000 NHL

trajectories, with θ̂, the numerical solution of the nonlinear system (35), (36).

6.2.2 The NHL thermostat

In the case of the NHL thermostat, the approach to equilibrium is described in section 3 by the second-

order system (35), (36) and therefore, according to the theory, neither of the variables θ,Et{H} decays

as a simple exponential to its equilibrium value, even in the linear approximation. The best theoretical

prediction about the decay of θ to its equilibrium value is obtained by solving the nonlinear equations

(35), (36) numerically. Figure 4 shows such a prediction compared with values for θ obtained by

averaging over 10,000 trajectories.

Since the system of differential equations (35), (36) describing the approach to equilibrium is now

of second order, we also compared the phase portrait of that system — i.e. the trajectory of a point

in the plane with coordinates (Et{ξ}, θ) computed from the second-order system— with the phase

portrait of the sample means of ξ, θ at a succession of times t. The results are shown in Figure 5 and

again the agreement is quite good.
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Fig. 5 Comparison of the curve (Et{ξ}, θ) obtained as the means of 2K/nk and ξ over a sample of 10,000
NHL trajectories, with the phase portrait of the nonlinear system (35), (36).

6.3 Growth of perturbations

We use the velocity autocorrelation function (VAF) to quantify the disturbance on the Hamiltonian

dynamics. Figures 6, 7 show the errors FLD −F and FNHL −F against time. To calculate these errors,

we first set up an ensemble of N = 100, 000 equilibrated initial conditions x(i)(0), i = 1, . . . , N at

temperature T ∗ = 0.7. Next we computed F (t), FLD(t), FNHL(t) and FV R(t) by ensemble averaging;

computing the evolution x(i)(t) using Hamiltonian dynamics, Langevin dynamics, NHL dynamics and

stochastic velocity rescaling (VR) dynamics respectively and then approximating the VAFs by

F (t) ≈
1

NmnkT

N
∑

i=1

n
∑

j=1

p
(i)
j (0)p

(i)
j (t),

for a system of equal masses mj ≡ m. When Langevin dynamics is used (Figure 6) we see that the

error in the VAF grows linearly at first, the slope of the graph being the negative of the coupling

coefficient γ which is also, in this case, the convergence rate. On the other hand for NHL (Figure 7),

the error grows quadratically at first. Hence even for fast convergence rate (i.e. large γ′) the VAF
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Fig. 6 The graph shows the computed perturbation in the VAF by Langevin dynamics (LD) for the 108 atom
Lennard-Jones system, which clearly grows linearly (like −γt), as anticipated (see Section 4.1).
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Fig. 7 For small times, the developing perturbation in the VAF by Nosé-Hoover-Langevin (applied to the 108
atom system) is well approximated by the quadratic derived in Section 4.3 (as − kT

2µ
t2).
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Fig. 8 The early evolution of the perturbation of the stochastic velocity rescaling thermostat for the 108 atom
Lennard-Jones system . The calculation is impeded by the presence of multiplicative noise.
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Fig. 9 The VAF perturbation for the stochastic velocity rescaling thermostat using a simple reduced 2-body
Lennard-Jones model , on a short time interval.
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calculated using the NHL method is much more accurate than that given by Langevin dynamics. Note

the dramatic difference in scale between the perturbation observed here and that shown for Langevin

dynamics in Figure 6.

We also examined the growth of the error in the velocity autocorrelation function for the stochastic

velocity rescaling method. We found it more challenging to verify the linear growth estimated in Section

4.2 in a Lennard-Jones model, probably because the coefficient of linear growth is very small and the

presence of multiplicative noise complicates the numerical calculation considerably. The result of our

simulation is shown in Figure 8. When we re-ran the calculation using a simple two degree of freedom

reduced Lennard Jones model with potential U(q1, q2) = ϕLJ(2q1)+2ϕLJ(
√

q2
1 + q2

2), a smaller stepsize,

and computing more samples, the linear growth of VAF perturbation proved to be more easily verified,

with the result shown in Figure 9.

7 Conclusions

In this article we have compared several methods for temperature control in molecular simulation in

terms of their efficiencies. The efficiency is defined as the reciprocal of the magnitude of the perturbation

of the velocity autocorrelation function incurred during the characteristic time it takes for the kinetic

energy to converge to its equilibrium average. We obtain the convergence rate by an approximate

treatment of the expectations of the stochastic differential equations describing the thermostat. An

approximation to the growth rate of the perturbations is calculated by means of a Maclaurin expansion

of the velocity autocorrelation function, derived from the stochastic differential equations. We find

that for systems with n degrees of freedom, the Nosé-Hoover-Langevin thermostat and the stochastic

velocity rescaling method both are order n times more efficient than Langevin dynamics in the sense

defined here. Where sampling trajectories are to be used for the computation of averaged dynamics

(e.g. velocity autocorrelation functions), or consequent calculations such as diffusion rates or stress

tensors, there would appear to be a clear advantage to using one of the “gentle” thermostats described

here.
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