
7-1. The Rule for Universal Owntifieation 107

Truth Trees for
Predicate Logic:

Fundamentals

7-1. THE RULE FOR UNIVERSAL QUANTIFICATION

You have already learned the truth tree method for sentence logic. And
now that you have a basic understanding of predicate logic sentences, you
are ready to extend the truth tree method to predicate logic.

Let's go back to the basics of testing arguments for validity: To say that
an argument is valid is to say that in every possible case in which the
premises are true, the conclusion is true also. We reexpress this by saying
that an argument is valid if and only if it has no counterexamples, that is,
no possible cases in which the premises are true and the conclusion false.
When we were doing sentence logic, our possible cases were the lines of
a truth table, and in any one problem there were only finitely many lines.
In principle, we could always check all the truth table lines to see if any
of them were counterexamples. Often the truth tree method shortened
our work. But the trees were really just a labor-saving device. We could
always go back and check through all the truth table lines.

Predicate logic changes everything. In predicate logic our cases are
interpretations, and there are always infinitely many of these. Thus we
could never check through them all to be sure that there are no counter-
examples. Now truth trees become much more than a convenience. They
provide the only systematic means we have for searching for counterex-
amples.

Everything we learned about truth trees in sentence logic carries over

to predicate logic. Someone gives us an argument and asks us whether it
is valid. We proceed by searching for a counterexample. We begin by
listing the premises and the denial of the conclusion as the beginning of
a tree. Just as before, if we can make these true we will have a case in
which the premises are true and the conclusion false, which is a counter-
example and which shows the argument to be invalid. If we can establish
that the method does not turn up a counterexample, we conclude that
there is none and that the argument is valid.

We have boiled our job down to the task of systematically looking for a
case which will make true the initial sentence on a tree. In sentence logic
we did this by applying the rules for the connectives '&', 'v', '-', '3, and
'='. These rules broke down longer sentences into shorter ones in all the
minimally sufficient possible ways which would make the longer sentences
true by making the shorter ones true. Since, in sentence logic, this process
terminates in sentence letters and negated sentence letters, we got
branches which (if they do not close) make everything true by making the
sentence letters and negated sentence letters along them true. In this way
you should think of each branch as a systematic way of developing a line
of a truth table which will make all the sentences along the branch true.

The tree method for predicate logic works in exactly the same way, with
just one change: Each branch is no longer a way of developing a line of a
truth table which will make all the sentences along the branch true. In-
stead, a branch is a way of developing an interpretation which will make
all the sentences along the branch true. All you have to do is to stop
thinking in terms of building a line of a truth table (an assignment of
truth values to sentence letters). Instead, start thinking in terms of build-
ing an interpretation.

Let's see this strategy in action. Consider the example that got us
started on predicate logic, way back in chapter 1:

Everybody loves Eve. (Vx)Lxe
Adam loves Eve. Lae

We begin our search for an interpretation in which the premise is true
and the conclusion is false by listing the premise and the denial of the
conclusion as the initial lines of a tree:

We already know quite a bit about any interpretation of these two sen-
tences which makes them both true. The interpretation will have to have
something called 'a' and something called 'e', and '-Lae' will have to be
true in the interpretation. '-Lae1 is already a negated atomic sentence.
We cannot make it true by making some shorter sentence true.

108 Truth Trees for Predicde Logic: Fundamentals 7-1. The Ruk for Universal Quantijcation 109

But we can make '(Vx)Lxel true by making some shorter sentences true.
Intuitively, '(Vx)Lxe' says that everybody loves Eve. In our interpretation
we have a (Adam) and e (Eve). In this interpretation, in this little novel
or story of the way the world might be, we can make it true that every-
body loves Eve by making it true that Adam loves Eve and making it true
that Eve loves Eve. So we extend the branch representing our interpre-
tation with the sentences 'Lae' and 'Lee':

a, e 1 (Vx)Lxe P
2 -Lae -C
3 Lae 1, v
4 Lee 1, v

X

And the branch closes! The branch includes both '-Lae' and 'Lae', where
the first is the negation of the second. They cannot both be true in an
interpretation. We had to include '-Lae' to get an interpretation which
makes the conclusion of the argument false. We had to include 'Lae' to
get an interpretation which makes '(Vx)Lxe' true. But no interpretation
can make the same sentence both true and false. So there is no interpre-
tation which makes lines 1 and 2 true-there is no counterexample to the
argument. And so the argument is valid.

Let's talk more generally about how I got lines 3 and 4 out of line 1.
Already, when we have just lines 1 and 2, we know that our branch will
represent an interpretation with something called 'a' and something called
'e'. We know this because our interpretation must be an interpretation of
all the sentences already appearing, and these sentences include the
names 'a' and 'e'. Our immediate objective is to make '(Vx)Lxe' true in this
interpretation. But we know that a universally quantified sentence is true
in an interpretation just in case all its substitution instances are true in the
interpretation. So to make '(Vx)Lxe' true in the interpretation we must
make 'Lae' and 'Lee' true in the interpretation. This is because 'Lae' and
'Lee' are the substitution instances of '(Vx)Lxel formed with the interpre-
tation's names, 'a' and 'e'.

Notice that I did something more complicated than simply checking
line 1 after working on it and putting the annotation '1,V' after lines 3
and 4. The rule for the universal quantifier differs in this respect from
all the other rules. The other rules, when applied to a "target" sentence,
tell us to write something at the bottom of every open branch on which
the target sentence appears. When this is done, we have guaranteed that
we have made the target sentence true in all possible minimally sufficient
ways. We thus will never have to worry about the target sentence again.
To note the fact that we are done with the sentence, we check it.

But the rule for the universal quantifier is not like this. First, in apply-
ing the rule to a universally quantified sentence, we have to search the

branch on which the target sentence appears for names. Then, at the
bottom of every open branch on which the target sentence appears, we
must instantiate the target sentence with each name which occurs along
that branch. To help keep track of which names have already been used
to instantiate the target sentence, we list them as we use them.

You might think that when we have thus accounted for all the names
on the branch we are done with the target sentence and can check it. But
you will see that new names can arise after first working on a universdly
quantified target sentence. In such a case we must come back and work
on the universally quantified sentence again. Because we must recognize
the possibility of having to return to a universally quantified sentence, we
never check the sentence as a whole. Instead, we list the names which we
have thus far used in the sentence, because once a universally quantified
sentence has been instantiated with a given name, we never have to in-
stantiate it with the same name again.

Here is a summary statement of our rule:

Rule V: If a universally quantified sentence (Vu)(. . . u . . .) appears as the
entire sentence at a point on a tree, do the following to each open branch
on which (Vu)(. . . u. . .) appears. First, collect all the names s,, st, ss, . . .
that appear along the branch. (If no name appears on the branch, introduce
a name so that you have at least one name.) Then write the substitution
instances (. . . s, . . .), (. . . s2 . . .), (. . . ss . . .), . . . at the bottom of the
branch, and write the names s,, s2, ss, . . . to the left of (Vu)(. . . u . . .).
Do not put a check by (Vu)(. . . u . . .).

Several facets of this rule bear further comment. First, in working om a
universally quantified sentence on a given branch, you only need to in-

-
stantiate it with the names along that branch. If the same universally
quantified sentence occurs along a second branch, that second branch
calls for use of the names that occur along that second branch. This is
because each branch is going to represent its own interpretation. Also,
when instructed to write a substitution instance, (. . . s . . .), at the h t -
tom of an open branch, you do not need to write it a second time if'it
already appears.

Next, the rule instructs you to write all of the substitution instances,
(. . . s, . . .), (. . . s2 . . .), (. . . s3 . . .), . . . at the bottom of every open
path. But if the path closes before you are done, of course you can stop.
Once a path closes, it cannot represent a counterexample, and further
additions will make no difference. Thus, in the last example, I could have
correctly marked the path as closed after line 3, omitting line 4. You can
make good use of this fact to shorten your work by choosing to write
down first the substitution instances which will get a branch to close. But
don't forget that if the branch does not close, you must list all the substi.
tution instances.

1 10 Truth Trees for Predicate Logic: Fundament& 7-2. The Rule for Existential Quantif iat ia

Finally, listing the names used to the left of (Vu)(. . . u . . .) is a prac-
tical reminder of which names you have already used to instantiate
(Vu)(. . . u . . .). But this reminder is not foolproof because it does not
contain the information about which branch the substitution instance ap-
pears on. In practice, this isn't a difficulty because in almost every prob-
lem your substitution instance will appear on all branches. Indeed, when
a universally quantified sentence appears on a branch it never hurts to
introduce a substitution instance formed with a name which had not oth-
erwise appeared on that branch.

Let me illustrate how the rule applies when no name appears on a path.
At the same time, I will show you how we will write down counterexam-
ples:

Invalid. Counterexample: D = {a}; Ba & A

'A' is an atomic sentence letter which we make true in the counterexam-
ple. 'A' is not a name. So when we get to line 3 and need to instantiate
'(Vx)Bx' with all the names in the interpretation we are building, we find
that we don't have any names. What do we do? Every interpretation must
have at least one thing in it. So when applying the rule V to a universally
quantified sentence on a branch which has no names, we have to intro-
duce a name to use. This is the only circumstance in which the V rule
tells us to introduce a new name. Any name will do. In this example I
used 'a'.

Notice how I indicated the counterexample to the argument provided
by the open branch. The counterexample is an interpretation which
makes everything along the branch true. You read the counterexample
off the open branch by listing the names which occur on the branch and
the atomic and negated atomic sentences which occur along the branch.
The rules have been designed so that these shortest sentences make true
the longer sentences from which they came, which in turn make true the
still longer sentences from which they came, and so on, until finally every-
thing along the open branch is true.

EXERCISES

7-1. Use the truth tree method to test the following arguments for
validity. In each problem, state whether or not the argument is valid;
if invalid, give a counterexample.

d) A 3 (Vx)Mx e) (Vx)(Bx 3 Cx) f) (Vx)(Ne = Px)
A (Vx)Bx

pg
Mg & Mi Ca & Cb

g) '(Vx)(Kx v Ax) h) (VxNDx v Gx) i) (Vx)(Sx = Tx)
-Kj (Vx)(Dx 3 Jx)

(Vx)(Gx 3 Jx) Sb v -Ta
Ad

la
j) -Tfg v (vx)Px

Ph 3 (Vx)Qx

Tfg 3 Qh

7-2. THE RULE FOR EXISTENTIAL QUANTIFICATION

Consider the argument

Somebody is blond. (3x)Bx

Adam is blond. Ba

As we noted in chapter 2, this argument is obviously invalid. If somebody
is blond, it does not follow that Adam is blond. The blond might well be
somebody else. We will have to keep the clear invalidity of this argument
in mind while formulating the rule for existentially quantified sentences
to make sure we get the rule right.

Begin by listing the premise and the negation of the conclusion:

As in the last example, we already know that we have an interpretation
started, this time with one object named 'a'. We also know that '-Ba' will
have to be true in this interpretation. Can we extend the interpretation so
as also to make '(3x)Bx' true?

We have to be very careful here. We may be tempted to think along the
following lines: An existentially quantified sentence is true in an interpre-
tation just in case at least one of its substitution instances is true in the

114 Truth Trees for Predicate Logic: Fundamentah 7-2. The Ruk for Existential Quntifiation 113

interpretation. We have one name, 'a', in the interpretation, so we could
make '(3x)Bx' true by making its substitution instance, 'Ba', true. But if
we do that, we add 'Ba' to a branch which already has '-Ba' on it, so that
the branch would close. This would tell us that there are no counterex-
amples, indicating that the inference is valid. But we know the inference
is invalid. Something has gone wrong.

As I pointed out in introducing the example, the key to the problem is
that the blond might well be someone other than Adam. How do we re-
flect this fact in our rules? Remember that in extending a branch down-
ward we are building an interpretation. In so doing, 'we are always free
to add new objects to the interpretation's domain, which we do by bring-
ing in new names in sentences on the tree. Since there is a possibility that
the blond might be somebody else, we indicate this by instantiating our
existentially quantified sentence with a new name. That is, we make
'(3x)Bx7 true by writing 'Bb' at the bottom of the branch, with 'b' a new
name. We bring the new name, 'b', into the interpretation to make sure
that there is no conflict with things that are true of the objects which were
in the interpretation beforehand.

The completed tree looks like this:

J 1 (3x)Bx P
2 -Ba -C
3 Bb 1, 3, New name

Invalid. Counterexample: D = {a,b); -6a & Bb

The open branch represents a counterexample. The counterexample is
an interpretation with domain D = {a,b), formed with the names which
appear on the open branch. The open branch tells us what is true about
a and b in this interpretation, namely, that -Ba & Bb.

You may be a little annoyed that I keep stressing 'new name'. I do this
because the new name requirement is a very important aspect of the rule
for existentially quantified sentences-an aspect which students have a
very hard time remembering. When I don't make such a big fuss about
it, at least 50 percent of a class forgets to use a new name on the next test.
By making this fuss I can sometimes get the percentage down to 25 per-
cent.

Here is the reason for the new name requirement. Suppose we are
working o n a sentence of the form (3u)(. . . u . . .) such as '(3x)Bx' in
our example. And suppose we try to make it true along each open branch
on which i t appears by writing a substitution instance, (. . . t . . .), at the
bottom of each of these branches. Now imagine, as happened in our
example, that -(. . . t . . .)+r something which logically implies
-(. . . t . . .)-already appears along one of these branches. In the
example we already had '-Ba'. This would lead to the branch closing
when in fact we can make a consistent interpretation out of the branch.

We can always do this by instantiating (3u)(. . . u . . .) with a new name,
say, s, a name which does not appear anywhere along the branch. We use
this new name in the instantiation (. . . s . . .). Then (. . . s . . .) can't
conflict with a sentence already on the branch, and we are guaranteed not
to have the kind of trouble we have been considering.

Not infrequently you get the right answer to a problem even if you
don't use a new name when instantiating an existentially quantified sen-
tence. But this is just luck, or perhaps insight into the particular problem,
but insight which cannot be guaranteed to work with every problem. We
want the rules to be guaranteed to find a counterexample if there is one.
The only way to guarantee this is to write the rule for existentially quan-
tified sentences with the new name requirement. This guarantees that we
will not get into the kind of difficulty which we illustrated with our ex-
ample:

Rule 3: If an existentially quantified sentence (3u)(. . . u. . .) appears as
the entire sentence at some point on a tree, do the following to each open
branch on which (3u)(. . . u . . .) appears: First pick a new name, s, that
is, a name which does not appear anywhere on the branch. Then write the
one substitution instance (. . . s . . .) at the bottom of the branch. Put a
check by (3u)(. . . u . . .).

Why do we always need a new name for an' existentially quantified sen-
tence but no new name for a universally quantified sentence (unless there
happens to be no names)? In making a universally quantified sentence
true, we must make it true for all things (all substitution instances) in the
interpretation we are building. To make it true for more things, to add
to the interpretation, does no harm. But it also does no good. If a conflict
is going to come up with what is already true in the interpretation, we
cannot avoid the conflict by bringing in new objects. This is because the
universally quantified sentence has to be true for all the objects in the
interpretation anyway.

We have an entirely different situation with existentially quantified sen-
tences. They don't have to be true for all things in the interpretation. So
they present the possibility of avoiding conflict with what is already true
in the interpretation by extending the interpretation, by making each ex-
istentially quantified sentence true of something new. Finally, since the
rules have the job of finding a consistent interpretation if there is one,
the rule for existentially quantified sentences must incorporate this con-
flict-avoiding device.

7-2. Test the following arguments for validity. State whether each
argument is valid or invalid; when invalid, give the counterexamples
shown by the open paths.

114 Truth Tncr for Predicate Logic: Fundamentah
7-3. Applying the R&r 115

7-3. APPLYING THE RULES

Now let's apply our rules to some more involved examples. Let's try the
argument

(Vx)Lxe v (Vx)-Lxa - Lae

I am going to write out the completed tree so that you can follow it as I
explain each step. Don't try to understand the tree before I explain it.
Skip over it, and start reading the explanation, referring back to the tree
in following the explanation of each step.

41 (Vx)Lxe v (Vx)-Lxa P
2 - Lae P

4 3 --(3x)Lxa -C
J4 (3x)Lxa 3, 7-

6 Lca Lca

A
5 a, e, c (Vx)Lxe a, e, c (Vx)-Lxa 1 , v

4, 3 New Name
7 Lae - Laa 5,
8 Lee -Lea 5, V
9 Lce - Lca 5,

X X
Valid

We begin by listing the premises and the negation of the conclusion.
Our first move is to apply the rule for double negation to line 3, giving
line 4. Next we work on line 1. Notice that even though '(Vx)' is the first
symbol to appear on line 1, the sentence is not a universally quantified

sentence. Ask yourself (As in chapters 8 and 9 in volume I): What is the
last thing I do in building this sentence up from its parts? You take
'(Vx)Lxe' and '(Vx)-Lxa' and form a disjunction out of them. So the main
connective is a disjunction, and to make this sentence true in the interpre-
tation we are building, we must apply the rule for disjunction, just as we
used it in sentence logic. This gives line 5.

In lines 1 through 4 our tree has one path. Line 5 splits this path into
two branches. Each branch has its own universally quantified sentence
which we must make true along the branch. Each branch also has
'(3x)Lxa1, which is common to both branches and so must be made true
along both branches. What should we do first?

When we work on '(3x)Lxa' we will have to introduce a new name. It is
usually better to get out all the new names which we will have to introduce
before working on universally quantified sentences. To see why, look at
what would have happened if I had worked on line 5 before line 4. Look-
ing at the right branch I would have instantiated '(Vx)-Lxa' with 'a' and
'e'. Then I would have returned to work on line 4, which would have
introduced the new name 'c'. But now with a new name 'c' on the branch
I must go back and instantiate (Vx)-Lxa' with 'c'. To make this sentence
true, I must make it true for all instances. If a new name comes up in
midstream, I must be sure to include its instance. Your work on a tree is
more clearly organized if you don't have to return in this way to work on
a universally quantified sentence a second time.

We will see in the next chapter that in some problems we cannot avoid
returning to work on a universally quantified sentence a second time. (It
is because sometimes we cannot avoid this situation that we must never
check a universally quantified sentence.) But in the present problem we
keep things much better organized by following this practical guide:

Practical Guide: Whenever possible, work on existentially quantified sen-
tences before universally quantified sentences.

Now we can complete the problem. I work on line 4 before line 5. Line
4 is an existentially quantified sentence. The rule 3 tells me to pick a new
name, to use this new name in forming a substitution instance for the
existentially quantified sentence, and to write this instance at the bottom
of every open path on which the existentially quantified sentence appears.
Accordingly, I pick 'c' as my new name and write the instance 'Lca' on
each branch as line 6. Having done this, I check line 4, since I have now
ensured that it will be made true along each open path on which it ap-
pears.

Finally, I can work on line 5. On the left branch I must write substitu-
tion instances for '(Vx)Lxe' for all the names that appear along that
branch. So below '(Vx)Lxe' I write 'Lae', 'Lee', and 'Lce', and I write the
names 'a', 'e', and 'c' to the left of the target sentence '(Vx)Lxe' to note

1 I6 Truth Trees for Predicate Logic: Fundamentak

the fact that this sentence has been instantiated with these three names.
The branch closes because 'Lae' of line 7 conflicts with '-Lae' on line 2.
On the right branch I have '(Vx)-Lxa'. At the bottom of the branch I
write its substitution instances for all names on the branch, giving '-Laa',
'-Lea', and '-La'. Again, I write the names used to the left of the target
sentence. '-Lca' is the negation of 'Lca' on line 6. So the right branch
closes also, and the argument is valid.

One more comment about this example: The new name requirement
did not actually avoid any trouble in this particular case. If I had used
either of the old names 'a' or 'e', I would in this case have gotten the right
answer. Moreover, the tree would have been shorter. You may be think-
ing: What a bother this new name requirement is! Why should I waste
my time with it in a case like this? But you must follow the new name
requirement scrupulously if you want to be sure that the tree method
works. When problems get more complicated, it is, for all practical pur-
poses, impossible to tell whether you can safely get away without using it.
The only way to be sure of always getting the right answer is to use the
new name requirement every time you instantiate an existentially quanti-
fied sentence.

Now let's try an example which results by slightly changing the first
premises of the last case:

(Vx)(Lxe v -Lxa) - Lae

-(3x)Lxa

Instead of starting with a disjunction of two universally quantified sen-
tences, we start with a universal quantification of a disjunction:

a, e, c 1 (Vx)(Lxe v -Lxa) P
2 - Lae P

J 3 --(3x)Lxa -C

J4 (3 x) ~ x a 3 , --
5 Lca 4, 3, New name

J6 Lae v -Laa 1, v
/ 7 Lee v -Lea 1, v

V .
Lce v -Lca 1, v

9 Lae -Laa

Lines 1, 2, and 3 list the premises and the negation of the conclusion.
Line 4 gives the result of applying -- to line 3. Looking at line 1, we ask, -
What was the very last step performed in writing this sentence? The an-
swer: applying a universal quantifier. So it is a universally quantified sen-
tence. But line 4 is an existentially quantified sentence. Our practical
guide tells us to work on the existentially before the universally quantified
sentence. Accordingly, I pick a new name, 'c', and use it to instantiate
'(3x)Lxa', giving me line 5. Now I can return to line 1 and apply the rule
V. At this point, the names on the branch are 'a', 'e', and 'c'. So I get the
three instances of 1 written on lines 6, 7, and 8, and I record the names
used to the left of line 1. Lines 9, 10, and 11 apply the v rules to lines 6,
7, and 8. Notice that I chose to work on line 8 before line 7. I am free to
do this, and I chose to do it, because I noticed that the disjunction of line
8 would close on one branch, while the disjunction of line 7 would not
close on any branches.

We have applied the rules as far as they can be applied. No sentence
can be made true by making shorter sentences true. We are left with two
open branches, each of which represents a counterexample to the original
argument. Let's write these counterexamples down.

The branch labeled (i) at the bottom has the names 'e', 'c', and 'a'. (In
principle, the order in which you list information on a branch makes no
difference. But it's easiest to read off the information from the bottom of
the branch up.) So I indicate the domain of branch (i)'s interpretation by
writing D = {e,c,a}. What is true of e, c, and a in this interpretation? The
branch tells us that e bears L to itself, that c bears L to e, that a does not
bear L to itself, that c bears L to a and that a does not bear L to e. In
short, the interpretation is

D = {e,c,a); Lee & Lce & - h a & Lca & - h e

To read an interpretation of an open branch, you need only make a list
of the branch's names and the atomic and negated atomic sentences which
appear along the branch. We use the format I have just indicated to make
clear that the names are names of the objects of the domain, and the
atomic and negated atomic sentences describe what is true of these ob-
jects. Check your understanding by reading the counterexample off the
branch labeled (ii). You should get

D = {e,a,c); -Lea & Lce & - h a & Lca & -Lae

Notice that neither of these counterexamples as read off the branches
constitutes complete interpretations. The branches fail to specify some of
the atomic facts that can be expressed with 'L', 'a', 'c', and 'e'. For exam-
ple, neither branch tells us whether 'LC' is true or false. We have seen
the same situation in sentence logic when sometimes we had a relevant

118 Truth Trees for Predicate Logic: Fundamentak 7--4. Negated Quantified Sentences 119

sentence letter and an open branch on which neither the sentence letter
nor its negation appeared as the entire sentence at a point along the
branch. Here, as in sentence logic, this happens when a branch succeeds
in making everything along it true before completing a selection of truth
values for all relevant atomic sentences. In effect, the branch represents
a whole group of interpretations, one for each way of completing the
specification of truth values for atomic sentences which the branch does
not mention. But for our purposes it will be sufficient to read off the
intermetation as the branch presents it and call it our counterexample
even though it may not yet be a complete interpretation.

EXERCISES

7-3. Test the following arguments for validity. State whether each
argument is valid or invalid, when invalid, give the counterexamples
shown by the open paths.

a) (3x)(Px 3 Qx) b) (3x)Cx c) (3x)Jx v (3x)Kx
Pix)-JX

-(Vx)(Px & -Qx) -(3x)-Cx
-(Vx)-Kx

dl (Vx)(Px 3 Qx) e) (Vx)(Gx v Hx)
(3x)Px

-(ax)-Gx v -(Ex)-HX
-(Vx)-Qx

h) Jq 3 (3x)Kx i) (3x)Hx & (3x)Gx j) (3x)-Fx
(Vx)(Kx 3 Lx) -(Vx)Fx 3 (Vx)-Px

-(Vx)-(Hx & Gx) -(Vx)Fx 3 (VX)-QX
Jq 3 -(Vx)-Lx

-(Vx)(Px v Qx)

7 4 . NEGATED QUANTIFIED SENTENCES

To complete the rules for quantification, we still need the rules for the
negation of quantified sentences. As always, we illustrate with a simple
example:

Lae I Lae P

(3x)Lxe 2 -(3x)Lxe -C

What will make line 2 true? All we need do is to make use of the equiva-
lence rule for a negated existential quantifier, which we proved in section
3 4 . (Remember: "Not one is" comes to the same thing as "All are not."
If you have forgotten that material, reread the first few paragraphs of
section 3 4 y o u will very quickly remember how it works.) '-(3x)Lxe' is
true in an interpretation if and only -if '(Vx)-Lxe' is true in the interpre-
tation. So we can make '-(3x)Lxe' true by making '(Vx)-Lxe' true. This
strategy obviously will work for any negated existentially quantified sen-
tence. So we reformulate the -3 rule for logical equivalence as a rule for
working on a negated existentially quantified sentence on a tree:

Rule -3: If a sentence of the form -(3u)(. . . u . . .) appears as the full
sentence at any point on a tree, write (Vu)-(. . . u . . .)at the bottom of
every open branch on which -(3u)(. . . u . . .) appears. Put a check by
-(3u)(. . . u . . .).

With this rule, we complete our problem as follows:

1 Lae P
4 2 -(3x)Lxe -C

a, e, 3 (Vx)-Lxe 2, -3
4 -Lae 3, v
5 -Lee 3, v

X
Valid

Note that I did not use a new name when I worked on line 2. The new
name rule does not enter anywhere in this problem because the problem
has no existentially quantified sentence as the full sentence at some point
on the tree. Consequently, the rule 3 never applies to any sentence in this
problem. Line 2 is the negation of an existentially quantified sentence,
and we deal with such a sentence with our new rule, -3. Line 2 gives line
3 to which the rule V applies.

The story for the negation of a universally quantified sentence goes the
same way as for a negation of an existentially quantified sentence. Just as
"not one is" comes to the same thing as "all are not," "not all are" comes
to the same thing as "some are not." In other words, we appeal to the
rule -V for logical equivalence in exactly the same way as we appealed to
the rule -3 for logical equivalence. Reformulating for application to a
negated universally quantified sentence on a tree, we have

Rule -V: If a sentence of the form -(Vu)(. . . u . . .) appears as the full
sentence at any point on a wee, write (31)-(. . . u . . .) at the bottom of

140 Truth Trees for Predicate Logic: Fundamentab 7 4 . Negated Quantijkd Sentences 121

every open branch on which -(Vu)(. . . u . . .) appears. Put a check by
-(Vu)(. . . u . . .).

Once again, this rule works because -(Vu)(. . . u . . .) is equivalent to
(3u)-(. . . u . . .), as we noted in section 3-4 and as you proved in ex-
ercise 3-5.

Here is an example to illustrate the -V rule:

(3x)Lxe

J1 (3x)Lxe P
J2 --(Vx)Lxe -C
J3 (3x)-Lxe 2, -V

4 Lce 1, 3, New name
5 -Lde 3, 3, New name

Invalid. Counterexample: D = {d,e,c); -Lde & Lce

In this example, note that failure to follow the new name rule at step 5
would have incorrectly closed the branch. Also note that we do not instan-
tiate line 2 with any of the names. Line 2 is not a universally quantified
sentence. Rather, it is the negation of a universally quantified sentence
which we treat with the new rule -V.

Now you have all the rules for quantifiers. It's time to practice them.

Before you go to work, let me remind you of the three most com-
mon mistakes students make when working on trees. First of all, you
must be sure you are applying the right rule to the sentence you are
working on. The key is to determine the sentence's main connective.
You then apply the rule for that connective (or for the first and
second connectives in case of negated sentences). You should be es-
pecially careful with sentences which begin with a quantifier. Some
are quantified sentences, some are not; it depends on the parenthe-
ses. '(Vx)(Px > A)' is a universally quantified sentence, so the rule V
applies to it. It is a universally quantified sentence because the initial
universal quantifier applies to the whole following sentence as indi-
cated by the parentheses. By way of contrast, '(Vx)(Lxa 3 Ba) & Lba'
is not a universally quantified sentence. It is a conjunction, and the
rule & is the rule to apply to it.

The second mistake to watch for especially carefully is failure to

instantiate a universally quantified sentence with all the names that
appear on the sentence's branch. When a universally quantified sen-
tence appears on a branch, you are not finally done with the sen-
tence until either the branch closes or you have instantiated it with
all the names that appear on the branch. - -

1 Finally, please don't forget the new name requirement when you

1 work on an existentially quantified sentence. When instantiating an
existentially quantified sentence,. you use only one name, but that

I name must not yet appear anywhere on the branch.
1 7 4 . Use the truth tree method to test the following arguments for

validity. In each problem, state whether or not the argument is valid;
if invalid give a counterexample.

a l) (Vx)Px & (Vx)Qx a2) (Vx)(Px & Qx)

(Vx)(Px & Qx) (Vx)Px & (Vx)Qx

b l) (3x)Px v (3x)Qx b2) (3x)(Px v Qx)

(~X) (PX v Qx) (3x)Px v (3x)Qx

e l) A > (Vx)Px e2) (Vx)(A > Px)

(Vx)(A > Px) A 3 (Vx)Px

f l) A 3 (3x)Px f2) (3x)(A > Px)

(3x)(A > Px) A 3 (3x)Px

144 Tmth TWW for PndicaU Logic: F-

I CHAPTER SUMMARY EXERCISES

Here are the new ideas from this chapter. Make sure you under-
stand them, and record your summaries in your notebook.

a) Rule V d) Rule -V
b) Rule 3 e) Rule -3
c) New Name Requirement f) Reading an Interpretation

Off an Open Branch

