
More on Truth Trees 
for Predicate Logic 

8-1. CONTRADICTIONS, LOGICAL TRUTH, LOGICAL 
EQUNALENCE, AND CONSISTENCY 

In this section we are going to see how to apply the truth tree method to 
test predicate logic sentences for some familiar properties. This will be 
little more than a review of what you learned for sentence logic. The ideas 
are all the same. All we have to do is to switch to talking about interpre- 
tations where before we talked about lines of a truth table. 

Let's start with logical contradiction. In sentence logic we say that a 
sentence is a contradiction if and only if it is false in all possible cases, 
where by "possible cases" we mean assignments of truth values to sentence 
letters-in other words, lines of the sentence's truth table. Recharaaeriz- 
ing the idea of a possible case as an interpretation, we have 

A dosed predicate logic sentence is a CmrtradicCion if and only if it is false in 
all of its interpretations. 

The truth tree test for being a contradiction also carries over directly 
from sentence logic. The truth tree method is guaranteed to lind an inter- 
pretation in which the initial sentence or sentences on the tree 'are true, 
if there is such an interpretation. Consequently 

To test a sentence, X, for being a contradiction make X the first h e  of a 
truth tree. If there is an interpretation which makes X true, the tree method 
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will find such an interpretation, which will provide a counterexample to X 
being a contradiction. If all branches close, there is no interpretation in 
which X is true. In this case, X is false in all of its interpretations; that is, X 
is a contradiction. 

Here is a very simple example. We test '(3x)(Bx & -Bx)' to see whether it 
is a contradiction: 

J1 (3x)(Bx & -Bx) S (The sentence being tested) 
42 (Ba & -Ba) 1, 3, New name 

3 Ba 2, 
4 - Ba 2, 

X 

The sentence is a contradiction. 

The idea of a logical truth carries over from sentence logic in exactly 
the same way. In sentence logic a sentence is a logical truth if it is true 
for all possible cases, understood as all truth value assignments. Now, tak- 
ing possible cases to be interpretations, we say 

A closed predicate logic sentence is a Logccal Truth if and only if it is true in 
all of its interpretations. 

To determine whether a sentence is a logical truth, we must, just as we 
do in sentence logic, look for a counterexample-that is, a case in which 
the sentence is false. Consequently 

To  test a predicate logic sentence, X, for being a logical truth, make -X 
the first line of a tree. If there is an interpretation which makes -X true, 
the tree method will find such an interpretation. In such an interpretation, 
X is false, so that such an interpretation provides a counterexample to X 
being a logical truth. If all branches close, there is no interpretation in which 
-X is true, and so no interpretation in which X is false. In this event, X is 
true in all of its interpretations; that is, X is a logical truth. 

Again, let's illustrate with a simple example: Test '(3x)Bx v (3x)-Bx' to 
see if it i s  a logical truth: 

-[(gx)~x v ( ~ x ) - B x ]  -S (The negation of the sentence being tested) 
J 2 -(3x)Bx 1, -v 
43 -(ax)-Bx 1, -v 
a4 (Vx)-Bx 2, -3 
a5 Wx)--Bx 3, -3 
6 - Ba 4, v 
7 --Ba 5, v 

X 

The sentence is a logical truth. 

The tree shows that there are no interpretations in which line 1 is true. 
Consequently, there are no interpretations in which the original sentence 
(the one which we negated to get line 1) is false. So this original sentence 
is a logical truth. 

Notice that I had to introduce a name when I worked on line 4. Line 4 
is a universally quantified sentence, and having no name at that point I 
h'ad to introduce one to start my try at an interpretation. Line 5 is another 
universally quantified sentence, and when I worked on it, I already had 
the name 'a'. So I instantiated line 5'with 'a'. At no place on this tree did 
the new name requirement of the rule 3 apply. This is because at no 
place on the tree is the entire sentence an existentially quantified sen- 
tence. In particular, the sentences of lines 2 and 3 are negated existen- 
tially quantified sentences, not existentially quantified sentences, so the 
rule 3 and the new name requirement do not apply to them. 

It's time to talk about logical equivalence. We already discussed this 
subject in section 3-4, which you may want to review at this point. For 
completeness, let's restate the definition: 

Two closed predicate logic sentences are Logically Equivalent if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 

Do you remember how we tested for logical equivalence of sentence 
logic sentences? Once again, everything works the same way in predicate 
logic. Two closed predicate logic sentences have the same truth value in 
one of their interpretations if and only if their biconditional is true in the 
interpretation. So the two sentences will agree in truth value in all of their 
interpretations if and only if their biconditional is true in all of their inter- 
pretations-that is, if and only if their biconditional is a logical truth. So 
to test for logical equivalence we just test for the logical truth of the bi- 
conditional: 

T o  determine whether the closed predicate logic sentences, X and Y, are 
logically equivalent, test their biconditional, X=Y, for logical truth. That is, 
make -(X=Y) the first line of a tree. If all branches close, -(X=Y) is a 
logical truth, so that X and Y are logically equivalent. If there is an open 
branch, X and Y are not logically equivalent. An open branch will be an 
interpretation in which one of the two sentences is true and the other false, 
so that such an open branch provides a counterexample to X and Y being 
logically equivalent. 

Here is another way in which you can test two sentences, X and Y, for 
logical equivalence. Consider the argument "X. Therefore Y." with X as 
premise and Y as conclusion. If this argument is invalid, there is a coun- 
terexample, an interpretation in which X is true and Y is false. Thus if 
"X. Therefore Y." is invalid, X and Y are not logically equivalent, and a 
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counterexample to the argument is also a counterexample which shows X 
and Y not to be logically equivalent. The same goes for the argument "Y. 
Therefore X.", this time taking the second sentence, Y, as premise and 
the first sentence, X, as conclusion. If this argument is invalid there is a 
counterexample, that is, an interpretation in which Y is true and X is 
false, and hence again a counterexample to X and Y being logically equiv- 
alent. 

Now, what happens if both the arguments "X. Therefore Y." and "Y. 
Therefore X." are valid? In this event every interpretation in which X is ' 

true is an interpretation in which Y is true (the validity of "X. Therefore 
Y."), and every interpretation in which Y is true is an interpretation in 
which X is true (the validity of "Y. Therefore X."). But that is just another 
way of saying that in each interpretation X and Y have the same truth 
value. If whenever X is true Y is true and whenever Y is true X is true, 
we can't have a situation (an interpretation) in which one is true and the 
other is false. Thus, if "X. Therefore Y." and "Y. Therefore X." are both 
valid, X and Y are logically equivalent: 

To determine whether the closed predicate logic sentences, X and Y, are 
logically equivalent, test the two arguments "X. Therefore Y." and "Y. 
Therefore X." for validity. If either argument is invalid, X and Y are not 
logically equivalent. A counterexample to either argument is a counterex- 
ample to the logical equivalence of X and Y. If both arguments are valid, X 
and Y are logically equivalent. 

In fact, the two tests for logical equivalence really come to the same 
thing. To see this, suppose we start out to determine whether X and Y 
are logically equivalent by using the first test. We begin a tree with 
-(X=Y) and apply the rule -=: 

A 
2 X - X  I , - =  
3 -Y Y I , - =  

Now notice that the left-hand branch, with X followed by -Y, is just the 
way we start a tree which tests the validity of the argument "X. Therefore 
Y.". And, except for the order of -X and Y, the right-hand branch looks 
just like the tree which we would use to test the validity of the argument 
"Y. Therefore X.". So far as the right-hand branch goes, this order makes 
no difference. Because we are free to work on the lines in any order, what 
follows on the right-hand branch is going to look the same whether we 
start it with -X followed by Y or Y follow by -X. 

In sum, lines 2 and 3 in our tree are just the beginning of trees which 
test the validity of "X. Therefore Y." and "Y. Therefore X.". Thus the 
completed tree will contain the trees which test the arguments "X. There- 

fore Y." and "Y. Therefore X.". And, conversely, if we do the two trees 
which test the arguments "X. Therefore Y." and "Y. Therefore X." we 
will have done all the work which appears in the tree we started above, 
the tree which tests X=Y for logical truth. So the two ways of determining 
whether X and Y are logically equivalent really involve the same work. 

If you did all of exercise 7-4 you have already tested 11 pairs of sen- 
tences for logical equivalence! In each of these pairs you tested two ar- 
guments, of the form "X. Therefore Y." and "Y. Therefore X.". Using 
our new test for logical equivalence, you can use your work to determine 
in each of these problems whether or not the pair of sentences is logically 
equivalent. 

Truth trees also apply to test sets of sentences for consistency. Recall 
from section 9-2 in volume I that a set of sentence logic sentences is 
consistent if and only if there is at least one case which makes all of the 
sentences in the set true. Interpreting cases as interpretations, we have 

A Model of a set of one or more predicate logic sentences is an interpretation 
in which all of the sentences in the set are true. 

A set of one or more predicate logic sentences is consistent just in case it 
has at least one model, that is, an interpretation in which all of the sentences 
in the set are true. 

To test a finite set of predicate logic sentences for consistency, make the 
sentence or sentences in the set the initial sentences of a tree. If the tree 
closes, there is no interpretation which makes all of the sentences true to- 
gether (no model) and the set is inconsistent. An open branch gives a model 
and shows the set to be consistent. 

Every truth tree test of an argument is also a test of the consistency of 
the argument's premises with the negation of the argument's conclusion. 
An argument is valid if and only if its premises are inconsistent with the 
negation of the argument's conclusion. In other words, an argument is 
invalid if and only if its premises are consistent with the negation of its 
conclusion. Thus one can view the truth tree test for argument validity as 
a special application of the truth tree test for consistency of sets of sen- 
tences. (If you have any trouble understanding this paragraph, review 
exercise 9-7 in volume I. Everything in that exercise applies to predicate 
logic in exactly the same way as it does to sentence logic.) 

EXERCISES 

8-1. Test the following sentences to determine which are logical 
truths, which are contradictions, and which are neither. Show your 
work and state your conclusion about the sentence. Whenever you 
find a counterexample to a sentence being a logical truth or a con- 
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tradiction, give the counterexample and state explicitly what it is a 
counterexample to. 

(Vx)Dx v (3x)-Dx b)(Vx)Kx & (3x)-Kx 
(Vx)Nx v (Vx)-Nx d)(Vx)Jx & (Vx)-Jx 
(3x)Bx v (3x)-Bx f )(3x)Px & (3x)-Px 
[(Vx)Gx v (Vx)Hx] & -(Vx)(Gx v Hx) 
(Vx)(Kx v Jx) 3 [(3x)-Kx 3 (3x)Jxl 
[(Vx)Mx 3 (Vx)-Nx] & (3x)(-Mx & Nx) 
[(3x)Hx 3 (Vx)(Ox 3 Nx)] 3 [(3x)(Hx & Ox) > (Vx)Nx] 
(3x)[-Sx & (Gx v Kx)] v [(Vx)Gx 3 (Vx)(Sx v Kx)] 
[(Vx)Fx v (Vx)Gx] = [(3x)-Fx & -(Vx)Gx] 

8-2. Use the truth tree method to test the following sets of sentences 
for consistency. In each case, state your conclusion about the set of 
sentences, and if the set of sentences is consistent, give a model. 

a) (3x)Px. (3x)-Px 
b) (Vx)Px, (Vx)-Px 
c) (Vx)Px, (3x)-Px 
d) (Vx)-Fx, (Vx)Sx, (3x)[(-Fx 3 Sx) 3 Fx] 
e) (3x)Gx & (3x)Qx, -(3x)(Gx & Qx) 
f )  (Vx)(Gx v Qx), -[(Vx)Gx v (Vx)Qx] 
g) (3x)Ux v Dx), (Vx)Ux 3 -Hx), (Vx)(Dx 3 Hx), 

(Vx)Ux = (Dx v Hx)] 

8-3. Explain the connections among consistency, logical truth, and 
logical contradiction. 
8 4 .  By examining your results from exercise 7-4(a) through (k), 
determine which pairs of sentences are logically equivalent and 
which are not. This is more than an exercise in mechanically apply- 
ing the test for logical equivalence. For each pair of sentences, see if 
you can understand intuitively why the pair is or is not logically 
equivalent. See if you can spot any regularities. 

logical truth. To determine this, we must look for a counterexample to its 
being a logical truth, that is, an interpretation in which it is false. So we - 
make the negation of the sentence we are testing the first line of a tree. 
Here are the first six lines: 

J1 -(3x)[Lxa 3 WyILyal -S 
a 2 pix)-[Lxa 3 Wy)Lya] 1 ,  - 3  
J 3  -[Laa 3 Wy)Lyal 2, V 

4 Laa 3, -> 
J 5  -(Vy)Lya 3,  -3 

6 (3~)-Lya 5, -V 

We begin with the negation of the sentence to be tested. Line 2 applies 
the rule for a negated quantifier, and line 3 instantiates the resulting uni- 
versally quantified sentence with the one name on the branch. Lines 4, 5, 
and 6 are straightforward, first applying the rule -3 to line 3 and then 
the rule -V to line 5. 

But now the rules we have been using all along are going to force on 
us something we have not seen before. Applying the rule 3 to line 6 
forces us to introduce a new name, say, 'b', giving '-Lba' as line 7. This 
has repercussions for line 2. When we worked on line 2 we instantiated it 
for all the names we had on that branch at that time. But when we 
worked on line 6 we got a new name, 'b'. For the universally quantified 
line 2 to be true in the interpretation we are building, it must be true for 
all the names in the interpretation, and we now have a name which we 
did not have when we worked on line 2 the first time. So we must return 
to line 2 and instantiate it again with the new name, 'b'. This gives line 8. 
Here, with the final two easy steps, is the way the whole tree looks: 

-(3x)ILxa 3 (Vy)Lyal 
Wx)-[Lxa 3 (Vy)Lyal 

-[Laa 3 (Vy)Lya] 
Laa 

-(Vy)Lya 
(3~)-Lya 

-Lba 
-[Lba 3 (Vy)Lya] 

Lba 
-(Vy)Lya 

X 

-S 
1 ,  - 3  
2, v 
3 ,  -3 
3, -3 
5 ,  -v 
6, 3, New name 
2, v 
8, -3 
8, -3 

8-2. TRUTH TREES WITH MULTIPLE QUANTIFIERS 
The sentence is a logical truth. 

In the last chapter I tried to keep the basics in the limelight by avoiding 
the complication of multiple quantifiers. Multiple quantifiers involve no 
new rules. But they do illustrate some circumstances which you have not 
yet seen. 

Suppose I asked you to determine whether '(3x)[Lxa 3 (Vy)Lya]' is a 

We do not need to work on line 10 because line 7 is the negation of line 
9, and the branch thus closes. Indeed, I could have omitted line 10. 

There was no way for us to avoid going back and working on line 2 a 
second time. There was no way in which we could have worked on the 
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existentially quantified sentence of line 6 before working on line 2 the 
first time. The sentence of line 6 came from inside line 2. Thus we could 
get line 6 only by instantiating line 2 first. You should always be on the 
watch for this circumstance. In multiple quantified sentences it is always 
possible that an existentially quantified sentence will turn up from inside 
some larger sentence. The existential quantifier will then produce a new 
name which will force us to go back and instantiate all our universally 
quantified sentences with the new name. This is why we never check a 
universally quantified sentence. 

Here is another example. We will test the following argument for valid- 
ity: 

Everyone loves someone. ( V ~ Y ~ Y  
Anyone who loves someone (Vx)[(3y)Lxy 3 Lxxl 

loves themself. Wx)Lxx 
Everyone loves themselves. 

(Vx)(3y)Lxy 
(Vx)[(3y)Lxy 3 Lxxl 
-(Vx)Lxx 
(3x)-Lxx 
-Laa 
(3y)Lay 
Lab 
(3y)Lay 3 Laa 

A 
-(3y)Lay Laa 
(Vy)-Lay x 
-Lab 

X 

Valid 

P 
P 
- C 
3, -v 
4, 3 
1, v 
6, 3, New name 
2, v 

Getting this tree to come out as short as I did requires some care in choos- 
ing at each stage what to do next. For example, 1 got line 8 by instantiat- 
ing the universally quantified line 2 with just the name 'a'. The rule V 
requires me to instantiate a universally quantified sentence with all the 
names on the branch. But it does not tell me when I have to do this. I am 
free to do my instantiating of a universally quantified sentence in any 
order I like, and if I can get all branches to close before I have used all 
available names, so much the better. In the same way, the rule V requires 
that I return to instantiate lines 1 and 2 with the new name 'b', which 
arose on line 7. But the rule doesn't tell me when I have to do that. With 
a combination of luck and skill in deciding what to do first, I can get all 
branches to close before returning to line 1 or line 2 to instantiate with 
'b'. In this circumstance I can get away without using 'b' in these sen- 
tences. 

However, in any problem, if I instantiate with fewer than all the names 
and I have failed to close all the branches, then I must return and put - 
the names not yet used into all universally quantified sentences which ap- 
pear on open branches. 

8-3. THREE SHORTCUTS 

In general, it is very dangerous to do two or more steps at the same time, 
omitting explicitly to write down one or more steps which the rules re- 
quire. When you fail to write down all the steps, it becomes too easy to 
make mistakes and too hard to find mistakes once you do make them. 
Also, omitting steps makes it extremely hard for anyone to correct your 
papers. However, there are three step-skipping shortcuts which are suffi- 
ciently clear-cut that, once you are proficient, you may safely use. You 
should begin to use these shortcuts only if and when your instructor says 
it is alright to do so. 

Suppose you encounter the sentence -(Vx)(Vy)Lxy on a tree. The rules 
as I have given them require you to proceed as follows: 

J1 -(Vx)(Vy)Lxy 
J2 (3x1-(Vy)Lxy 1, - V  
J3 -(Vy)Lay 2, 3 
J4 Qy)-Lay 3, - V  

5 -Lab 4, 3, New name 

Now look at line 2. You may be tempted to apply the rule -V inside 
the sentence of line 2. In most cases, applying a rule inside a sentence is 
disastrous. For example, if you should try to instantiate '(Vx)Bx' inside 
' -[(Vx)Bx v A]', you will make hash of your answer. But in the special 
case of the rule for negated quantifiers, one can justify such internal ap- 
plication of the rule. 

In the example we have started, an internal application of the rule -V 
gives the following first three lines of the tree: 

In fact, we can sensibly skip line 2 and simply "push" the negation sign 
through both quantifiers, changing them both. Our tree now looks like 
this: 
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We can do the same with two consecutive existential quantifiers or a 
mixture of quantifiers: 

Indeed, if a sentence is the negation of a triply quantified sentence, you 
could push the negation sign through all three quantifiers, changing each 
quantifier as you go. 

Why is this shortcut justified? To give the reason in a very sketchy way, 
the subsentences to which we apply the negated quantifier rule are logi- 
cally equivalent to the sentences which result from applying the rule. In 
short, we are appealing to the substitution of logical equivalents. To make 
all this rigorous actually takes a little bit of work (for the reasons ex- 
plained in exercise 3 4 ,  and I will leave such niceties to your instructor 
or to your work on logic in a future class. 

Here is another shortcut: Suppose you have a multiple universally 
quantified sentence, such as '(Vx)(Vy)Lxy', on a tree that already has several 
names, say, 'a' and 'b'. Following the rules explicitly and instantiating with 
all the names is going to take a lot of writing: 

a, b, 1 (Vx)(tly)Lxy 
a, b, 2 Wy)Lay 1, V 

3 Laa 2 , V  
4 Lab 2, V 

a, b, 5 Wy)Lby 1, V 
6 Lba 5, V 
7 Lbb 5, V 

In general, it is not a good idea to skip steps, because if we need to look 
for mistakes it is often hard to reconstruct what steps we skipped. But we 
won't get into trouble if we skip steps 2 and 5 in the above tree: 

1 Wx)Wy)Lxy (a, a), (a, b), (b, a), (a, b) 
2 Laa 1, V, V 
3 Lab 1, V, V 
4 Lba 1, V, V 
5 Lbb 1, V, V 

(In noting on line 1 what names I have used in instantiating the doubly 
universally quantified sentence '(Vx)(Vy)Lxy', I have written down the pain 
of names I have used, being careful to distinguish the order in which they 

occurred, and I wrote them to the right of the line simply because I did not 
have room on the left.) 

In fact, if you think you can get all branches to close by writing down just - 
some of the lines 2 to 5, write down only what you think you will need. But 
if in doing so you do not get all branches to close, you must be sure to come 
back and write down the instances you did not include on all open branches 
on which line 1 occurs. 

What about using the same shortcut for a doubly existentially quantified 
sentence? That is, is it all right to proceed as in this mini-tree? 

1 (3x)(3y)Lxy 
2 Lab 1, 3, 3, New names 

This is acceptable if you are very sure that the names you use to instan- 
tiate both existential quantifiers are both new names, that is, names that 
have not yet appeared anywhere on the branch. 

Our last shortcut does not really save much work, but everyone is 
tempted by it, and it is perfectly legitimate: You may drop double nega- 
tions anywhere they occur, as main connectives or within sentences. This 
step is fully justified by the law of substitution of logical equivalents from 
sentence logic. 

A final reminder: You may use these shortcuts only if and when your 
instructor judges that your proficiency is sufficient to allow you to use 
them safely. Also, do not try to omit other steps. Other shortcuts are too 
likely to lead you into errors. 

8-4. INFINITE TREES 

So far, truth trees have provided a mechanical means for testing argu- 
ments for validity and sentences for consistency, logical truth, logical con- 
tradiction, or logical equivalence. But if logic were a purely mechanical 
procedure it could not have enough interest to absorb the attention of 
hundreds of logicians, mathematicians, and philosophers. However, in 
one way, the truth tree method is not purely mechanical. 

Let's test the sentence '(Vx)(3y)Lxy' for consistency. That is, let's look 
for an interpretation which makes it true: 

d, c, b, a, 1 Wx)(3y)Lxy S 
42 (3y)Lay 1, V 

3 Lab 2, 3, New name 
J4  (3y)Lby 1, V 

5 Lbc 4, 3, New name 
J6 (3x)Lcy 1, V 

7 Lcd 6, 3,  New name 



134 More on Truth Trees for Predicate Logic 8-4. Injinite Trees 135 

The tree starts with the universally quantified sentence '(Vx)(3y)Lxy'. At 
this point the tree has no names, so I pick a name, 'a', and use it to in- 
stantiate 1, giving 2. Line 2 is an existentially quantified sentence, so I 
must instantiate it with a new name, 'b', giving line 3. But having the new 
name, 'b', I must go back and make 1 true for 'b'. This produces 4, again 
an existentially quantified sentence, which calls up the new name, 'c'. Now 
I must go back once more to 1 and instantiate it with 'c', producing the 
existentially quantified 6 and the new name, 'd', in 7. I am going to have 
to return to 1 with 'd'. By this time you can see the handwriting on the 
wall. This procedure is never going to end! The tree is just going to keep 
on growing. What does this mean? What has gone wrong? 

Your immediate reaction may be that the troublesome new name re- 
quirement has clearly gummed up the works. The tree keeps on growing 
without end only because we keep needing to use a new name each time 
the existentially quantified sentence comes up. It's the new name from 
the existentiall; quantified sentence which has to be used to instantiate 
the universally quantified sentence which produces a new existentially 
quantified sentence which . . . and so on. 

On the other hand, we know that without the new name requirement, 
the method will not always do its job. So what should we make of this 
situation? 

First, let us understand what this infinite tree represents. It represents 
an interpretation with infinitely many names. The tree goes on forever, 
and corresponding to it we have a domain, D = {a,b,c,d, . . .}, and a 
specification that Lab & Lbc & Lcd & . . . . In other words, each object 
bears the relation L to the next. 

Perhaps you have noticed that we can simplify the interpretation by 
supposing that there really is only one object to which all of the infinitely 
many names refer. This gives an interpretation in which there is only one 
thing, a, such that 'Laa' is true. In this interpretation it is true that for 
each thing (there is only one, namely a) there is something (namely a 
itself) such that Laa. 

This is the last straw! you may well be saying to yourself. The new name 
requirement horribly complicates things, in this case by unnecessarily 
making the tree infinite. In this case the requirement prevents the 
method from finding the simplest interpretation imaginable which makes 
the original sentence true! 

In fact we could rewrite the rules so that they would find this simple 
interpretation in the present case. But then the new rules would have 
some analogue of the new name requirement, an analogue which would 
provide a similar difficulty in some other problem. Let us say a bit more 
specifically what the difficulty comes to. In the infinite tree we have seen, 
it is very easy to tell that the tree will go on forever. And it is easy to 
figure out what infinite interpretation the infinite tree will provide. But in 
more complicated problems it will not be so easy. The rub is that there 

can be no mechanical way which will apply to all cases to tell us, in some 
limited number of steps, whether or not the tree will eventually close. - 
There will always be cases in which, even after thousands of pages, we 
will still not know whether the tree will close in just a few more steps or 
whether it will go on forever. 

One can show that this problem, or some analogue of it, will come up 
no matter how we write the rules of logic. Indeed, this is one of the many 
exciting things about logic. The rules can be mechanically applied. But 
logic will always leave room for insight and ingenuity. For in difficult 
problems the mechanical rules may never tell you whether the tree will 
eventually close. In these cases you can find out only by being clever. 

Unfortunately, we must stop at this point. But I hope that all of you 
have been able to get a glimpse of one of the ways in which logic can be 
exciting. If you continue your study of logic beyond this course, you will 
come to understand why and how the problem of infinite trees is really a 
very general fact about all formulations of predicate logic, and you will 
understand the essential limitations of predicate logic in a much more 
thorough way. 

EXERCISES 

8-5. Test the following sentences to determine which are logical 
truths, which are contradictions, and which are neither. Show your 
work and state your conclusion about the sentence. Whenever you 
find a counterexample to a sentence being a logical truth or a con- 
tradiction, give the counterexample and state explicitly what it is a 
counterexample to. 

8-6. Use the truth tree method to test the following sets of sentences 
for consistency. In each case, state your conclusion about the sets of 
sentences, and if the set of sentences is consistent, give a model. 
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8-7. Use the truth tree method to determine which of the following 
are logically equivalent. Give counterexamples as appropriate. 

and Wx)Px & Wx)Qx 
and (3x)Px & (3x)Qx 
and Wx)Px v Wx)Qx 
and (3x)Px v (3x)Qx 
and (3x)Px 3 Wx)Qx 
and (Vx)Px 3 (3x)Qx 
and Wx)Px 3 Wx)Qx 
and (3x)Px 3 (3x)Qx 
(3y)Wx)ky 
and (3x)Bx & Wy)Hy 

8-8. Are the following arguments valid? If not, give a counterex- 
ample. 

(All cats are animals. Therefore all 
tails of cats are tails of animals.) 

CHAPTER SUMMARY EXERCISES 

Here are items from this chapter for you to review and record in 
summary: 

a) Contradiction 
b) Truth Tree Test for Contradictions 
c)  Logical Truth 

d) Truth Tree Test for Logical Truth 
e) Logical Equivalence 
f )  Truth Tree Test for Logical Equivalence 
g) Consistency 
h) Model 
i) Truth Tree Test for Consistency 
j) Three Permissible Truth Tree Shortcuts 
k) Infinite Trees 
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