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Truth Trees for 
Predicate Logic: 

Fundamentals 

7-1. THE RULE FOR UNIVERSAL QUANTIFICATION 

You have already learned the truth tree method for sentence logic. And 
now that you have a basic understanding of predicate logic sentences, you 
are ready to extend the truth tree method to predicate logic. 

Let's go back to the basics of testing arguments for validity: To say that 
an argument is valid is to say that in every possible case in which the 
premises are true, the conclusion is true also. We reexpress this by saying 
that an argument is valid if and only if it has no counterexamples, that is, 
no possible cases in which the premises are true and the conclusion false. 
When we were doing sentence logic, our possible cases were the lines of 
a truth table, and in any one problem there were only finitely many lines. 
In principle, we could always check all the truth table lines to see if any 
of them were counterexamples. Often the truth tree method shortened 
our work. But the trees were really just a labor-saving device. We could 
always go back and check through all the truth table lines. 

Predicate logic changes everything. In predicate logic our cases are 
interpretations, and there are always infinitely many of these. Thus we 
could never check through them all to be sure that there are no counter- 
examples. Now truth trees become much more than a convenience. They 
provide the only systematic means we have for searching for counterex- 
amples. 

Everything we learned about truth trees in sentence logic carries over 

to predicate logic. Someone gives us an argument and asks us whether it 
is valid. We proceed by searching for a counterexample. We begin by 
listing the premises and the denial of the conclusion as the beginning of 
a tree. Just as before, if we can make these true we will have a case in 
which the premises are true and the conclusion false, which is a counter- 
example and which shows the argument to be invalid. If we can establish 
that the method does not turn up a counterexample, we conclude that 
there is none and that the argument is valid. 

We have boiled our job down to the task of systematically looking for a 
case which will make true the initial sentence on a tree. In sentence logic 
we did this by applying the rules for the connectives '&', 'v', '-', '3, and 
'='. These rules broke down longer sentences into shorter ones in all the 
minimally sufficient possible ways which would make the longer sentences 
true by making the shorter ones true. Since, in sentence logic, this process 
terminates in sentence letters and negated sentence letters, we got 
branches which (if they do not close) make everything true by making the 
sentence letters and negated sentence letters along them true. In this way 
you should think of each branch as a systematic way of developing a line 
of a truth table which will make all the sentences along the branch true. 

The tree method for predicate logic works in exactly the same way, with 
just one change: Each branch is no longer a way of developing a line of a 
truth table which will make all the sentences along the branch true. In- 
stead, a branch is a way of developing an interpretation which will make 
all the sentences along the branch true. All you have to do is to stop 
thinking in terms of building a line of a truth table (an assignment of 
truth values to sentence letters). Instead, start thinking in terms of build- 
ing an interpretation. 

Let's see this strategy in action. Consider the example that got us 
started on predicate logic, way back in chapter 1: 

Everybody loves Eve. (Vx)Lxe 
Adam loves Eve. Lae 

We begin our search for an interpretation in which the premise is true 
and the conclusion is false by listing the premise and the denial of the 
conclusion as the initial lines of a tree: 

We already know quite a bit about any interpretation of these two sen- 
tences which makes them both true. The interpretation will have to have 
something called 'a' and something called 'e', and '-Lae' will have to be 
true in the interpretation. '-Lae1 is already a negated atomic sentence. 
We cannot make it true by making some shorter sentence true. 
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But we can make '(Vx)Lxel true by making some shorter sentences true. 
Intuitively, '(Vx)Lxe' says that everybody loves Eve. In our interpretation 
we have a (Adam) and e (Eve). In this interpretation, in this little novel 
or story of the way the world might be, we can make it true that every- 
body loves Eve by making it true that Adam loves Eve and making it true 
that Eve loves Eve. So we extend the branch representing our interpre- 
tation with the sentences 'Lae' and 'Lee': 

a, e 1 (Vx)Lxe P 
2 -Lae -C 
3 Lae 1, v 
4 Lee 1, v 

X 

And the branch closes! The branch includes both '-Lae' and 'Lae', where 
the first is the negation of the second. They cannot both be true in an 
interpretation. We had to include '-Lae' to get an interpretation which 
makes the conclusion of the argument false. We had to include 'Lae' to 
get an interpretation which makes '(Vx)Lxe' true. But no interpretation 
can make the same sentence both true and false. So there is no interpre- 
tation which makes lines 1 and 2 true-there is no counterexample to the 
argument. And so the argument is valid. 

Let's talk more generally about how I got lines 3 and 4 out of line 1. 
Already, when we have just lines 1 and 2, we know that our branch will 
represent an interpretation with something called 'a' and something called 
'e'. We know this because our interpretation must be an interpretation of 
all the sentences already appearing, and these sentences include the 
names 'a' and 'e'. Our immediate objective is to make '(Vx)Lxe' true in this 
interpretation. But we know that a universally quantified sentence is true 
in an interpretation just in case all its substitution instances are true in the 
interpretation. So to make '(Vx)Lxe' true in the interpretation we must 
make 'Lae' and 'Lee' true in the interpretation. This is because 'Lae' and 
'Lee' are the substitution instances of '(Vx)Lxel formed with the interpre- 
tation's names, 'a' and 'e'. 

Notice that I did something more complicated than simply checking 
line 1 after working on it and putting the annotation '1,V' after lines 3 
and 4. The rule for the universal quantifier differs in this respect from 
all the other rules. The other rules, when applied to a "target" sentence, 
tell us to write something at the bottom of every open branch on which 
the target sentence appears. When this is done, we have guaranteed that 
we have made the target sentence true in all possible minimally sufficient 
ways. We thus will never have to worry about the target sentence again. 
To note the fact that we are done with the sentence, we check it. 

But the rule for the universal quantifier is not like this. First, in apply- 
ing the rule to a universally quantified sentence, we have to search the 

branch on which the target sentence appears for names. Then, at the 
bottom of every open branch on which the target sentence appears, we 
must instantiate the target sentence with each name which occurs along 
that branch. To help keep track of which names have already been used 
to instantiate the target sentence, we list them as we use them. 

You might think that when we have thus accounted for all the names 
on the branch we are done with the target sentence and can check it. But 
you will see that new names can arise after first working on a universdly 
quantified target sentence. In such a case we must come back and work 
on the universally quantified sentence again. Because we must recognize 
the possibility of having to return to a universally quantified sentence, we 
never check the sentence as a whole. Instead, we list the names which we 
have thus far used in the sentence, because once a universally quantified 
sentence has been instantiated with a given name, we never have to in- 
stantiate it with the same name again. 

Here is a summary statement of our rule: 

Rule V: If a universally quantified sentence (Vu)(. . . u . . .) appears as the 
entire sentence at a point on a tree, do the following to each open branch 
on which (Vu)(. . . u. . .) appears. First, collect all the names s,, st, ss, . . . 
that appear along the branch. (If no name appears on the branch, introduce 
a name so that you have at least one name.) Then write the substitution 
instances (. . . s, . . .), (. . . s2 . . .), (. . . ss . . .), . . . at the bottom of the 
branch, and write the names s,, s2, ss, . . . to the left of (Vu)(. . . u . . .). 
Do not put a check by (Vu)(. . . u . . .). 

Several facets of this rule bear further comment. First, in working om a 
universally quantified sentence on a given branch, you only need to in- 

- 
stantiate it with the names along that branch. If the same universally 
quantified sentence occurs along a second branch, that second branch 
calls for use of the names that occur along that second branch. This is 
because each branch is going to represent its own interpretation. Also, 
when instructed to write a substitution instance, (. . . s . . .), at the h t -  
tom of an open branch, you do not need to write it a second time if'it 
already appears. 

Next, the rule instructs you to write all of the substitution instances, 
(. . . s, . . .), (. . . s2 . . .), (. . . s3 . . .), . . . at the bottom of every open 
path. But if the path closes before you are done, of course you can stop. 
Once a path closes, it cannot represent a counterexample, and further 
additions will make no difference. Thus, in the last example, I could have 
correctly marked the path as closed after line 3, omitting line 4. You can 
make good use of this fact to shorten your work by choosing to write 
down first the substitution instances which will get a branch to close. But 
don't forget that if the branch does not close, you must list all the substi. 
tution instances. 
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Finally, listing the names used to the left of (Vu)(. . . u . . .) is a prac- 
tical reminder of which names you have already used to instantiate 
(Vu)(. . . u . . .). But this reminder is not foolproof because it does not 
contain the information about which branch the substitution instance ap- 
pears on. In practice, this isn't a difficulty because in almost every prob- 
lem your substitution instance will appear on all branches. Indeed, when 
a universally quantified sentence appears on a branch it never hurts to 
introduce a substitution instance formed with a name which had not oth- 
erwise appeared on that branch. 

Let me illustrate how the rule applies when no name appears on a path. 
At the same time, I will show you how we will write down counterexam- 
ples: 

Invalid. Counterexample: D = {a}; Ba & A 

'A' is an atomic sentence letter which we make true in the counterexam- 
ple. 'A' is not a name. So when we get to line 3 and need to instantiate 
'(Vx)Bx' with all the names in the interpretation we are building, we find 
that we don't have any names. What do we do? Every interpretation must 
have at least one thing in it. So when applying the rule V to a universally 
quantified sentence on a branch which has no names, we have to intro- 
duce a name to use. This is the only circumstance in which the V rule 
tells us to introduce a new name. Any name will do. In this example I 
used 'a'. 

Notice how I indicated the counterexample to the argument provided 
by the open branch. The counterexample is an interpretation which 
makes everything along the branch true. You read the counterexample 
off the open branch by listing the names which occur on the branch and 
the atomic and negated atomic sentences which occur along the branch. 
The rules have been designed so that these shortest sentences make true 
the longer sentences from which they came, which in turn make true the 
still longer sentences from which they came, and so on, until finally every- 
thing along the open branch is true. 

EXERCISES 

7-1. Use the truth tree method to test the following arguments for 
validity. In each problem, state whether or not the argument is valid; 
if invalid, give a counterexample. 

d) A 3 (Vx)Mx e) (Vx)(Bx 3 Cx) f) (Vx)(Ne = Px) 
A (Vx)Bx 

pg 
Mg & Mi Ca & Cb 

g) '(Vx)(Kx v Ax) h) (VxNDx v Gx) i) (Vx)(Sx = Tx) 
-Kj (Vx)(Dx 3 Jx) 

(Vx)(Gx 3 Jx) Sb v -Ta 
Ad 

la 
j) -Tfg v (vx)Px 

Ph 3 (Vx)Qx 

Tfg 3 Qh 

7-2. THE RULE FOR EXISTENTIAL QUANTIFICATION 

Consider the argument 

Somebody is blond. (3x)Bx 

Adam is blond. Ba 

As we noted in chapter 2, this argument is obviously invalid. If somebody 
is blond, it does not follow that Adam is blond. The blond might well be 
somebody else. We will have to keep the clear invalidity of this argument 
in mind while formulating the rule for existentially quantified sentences 
to make sure we get the rule right. 

Begin by listing the premise and the negation of the conclusion: 

As in the last example, we already know that we have an interpretation 
started, this time with one object named 'a'. We also know that '-Ba' will 
have to be true in this interpretation. Can we extend the interpretation so 
as also to make '(3x)Bx' true? 

We have to be very careful here. We may be tempted to think along the 
following lines: An existentially quantified sentence is true in an interpre- 
tation just in case at least one of its substitution instances is true in the 



114 Truth Trees for Predicate Logic: Fundamentah 7-2. The Ruk for Existential Quntifiation 113 

interpretation. We have one name, 'a', in the interpretation, so we could 
make '(3x)Bx' true by making its substitution instance, 'Ba', true. But if 
we do that, we add 'Ba' to a branch which already has '-Ba' on it, so that 
the branch would close. This would tell us that there are no counterex- 
amples, indicating that the inference is valid. But we know the inference 
is invalid. Something has gone wrong. 

As I pointed out in introducing the example, the key to the problem is 
that the blond might well be someone other than Adam. How do we re- 
flect this fact in our rules? Remember that in extending a branch down- 
ward we are building an interpretation. In so doing, 'we are always free 
to add new objects to the interpretation's domain, which we do by bring- 
ing in new names in sentences on the tree. Since there is a possibility that 
the blond might be somebody else, we indicate this by instantiating our 
existentially quantified sentence with a new name. That is, we make 
'(3x)Bx7 true by writing 'Bb' at the bottom of the branch, with 'b' a new 
name. We bring the new name, 'b', into the interpretation to make sure 
that there is no conflict with things that are true of the objects which were 
in the interpretation beforehand. 

The completed tree looks like this: 

J 1  (3x)Bx P 
2 -Ba -C 
3 Bb 1, 3,  New name 

Invalid. Counterexample: D = {a,b); -6a & Bb 

The open branch represents a counterexample. The counterexample is 
an interpretation with domain D = {a,b), formed with the names which 
appear on the open branch. The open branch tells us what is true about 
a and b in this interpretation, namely, that -Ba & Bb. 

You may be a little annoyed that I keep stressing 'new name'. I do this 
because the new name requirement is a very important aspect of the rule 
for existentially quantified sentences-an aspect which students have a 
very hard time remembering. When I don't make such a big fuss about 
it, at least 50 percent of a class forgets to use a new name on the next test. 
By making this fuss I can sometimes get the percentage down to 25 per- 
cent. 

Here is the reason for the new name requirement. Suppose we are 
working o n  a sentence of the form (3u)(. . . u . . .) such as '(3x)Bx' in 
our example. And suppose we try to make it true along each open branch 
on which i t  appears by writing a substitution instance, (. . . t . . .), at the 
bottom of each of these branches. Now imagine, as happened in our 
example, that -(. . . t . . .)+r something which logically implies 
-(. . . t . . .)-already appears along one of these branches. In the 
example we already had '-Ba'. This would lead to the branch closing 
when in fact we can make a consistent interpretation out of the branch. 

We can always do this by instantiating (3u)(. . . u . . .) with a new name, 
say, s, a name which does not appear anywhere along the branch. We use 
this new name in the instantiation (. . . s . . .). Then (. . . s . . .) can't 
conflict with a sentence already on the branch, and we are guaranteed not 
to have the kind of trouble we have been considering. 

Not infrequently you get the right answer to a problem even if you 
don't use a new name when instantiating an existentially quantified sen- 
tence. But this is just luck, or perhaps insight into the particular problem, 
but insight which cannot be guaranteed to work with every problem. We 
want the rules to be guaranteed to find a counterexample if there is one. 
The only way to guarantee this is to write the rule for existentially quan- 
tified sentences with the new name requirement. This guarantees that we 
will not get into the kind of difficulty which we illustrated with our ex- 
ample: 

Rule 3: If an existentially quantified sentence (3u)(. . . u. . .) appears as 
the entire sentence at some point on a tree, do  the following to each open 
branch on which (3u)(. . . u . . .) appears: First pick a new name, s, that 
is, a name which does not appear anywhere on the branch. Then write the 
one substitution instance (. . . s . . .) at the bottom of the branch. Put a 
check by (3u)(. . . u . . .). 

Why do we always need a new name for an' existentially quantified sen- 
tence but no new name for a universally quantified sentence (unless there 
happens to be no names)? In making a universally quantified sentence 
true, we must make it true for all things (all substitution instances) in the 
interpretation we are building. To make it true for more things, to add 
to the interpretation, does no harm. But it also does no good. If a conflict 
is going to come up with what is already true in the interpretation, we 
cannot avoid the conflict by bringing in new objects. This is because the 
universally quantified sentence has to be true for all the objects in the 
interpretation anyway. 

We have an entirely different situation with existentially quantified sen- 
tences. They don't have to be true for all things in the interpretation. So 
they present the possibility of avoiding conflict with what is already true 
in the interpretation by extending the interpretation, by making each ex- 
istentially quantified sentence true of something new. Finally, since the 
rules have the job of finding a consistent interpretation if there is one, 
the rule for existentially quantified sentences must incorporate this con- 
flict-avoiding device. 

7-2. Test the following arguments for validity. State whether each 
argument is valid or invalid; when invalid, give the counterexamples 
shown by the open paths. 
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7-3. APPLYING THE RULES 

Now let's apply our rules to some more involved examples. Let's try the 
argument 

(Vx)Lxe v (Vx)-Lxa - Lae 

I am going to write out the completed tree so that you can follow it as I 
explain each step. Don't try to understand the tree before I explain it. 
Skip over it, and start reading the explanation, referring back to the tree 
in following the explanation of each step. 

41 (Vx)Lxe v (Vx)-Lxa P 
2 - Lae P 

4 3  --(3x)Lxa -C 
J4 (3x)Lxa 3,  7- 

6 Lca Lca 

A 
5 a, e, c (Vx)Lxe a, e, c (Vx)-Lxa 1 ,  v 

4, 3 New Name 
7 Lae - Laa 5, 
8 Lee -Lea 5, V 
9 Lce - Lca 5, 

X X 
Valid 

We begin by listing the premises and the negation of the conclusion. 
Our first move is to apply the rule for double negation to line 3, giving 
line 4. Next we work on line 1. Notice that even though '(Vx)' is the first 
symbol to appear on line 1, the sentence is not a universally quantified 

sentence. Ask yourself (As in chapters 8 and 9 in volume I): What is the 
last thing I do in building this sentence up from its parts? You take 
'(Vx)Lxe' and '(Vx)-Lxa' and form a disjunction out of them. So the main 
connective is a disjunction, and to make this sentence true in the interpre- 
tation we are building, we must apply the rule for disjunction, just as we 
used it in sentence logic. This gives line 5. 

In lines 1 through 4 our tree has one path. Line 5 splits this path into 
two branches. Each branch has its own universally quantified sentence 
which we must make true along the branch. Each branch also has 
'(3x)Lxa1, which is common to both branches and so must be made true 
along both branches. What should we do first? 

When we work on '(3x)Lxa' we will have to introduce a new name. It is 
usually better to get out all the new names which we will have to introduce 
before working on universally quantified sentences. To see why, look at 
what would have happened if I had worked on line 5 before line 4. Look- 
ing at the right branch I would have instantiated '(Vx)-Lxa' with 'a' and 
'e'. Then I would have returned to work on line 4, which would have 
introduced the new name 'c'. But now with a new name 'c' on the branch 
I must go back and instantiate (Vx)-Lxa' with 'c'. To  make this sentence 
true, I must make it true for all instances. If a new name comes up in 
midstream, I must be sure to include its instance. Your work on a tree is 
more clearly organized if you don't have to return in this way to work on 
a universally quantified sentence a second time. 

We will see in the next chapter that in some problems we cannot avoid 
returning to work on a universally quantified sentence a second time. (It 
is because sometimes we cannot avoid this situation that we must never 
check a universally quantified sentence.) But in the present problem we 
keep things much better organized by following this practical guide: 

Practical Guide: Whenever possible, work on existentially quantified sen- 
tences before universally quantified sentences. 

Now we can complete the problem. I work on line 4 before line 5. Line 
4 is an existentially quantified sentence. The rule 3 tells me to pick a new 
name, to use this new name in forming a substitution instance for the 
existentially quantified sentence, and to write this instance at the bottom 
of every open path on which the existentially quantified sentence appears. 
Accordingly, I pick 'c' as my new name and write the instance 'Lca' on 
each branch as line 6. Having done this, I check line 4, since I have now 
ensured that it will be made true along each open path on which it ap- 
pears. 

Finally, I can work on line 5. On the left branch I must write substitu- 
tion instances for '(Vx)Lxe' for all the names that appear along that 
branch. So below '(Vx)Lxe' I write 'Lae', 'Lee', and 'Lce', and I write the 
names 'a', 'e', and 'c' to the left of the target sentence '(Vx)Lxe' to note 
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the fact that this sentence has been instantiated with these three names. 
The branch closes because 'Lae' of line 7 conflicts with '-Lae' on line 2. 
On the right branch I have '(Vx)-Lxa'. At the bottom of the branch I 
write its substitution instances for all names on the branch, giving '-Laa', 
'-Lea', and '-La'. Again, I write the names used to the left of the target 
sentence. '-Lca' is the negation of 'Lca' on line 6. So the right branch 
closes also, and the argument is valid. 

One more comment about this example: The new name requirement 
did not actually avoid any trouble in this particular case. If I had used 
either of the old names 'a' or  'e', I would in this case have gotten the right 
answer. Moreover, the tree would have been shorter. You may be think- 
ing: What a bother this new name requirement is! Why should I waste 
my time with it in a case like this? But you must follow the new name 
requirement scrupulously if you want to be sure that the tree method 
works. When problems get more complicated, it is, for all practical pur- 
poses, impossible to tell whether you can safely get away without using it. 
The  only way to be sure of always getting the right answer is to use the 
new name requirement every time you instantiate an existentially quanti- 
fied sentence. 

Now let's try an example which results by slightly changing the first 
premises of the last case: 

(Vx)(Lxe v -Lxa) - Lae 

-(3x)Lxa 

Instead of  starting with a disjunction of two universally quantified sen- 
tences, we start with a universal quantification of a disjunction: 

a, e, c 1 (Vx)(Lxe v -Lxa) P 
2 - Lae P 

J 3 --(3x)Lxa -C 

J4 ( 3 x ) ~ x a  3 ,  -- 
5 Lca 4, 3, New name 

J6 Lae v -Laa 1, v 
/ 7 Lee v -Lea 1, v 

V . 
Lce v -Lca 1, v 

9 Lae -Laa 

Lines 1, 2, and 3 list the premises and the negation of the conclusion. 
Line 4 gives the result of applying -- to line 3. Looking at line 1, we ask, - 
What was the very last step performed in writing this sentence? The an- 
swer: applying a universal quantifier. So it is a universally quantified sen- 
tence. But line 4 is an existentially quantified sentence. Our practical 
guide tells us to work on the existentially before the universally quantified 
sentence. Accordingly, I pick a new name, 'c', and use it to instantiate 
'(3x)Lxa', giving me line 5. Now I can return to line 1 and apply the rule 
V. At this point, the names on the branch are 'a', 'e', and 'c'. So I get the 
three instances of 1 written on lines 6, 7, and 8, and I record the names 
used to the left of line 1. Lines 9, 10, and 11 apply the v rules to lines 6, 
7, and 8. Notice that I chose to work on line 8 before line 7. I am free to 
do this, and I chose to do it, because I noticed that the disjunction of line 
8 would close on one branch, while the disjunction of line 7 would not 
close on any branches. 

We have applied the rules as far as they can be applied. No sentence 
can be made true by making shorter sentences true. We are left with two 
open branches, each of which represents a counterexample to the original 
argument. Let's write these counterexamples down. 

The branch labeled (i) at the bottom has the names 'e', 'c', and 'a'. (In 
principle, the order in which you list information on a branch makes no 
difference. But it's easiest to read off the information from the bottom of 
the branch up.) So I indicate the domain of branch (i)'s interpretation by 
writing D = {e,c,a}. What is true of e, c, and a in this interpretation? The 
branch tells us that e bears L to itself, that c bears L to e, that a does not 
bear L to itself, that c bears L to a and that a does not bear L to e. In 
short, the interpretation is 

D = {e,c,a); Lee & Lce & - h a  & Lca & - h e  

To read an interpretation of an open branch, you need only make a list 
of the branch's names and the atomic and negated atomic sentences which 
appear along the branch. We use the format I have just indicated to make 
clear that the names are names of the objects of the domain, and the 
atomic and negated atomic sentences describe what is true of these ob- 
jects. Check your understanding by reading the counterexample off the 
branch labeled (ii). You should get 

D = {e,a,c); -Lea & Lce & - h a  & Lca & -Lae 

Notice that neither of these counterexamples as read off the branches 
constitutes complete interpretations. The branches fail to specify some of 
the atomic facts that can be expressed with 'L', 'a', 'c', and 'e'. For exam- 
ple, neither branch tells us whether 'LC' is true or false. We have seen 
the same situation in sentence logic when sometimes we had a relevant 
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sentence letter and an open branch on which neither the sentence letter 
nor its negation appeared as the entire sentence at a point along the 
branch. Here, as in sentence logic, this happens when a branch succeeds 
in making everything along it true before completing a selection of truth 
values for all relevant atomic sentences. In effect, the branch represents 
a whole group of interpretations, one for each way of completing the 
specification of truth values for atomic sentences which the branch does 
not mention. But for our purposes it will be sufficient to read off the 
intermetation as the branch presents it and call it our counterexample 
even though it may not yet be a complete interpretation. 

EXERCISES 

7-3. Test the following arguments for validity. State whether each 
argument is valid or invalid, when invalid, give the counterexamples 
shown by the open paths. 

a) (3x)(Px 3 Qx) b) (3x)Cx c) (3x)Jx v (3x)Kx 
Pix)-JX 

-(Vx)(Px & -Qx) -(3x)-Cx 
-(Vx)-Kx 

dl (Vx)(Px 3 Qx) e) (Vx)(Gx v Hx) 
(3x)Px 

-(ax)-Gx v -(Ex)-HX 
-(Vx)-Qx 

h) Jq 3 (3x)Kx i) (3x)Hx & (3x)Gx j) (3x)-Fx 
(Vx)(Kx 3 Lx) -(Vx)Fx 3 (Vx)-Px 

-(Vx)-(Hx & Gx) -(Vx)Fx 3 (VX)-QX 
Jq 3 -(Vx)-Lx 

-(Vx)(Px v Qx) 

7 4 .  NEGATED QUANTIFIED SENTENCES 

To complete the rules for quantification, we still need the rules for the 
negation of quantified sentences. As always, we illustrate with a simple 
example: 

Lae I Lae P 

(3x)Lxe 2 -(3x)Lxe -C 

What will make line 2 true? All we need do is to make use of the equiva- 
lence rule for a negated existential quantifier, which we proved in section 
3 4 .  (Remember: "Not one is" comes to the same thing as "All are not." 
If you have forgotten that material, reread the first few paragraphs of 
section 3 4 y o u  will very quickly remember how it works.) '-(3x)Lxe' is 
true in an interpretation if and only -if '(Vx)-Lxe' is true in the interpre- 
tation. So we can make '-(3x)Lxe' true by making '(Vx)-Lxe' true. This 
strategy obviously will work for any negated existentially quantified sen- 
tence. So we reformulate the -3 rule for logical equivalence as a rule for 
working on a negated existentially quantified sentence on a tree: 

Rule -3: If a sentence of the form -(3u)(. . . u . . .) appears as the full 
sentence at any point on a tree, write (Vu)-(. . . u . . .)at the bottom of 
every open branch on which -(3u)(. . . u . . .) appears. Put a check by 
-(3u)(. . . u . . .). 

With this rule, we complete our problem as follows: 

1 Lae P 
4 2  -(3x)Lxe -C 

a, e, 3 (Vx)-Lxe 2, -3  
4 -Lae 3,  v 
5 -Lee 3,  v 

X 
Valid 

Note that I did not use a new name when I worked on line 2. The new 
name rule does not enter anywhere in this problem because the problem 
has no existentially quantified sentence as the full sentence at some point 
on the tree. Consequently, the rule 3 never applies to any sentence in this 
problem. Line 2 is the negation of an existentially quantified sentence, 
and we deal with such a sentence with our new rule, -3. Line 2 gives line 
3 to which the rule V applies. 

The story for the negation of a universally quantified sentence goes the 
same way as for a negation of an existentially quantified sentence. Just as 
"not one is" comes to the same thing as "all are not," "not all are" comes 
to the same thing as "some are not." In other words, we appeal to the 
rule -V for logical equivalence in exactly the same way as we appealed to 
the rule -3 for logical equivalence. Reformulating for application to a 
negated universally quantified sentence on a tree, we have 

Rule -V: If a sentence of the form -(Vu)(. . . u . . .) appears as the full 
sentence at any point on a wee, write (31)-(. . . u . . .) at the bottom of 
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every open branch on which -(Vu)(. . . u . . .) appears. Put a check by 
-(Vu)(. . . u . . .). 

Once again, this rule works because -(Vu)(. . . u . . .) is equivalent to 
(3u)-(. . . u . . .), as we noted in section 3-4 and as you proved in ex- 
ercise 3-5. 

Here is an example to illustrate the -V rule: 

(3x)Lxe 

J1 (3x)Lxe P 
J2 --(Vx)Lxe -C 
J3 (3x)-Lxe 2, -V 

4 Lce 1, 3, New name 
5 -Lde 3, 3, New name 

Invalid. Counterexample: D = {d,e,c); -Lde & Lce 

In this example, note that failure to follow the new name rule at step 5 
would have incorrectly closed the branch. Also note that we do not instan- 
tiate line 2 with any of the names. Line 2 is not a universally quantified 
sentence. Rather, it is the negation of a universally quantified sentence 
which we treat with the new rule -V. 

Now you have all the rules for quantifiers. It's time to practice them. 

Before you go to work, let me remind you of the three most com- 
mon mistakes students make when working on trees. First of all, you 
must be sure you are applying the right rule to the sentence you are 
working on. The key is to determine the sentence's main connective. 
You then apply the rule for that connective (or for the first and 
second connectives in case of negated sentences). You should be es- 
pecially careful with sentences which begin with a quantifier. Some 
are quantified sentences, some are not; it depends on the parenthe- 
ses. '(Vx)(Px > A)' is a universally quantified sentence, so the rule V 
applies to it. It is a universally quantified sentence because the initial 
universal quantifier applies to the whole following sentence as indi- 
cated by the parentheses. By way of contrast, '(Vx)(Lxa 3 Ba) & Lba' 
is not a universally quantified sentence. It is a conjunction, and the 
rule & is the rule to apply to it. 

The second mistake to watch for especially carefully is failure to 

instantiate a universally quantified sentence with all the names that 
appear on the sentence's branch. When a universally quantified sen- 
tence appears on a branch, you are not finally done with the sen- 
tence until either the branch closes or you have instantiated it with 
all the names that appear on the branch. - - 

1 Finally, please don't forget the new name requirement when you 

1 work on an existentially quantified sentence. When instantiating an 
existentially quantified sentence,. you use only one name, but that 

I name must not yet appear anywhere on the branch. 
1 7 4 .  Use the truth tree method to test the following arguments for 

validity. In each problem, state whether or not the argument is valid; 
if invalid give a counterexample. 

a l )  (Vx)Px & (Vx)Qx a2) (Vx)(Px & Qx) 

(Vx)(Px & Qx) (Vx)Px & (Vx)Qx 

b l  ) (3x)Px v (3x)Qx b2) (3x)(Px v Qx) 

(~X) (PX v Qx) (3x)Px v (3x)Qx 

e l )  A > (Vx)Px e2) (Vx)(A > Px) 

(Vx)(A > Px) A 3 (Vx)Px 

f l  ) A 3 (3x)Px f2) (3x)(A > Px) 

(3x)(A > Px) A 3 (3x)Px 
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I CHAPTER SUMMARY EXERCISES 

Here are the new ideas from this chapter. Make sure you under- 
stand them, and record your summaries in your notebook. 

a) Rule V d) Rule -V 
b) Rule 3 e) Rule -3 
c) New Name Requirement f )  Reading an Interpretation 

Off an Open Branch 


