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Does ‘Negative absolute temperature’ make any sense?
NO

I everybody knows nothing can be colder than absolute zero
I various authorities assert T > 0 (as an axiom)
I various formulations of Second Law uncomfortable with T < 0
I Ideal gas thermometer T = pV /Nk . Gas pressure can’t be

negative, so neither can T
I The Hamiltonian is normally unbounded above, so that

Z =
∑
i

e−Ei/kT

normally diverges if T ≤ 0

YES

I BUT ... suppose energy is bounded above (e.g. Ising model)
I then the sum for Z makes sense even for negative T .
I Example: for a nuclear spin µ in a magnetic field h

Z = eµh/kT + e−µh/kT = 2 cosh(µ|h|/kT )



‘Canonical’ probabilities for a single spin-1
2 nucleus

I Suppose magnetic moment of nucleus has magnitude µ.

I Directed magnetic moment (plus sign means “parallel to h”) is
either +µ with energy −µ|h| and probability ∝ eµ|h|/kT

or −µ with energy +µ|h| and probability ∝ e−µ|h|/kT

I For positive T the lower-energy state is the more probable;
for negative T the higher-energy state is the more probable:
negative T is hotter than positive, not colder.

I Expectation magnetic moment of an N-spin system is

N
µeµ|h|/kT − µe−µ|h|/kT

eµ|h|/kT + e−µ|h|/kT
= Nµ tanh

µ|h|
kT
≈ Nµ2

kT
|h|

along direction of h; i.e., M is parallel to h at positive
temperatures, but antiparallel at negative temps.

I

Curie’s law M ≈ const

kT
h



Some experiments

I The Purcell-Pound experiment: first creation of a
‘negative-temperature’ state (1951)

I A nuclear spin system, normally antiferomagnetic, showing
ferromagnetic ordering in the ‘negative temperature’ state
(1992)

I A lattice system showing Bose-Einstein condensation into the
highest single-particle energy level (2013)



Purcell-Pound∗ experiment on a paramagnetic crystal (LiF)
Think of the crystal as a system of nuclear spins. At sufficiently
low temperatures its relaxation time for spin-lattice interactions is
of order 10 seconds, but for spin-spin interactions is of order 10
millisec

I 1: bring to equilibrium with the lattice at a low temperature
in a strong magnetic field. Time taken � 10 sec

I 2: Remove the strong field (this cools the spin system to an
even lower temperature), apply a small oscillating field h of
period ∼ 10 msec. or greater. M follows the oscillations and
is parallel to h

I 3: reverse the magnetic field in a time ( � 10µsec) so short
that M cannot follow

I 4: Now, in an oscillating applied field h (period ∼ 10 msec),
M follows the oscillations but is anti-parallel to h

I Curie’s law M = const
T h suggests negative T during step 4

∗E. M. Purcell & R. V. Pound, A nuclear spin system at negative temperatures

Phys. Rev. 81, 279 (1951)



A nuclear spin system (Ag) showing both
antiferromagnetic and ferromagnetic ordering

I Nuclear spins of Ag show antiferromagnetic ordering for
T > 0 but ferromagnetic for “T < 0.”

I Magnetic moment is approximately constant for Tc < T < 0
with Tc ≈ −2 nanoKelvin.

I Susceptibility data outside this temperature range fit the
Curie-Weiss formula for both signs of T

M ≈ const

T − Tc
h (T < Tc or T > 0)

I Measuring temperature using T = ∆Q/∆S : When T > 0,
supplying heat increases S and decreases |M|. But when
T < 0 the system loses heat by radiation at the nuclear
Larmor frequency, increasing S and decreasing |M|.

P.J. Hakonen, K.K. Nummila, R.T. Vuorinen & O.V. Lounasmaa, Observation

of nuclear ferromagnetic ordering in silver at negative nanokelvin temperatures,

Phys. Rev. Lett. 68, 365-368 (1992)



B.-E. condensation into highest single-particle energy level

I Bosons (39K atoms) in an optical lattice

I Hamiltonian

H = −J
∑
〈ij〉

(a†i aj +a†j ai )+U
∑
i

a†i ai (a
†
i ai−1)+V0

∑
i

r2i a
†
i ai ,

with U,V0 positive, is bounded below but not above; hence Z
converges only for T > 0

I By cunning experimental techniques, they reversed signs of U
and V0, while preserving the B.E.-condensed quantum state

I The new Hamiltonian is bounded above but not below, so
new Z converges only for T < 0

S. Braun et al., Negative absolute temperature for motional degrees of freedom

Science 339(6115), 5255 (2013)



Time scales of the nuclear spin system

Energy is

E = −M · h + Wss + Wsl

≈ −M · h

Hamiltonian is analogous.

Time scales:

I τL ∼ 10µ sec. : time scale for changes in M (Larmor
precession). If δt � τL then δM ≈ 0

I τss ∼ 10msec. : time scale for spin-spin interaction Wss to
bring spin system to internal equilibrium. If τss � δt then
process is quasi-static; thermodynamics applies

I τsl ∼ 10 sec : time scale for spin-lattice interaction Wsl to
bring system to eqm with lattice. If δt � τsl then h · dM ≈ 0



The Purcell-Pound process revisited

Summary of time scales

I τL ∼ 10µ sec. : if δt � τL then δM ≈ 0

I τss ∼ 10msec. : if τss � δt then metastable equilibrium

I τsl ∼ 10 sec : if δt � τsl then
∫
h · dM ≈ 0

I The process:

I 1. Cool the specimen to eqm in strong field h, δt � τsl .
Value of M depends on h and temp. of lattice.

I 2. Reduce h, then oscillate it: τss � δt � τsl . Metastable
equilibrium: if material is isotropic, M will be parallel to h.
Since h · dM ≈ 0, magnitude of M stays the same.
E = −M · h remains negative

I 3. Reverse h: δt � τL: M stays the same. E changes sign

I 4. Oscillate h: τss � δt � τsl . Direction of M varies as in
step 2; E remains positive



Applying the laws of thermodynamics

Energy is E = −M · h + W ≈ −M · h
h is a control variable; M is a dynamical variable.

I First Law, neglecting dW

dE = −M · dh − h · dM
= work done on system + heat supplied to system

I analogous to −pdV + δQ

I Second Law says δQ = TdS . Therefore ...

TdS = −h · dM (1)

= dE + M · dh (2)

whence
1

T
=
∂S(E ,h)

∂E



Getting more out of the Second Law: the Entropy Principle
Lieb and Yngvason (1998) reformulate the second law of
thermodynamics using what they call the Entropy Principle. The
relevant part of this principle is:

I S(X ) ≤ S(Y ) if and only if it is possible to change the
[thermodynamic] state from X to Y by means of an
interaction with some device consisting of an auxiliary system
and a weight, in such a way that the auxiliary system returns
to its original state at the end of the process whereas the
weight may have risen or fallen.

Here, let X = (M0,h0) and Y = (M0,−h0). with h provided by a
horseshoe magnet. Reverse h by rotating the magnet, using pulleys
attached to a weight, so fast that M does not change. Entropy
principle says S(X ) ≤ S(Y ). It also says (when applied to the
reverse process) S(Y ) ≤ S(X ). It follows that S(X ) = S(Y ), i.e.

S(M,h) = S(M,−h)

E H Lieb and J Yngvason A guide to entropy and the second law of

thermodynamics Notices of the AMS 45 571-581 (1998)



Entropy principle implies negative temperatures

The entropy principle gave

S(M,h) = S(M,−h)

Since E = −h ·M this can be written

S(E ,h) = S(−E ,−h)

Using the definition of temperature, we find

1

T (E ,h)
=
∂S(E ,h)

∂E
= −∂S(−E ,−h)

∂E
= − 1

T (−E ,−h)

Thus, a rapid reversal of the applied magnetic field reverses not
only the energy but also the temperature.



Statistical mechanics of the nuclear spin system
Hamiltonian is

H = −M · h +W ≈ −M · h
Using a microcanonical ensemble at energy E , the “Gibbs∗” (or
“Griffiths†”?) entropy can be defined as

SG (E ,h) = k log Ω(E ,h)

where Ω(E ,h) = tr(step(E +M · h)) is the number of energy
levels below E . Taking the differential we get

dSG (E ,h) = (1/TG )[dE + 〈M〉E ,h · dh]

where TG (E ,h) := (∂SG/∂E )−1 and 〈. . . 〉 := microcanonical
average. Thus SG (unlike some other entropy definitions) is
“thermostatistically consistent∗” meaning that it exactly satisfies

TdS = dE + M · dh with M = 〈M〉E ,h
∗J Dunkel & S Hilbert Consistent thermostatistics forbids negative absolute

temperatures Nature Physics 10 67-72 (2014); †R B Griffiths Microcanonical

ensemble in quantum statistical mechanics J Math Phys 6 1447 (1965)



The ”Gibbs” entropy and negative temperatures

I The “Gibbs” entropy

SG (E ,h) = k log Ω(E ,h)

is monotonic non-decreasing in E ; therefore the associated
temperature TG := (∂SG (E ,h)/∂E )−1 cannot be negative.
On this basis it has been argued∗ that negative absolute
temperatures should never be used.

I However, one can get around the difficulty by defining the
entropy of a nuclear spin system not by S = SG but by

S(E ,h) := SG (−|E |,h)

which agrees with the definition S = SG for negative E but is
even in E as required by the entropy principle.

∗J Dunkel & S Hilbert Consistent thermostatistics forbids negative absolute

temperatures Nature Physics 10 67-72 (2014)



Is the new definition thermostatistically consistent?
The proposed definition is

S(E ,h) := SG (−|E |,h) = k log Ω(E ,h) if E < 0

but = k log Ω(−E ,h) if E > 0

E

0

−E

Emin

Emax

Ω(Ε)Ω(−Ε)

Ω(Ε)

Ωmax

Ω(−Ε)

The energy spectrum is symmetric about E = 0, therefore the
number of levels below −E equals the number above +E i.e.

Ω(−E ,h) = Ωmax − Ω(E ,h)

so that, for E > 0,

S(E ,h) := SG (−E ,h) = k log(Ωmax−exp(SG (E ,h)/k)) =: f (SG (E ,h))



Yes, the new definition is thermostatistically consistent
To check thermostatistical consistency for E > 0:

S(E ,h) := SG (−E ,h) = k log(Ωmax−exp(SG (E ,h)/k)) =: f (SG (E ,h))

From this it follows (for E > 0) that

T (E )dS(E ) =
dS(E )

∂S(E ,h)/∂E
=

f ′(SG )dSG (E )

f ′(SG )∂SG (E ,h)/∂E

=
dSG (E )

∂SG (E ,h)/∂E
= TG (E )SG (E )

Since SG (E ) is already known to be thermostatistically consistent
for all E , i.e.

TGdSG = dE + 〈M〉 · dh

it follows that S(E ) is also thermostatistically consistent for
E > 0, and hence for all E

TdS = dE + 〈M〉 · dh



The myth of Carnot efficiencies greater than 100%
Heat input and work output in a cycle

h

M

h

M

clockwise cicrcuit: area =

∫
h · dM

= −(heat supplied to system)

anticlockwise circuit: area = −
∮

h · dM

= heat input = work output



Carnot efficiencies : always ≤ 1
B A

C D

T1

T2

T

S

T4

T1

T3

T4

I red cycle: heat in = T1∆S , work done = (T1 − T2)∆S

efficiency = work output
heat input = T1−T2

T1
= 1− T2

T1
< 1

I green cycle: heat in = T1∆S + |T4|∆S , work done
= (T1 − T4)∆S

efficiency = work output
heat input = T1−T4

T1+|T4| = 1

I blue cycle: heat in = |T4|∆S , work done = (T3 − T4)∆S

efficiency = work output
heat input = T3−T4

|T4| = |T4|−|T3|
|T4| < 1



Negative temperatures in cosmology?

I “negative temperature states of motional degrees of freedom
necessarily possess negative pressure and are thus of
fundamental interest to the description of dark energy in
cosmology, where negative pressure is required to account for
the accelerating expansion of the universe”.

I S. Braun et al., Negative absolute temperature for motional degrees of

freedom Science 339(6115), 5255 (2013)



Where it all started
I Onsager : ”statistical hydrodynamics”* (1949)

2-D system of vortices in an ideal fluid (C-C Lin)

kidxi/dt = ∂H/∂yi

kidyi/dt = −∂H/∂xi
H := −(1/2π)

∑
kikj log |xi − yj |

Ω(E ) :=

∫
H<E

∏
dxidyi

I ”Ω′(E ) must assume its maximum value for some finite Em”.
Identifies log Ω′(E ) with entropy. His prediction: for E < Em

the temperature T := (dS/dE )−1 is positive and vortices of
opposite sign approach one another; but for E > Em,T is
negative and vortices of the same sign tend to cluster.

I BUT: in thermodynamic limit, T ≥ 0
I *Nuov. Cim. Suppl. 6 279 (1949), see also Fröhlich & Ruelle, Commun.

Math. Phys. 87 1-36 (1982) and Eyink & Sreenivasan, Rev. Mod. Phys.

78 87-135 (2006)


