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More about Quantifiers - 3 

3-1. SOME EXAMPLES OF MULTIPLE QUANTIFICATION 

All of the following are sentences of predicate logic: 

Let's suppose that 'L' stands for the relation of loving. What do these 
sentences mean? 

Sentence (1) says that everybody loves everybody (including them- 
selves). (2) says that somebody loves somebody. (The somebody can be 
oneself o r  someone else.) Sentences (3) to (6) are a little more tricky. (3) 
says that there is one person who is such that he or she loves everyone. 
(There is one person who is such that, for all persons, the first loves the 
second-think of God as an example.) We get (4) from (3) by reversing 
the order of the 'x' and 'y' as arguments of 'L'. As a result, (4) says that 
there is one person who is loved by everyone. Notice what a big difference 
the order of the 'x' and 'y' makes. 

Next, (5) says that everyone loves someone: Every person is such that 
there is one person such that the first loves the second. In a world in . 
which (5) is true, each person has an object of their affection. Finally we 
get (6) out of (5) by again reversing the order of 'x' and 'y'. As a result, 
(6) says that everyone is loved by someone or other. In a world in which 
(6) is true no one goes unloved. But (6) says something significantly 
weaker than (3). (3) say that there is one person who loves everyone. (6) 
says that each person gets loved, but Adam might be loved by one person, 
Eve by another, and so on. 

Can we say still other things by further switching around the order of 
the quantifiers and arguments in sentences (3) to (6)? For example, 
switching the order of the quantifiers in (6) gives 

Strictly speaking, (7) is a new sentence, but it does not say anything new 
because it is logically equivalent to (3). It is important to see why this is so: 

These diagrams will help you to see that (7) and (3) say exactly the same 
thing. The point is that there is nothing special about the variable 'x' or 
the variable 'y'. Either one can do the job of the other. What matters is 
the pattern of quantifiers and variables. These diagrams show that the 
pattern is the same. All that counts is that the variable marked at position 
1 in the existential quantifier is tied to, or, in logicians' terminology, Binds 
the variable at position 3; and the variable at position 2 in the universal 
quantifier binds the variable at position 4. Indeed, we could do without 
the variables altogether and indicate what we want with the third dia- 
gram. This diagram gives the pattern of variable binding which (7) and 
(3) share. 

3-2. QUANTIFIER SCOPE, BOUND VARIABLES, AND FREE 
VARIABLES 

In the last example we saw that the variable at 3 is bound by the quantifier 
at 1 and the variable at 4 is bound by the quantifier at 2. This case con- 
trasts with that of a variable which is not bound by any quantifier, for 
example 
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(8) Lxa > (3xTxb 
1 2 3 

(9) (3xVxb 3 Lxa 
1 2  3 

In (€9, the occurrence of 'x' at 3 is bound by the quantifier at 2. However, 
the occurrence of 'x' at 1 is not bound by any quantifier. Logicians say 
that the occurrence of 'x' at 1 is Free. In (9), the occurrence of 'x' at 3 is 
free because the quantifier at 1 binds only variables in the shortest full 
sentence which follows it. Logicians call the shortest full sentence follow- 
ing a quantifier the quantifier's Scope. In (9), the 'x' at 3 is not in the scope 
of the quantifier at 1. Consequently, the quantifier does not bind 'x' at 3. 

All the important ideas of this section have now been presented. We 
need these ideas to understand clearly how to apply the methods of de- 
rivations and truth trees when quantifiers get stacked on top of each 
other. All we need do to complete the job is to give the ideas an exact 
statement and make sure you know how to apply them in more compli- 
cated situations. 

Everything can be stated in terms of the simple idea of scope. A quan- 
tifier is a connective. We use a quantifier to build longer sentences out of 
shorter ones. In building up sentences, a quantifier works just like the 
negation sign: It apples to the shortest full sentence which follows it. This 
shortest full following sentence is the quantifier's scope: 

The Scope of a quantifier is the shortest full sentence which follows it. Every- 
thing inside this shortest full following sentence is said to be in the scope of 
the quantifier. 

We can now define 'bound' and 'free' in terms of scope: 

A variable, u, is Bound just in case it occurs in the scope of a quantifier, 
(Vu) or (3u). 

A variable, u, is Free just in case it is not bound; that is, just in case it does 
not occur in the scope of any quantifier, (Vu) or (3u). 

Clearly, a variable gets bound only by using a quantifier expressed with 
the same variable. 'x' can never be bound by quantifiers such as '(Vy)' or 
'(32)'. 

Occasionally, students ask about the variables that occur within the 
quantifiers-the 'x' in '(ax)' and in '(Vx)'. Are they bound? Are they free? 
The answer to this question is merely a matter of convention on which 
nothing important turns. I think the most sensible thing to say is that the 
variable within a quantifier is part of the quantifier symbol and so does 
not count as either bound or free. Only variables outside a quantifier can 
be either bound or free. Some logicians prefer to deal with this question 

by defining the scope of a quantifier to include the quantifier itself as well 
as the shortest full sentence which follows it. On this convention one 
would say that a variable within a quantifier always binds itself. 

These definitions leave one fine point unclear. What happens if the 
variable u is in the scope of two quantifiers that use u? For example, 
consider 

(10) (3x)[(Vx)Lxa > Lxb] 
1 2 3  4 

The occurrence of 'x' at 3 is in the scope of both the 'x' quantifiers. Which 
quantifier binds 'x' at 3? 

T o  get straight about this, think through how we build (10) up from 
atomic constituents. We start with the atomic sentences 'Lxa' and 'Lxb'. 
Because atomic sentences have no quantifiers, 'x' is free in both of these 
atomic sentences. Next we apply '(Vx)' to 'Lxa', forming '(Vx)Lxa', which 
we use as the antecedent in the conditional 

(11) (Vx)Lxa 3 Lxb 
2 3  4 

In ( l l ) ,  the occurrence of 'x' at 3 is bound by the quantifier at 2. The 
occurrence of 'x' at 4 is free in (1 1). 

Finally, we can clearly describe the effect of '(3x)' when we apply it to 
(1 1). '(3x)' binds just the free occurrences of 'x' in (1 1). The occurrence 
at 4 is free and so gets bound by the new quantifier. The occurrence at 3 
is already bound, so the new quantifier can't touch it. The following dia- 
gram describes the overall effect: 

n (1 0) (3x)[(vxWa >Lxb] 
1 2 3  4 

First, the occurrence at 3 is bound by the quantifier at 2. Then the occur- 
rence at 4 is bound by the quantifier at 1. The job being done by the 2-3 
link is completely independent of the job being done by the 1 4  link. 

Let's give a general statement to the facts we have uncovered: 

A quantifier (Vu) or (3u) binds all and only all free occurrences of u in its 
scope. Such a quantifier does not bind an occurrence of u in its scope which 
is already bound by some other quantifier in its scope. 

We can make any given case even clearer by using different variables 
where we have occurrences of a variable bound by different quantifiers. 
So, for example, (10) is equivalent to 

/T', (12) (3x)[(Vz)Lza > Lxb] 
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In (12), there can be no confusion about which quantifier binds which 
variable-we keep track of everything by using different variables. Why, 
then, didn't we just resolve to use different variables from the beginning 
and save ourselves a lot of trouble? We could have done that, but then 
the definition of the sentences of predicate logic would have been much 
more complicated. Either way, we have work to do. Besides, the formu- 
lation I have presented here is the one traditionally used by logicians and 
so the one you will need to know if you study more logic. 

Let's look at another, slightly more complicated, example to make sure 
you have put this all together. Draw in the lines which show which quan- 
tifier binds which variable in the following: 

(13) (3x)[(3x)(Bx v Lxa) 3 (Bx & Lxb)] 

If you are having trouble, think through how (13) gets built up from its 
parts. In 

(14) (3x-a) 3 (Bx & Lxb) 
2 3  4 5 6 

the quantifier at 2 applies only to the shortest full sentence which follows 
it, which ends before the '3'. So the occurrences of 'x' at 3 and 4 are both 
bound by the quantifier at 2. The two occurrences of 'x' at 5 and 6 are 
not in the scope of a quantifier and are both free. So when we apply the 
second '(3x)' to all of (14), the new '(3x)' binds only the 'x's which are still 
free in (14), namely, the 'x's which occur at 5 and 6. In sum, the pattern 
of binding is 

We can make this pattern even clearer by writing the sentence equiva- 
lent to (13): 

(15) (3x)[(3z)(Bz v Lza) 3 (Bx & Lxb)] 

In practice, of course, it is much better to use sentences such as (15) and 
(12) instead of the equivalent (13.) and (lo), which are more difficult to 
interpret. 

EXERCISES 

3-1. In the following sentences draw link lines to show which quan- 
tifiers bind which variables and say which occurrences of the vari- 
ables are bound and which are free: 

a) Lzz b) (Vy)(Vz)Lzy c) (Vz)(Bz 3 Lxz) 
12 12 1 23 

e) (Vx)(Lax & Bx) = (Lxx 3 (3x)Bx) 
1 2 34 5 

3-3. CORRECT DEFINITIONS OF SUBSTITUTION INSTANCE 
AND TRUTH IN AN INTERPRETATION 

In chapter 2 I gave an incorrect definition of 'substitution instance.' I said 
that we get the substitution instance of (Vu) ( . . . u . . .) with s substi- 
tuted for u by simply dropping the initial (u) and writing in s wherever 
we find u in (. . . u . . .). This is correct as long as neither a second (Vu) 
nor a (3u) occurs within the scope of the initial (Vu), that is, within the 
sentence ( . . . u . . .). Since I used only this kind of simple sentence in 
chapter 2, there we could get away with the simple but incorrect defin- 
tion. But now we must correct our definition so that it will apply to any 
sentence. Before reading on, can you see how multiple quantification can 
make trouble for the simple definition of substitution instance, and can 
you see how to state the definition correctly? 

To correct the definition of substitution instance, all we have to do is to 
add the qualification that the substituted occurrences of the variable be 
free: 

For any universally quantified sentence (Vu) ( . . . u . . .), the Substitution 
Instance of the sentence, with the name s substituted for the variable u, is 
(. . . s . . .), the sentence formed by dropping the initial universal quanti- 
fier and writing s for all free occurrences of u in (. . . u . . .). 
For any existentially quantified sentence (3u) (. . . u . . .), the Substitution 
Instance of the sentence, with the name s substituted for the variable u, is 
(. . . s . . .), the sentence formed by dropping the initial existential quanti- 
fier and writing s for all free occurrences of u in (. . . u . . .). 

For example, look back at (13). Its substitution instance with 'c' substi- 
tuted for 'x' is 

(16) (3x)(Bx v Lxa) 3 (Bc & Lcb) 
2 3  4 5 6 

The occurrences of 'x' at 3 and 4 are not free in the sentence which re- 
sults from (13) by dropping the initial quantifier. SO we don't substitute 
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'c' for 'x' at 3 and 4. We substitute 'c' only at the free occurrences, which 
were at 5 and 6. 

Can you see why, when we form substitution instances, we pay attention 
only to the occurrences which are free after dropping the outermost 
quantifier? The occurrences at 3 and 4, bound by the '(3x)' quantifier at 
2, have nothing to do with the outermost quantification. When forming 
substitution instances of a quantified sentence, we are concerned only 
with the outermost quantifier and the occurrences which it binds. 

To help make this clear, once again consider (15), which is equivalent 
to (13). In (15), we have no temptation to substitute 'c' for '2' when form- 
ing the 'c'-substitution instance for the sentence at a whole. (15) says that 
there is some x such that so on and so forth about x. In making this true . 

for some specific x, say c, we do not touch the occurrences of '2'. The 
internal '2'-quantified sentence is just part of the so on and so forth which 
is asserted about x in the quantified form of the sentence, that is, in (15). 
So the internal '2'-quantified sentence is just part of the so on and so forth 
which is asserted about c in the substitution instance of the sentence. 
Finally, (13) says exactly what (15) says. So we treat (13) in the same way. 

Now let's straighten out the definition of truth of a sentence in an inter- 
pretation. Can you guess what the problem is with our old definition? I'll 
give you a clue. Try to determine the truth value of 'Lxe' in the interpre- 
tation of figure 2-1. You can't do it! Nothing in our definition of an inter- 
pretation gives us a truth value for an atomic sentence with a free vari- 
able. An interpretation only gives truth values for atomic sentences which 
use no variables. You will have just as much trouble trying to determine 
the truth value of '(Vx)Lxy' in any interpretation. A substitution instance 
of '(Vx)Lxy' will still have the free variable 'y', and no interpretation will 
assign such a substitution instance a truth value. 

Two technical terms (mentioned in passing in chapter 1) will help us in 
talking about our new problem: 

A sentence with one or more free variables is called an Open Sentma. 

A sentence which is not open (i.e., a sentence with no free variables) is called 
a Closed Sentme. 

In a nutshell, our problem is that our definitions of truth in an inter- 
pretation do not specify truth values for open sentences. Some logicians 
deal with this problem by treating all free variables in an open sentence 
as if they were universally quantified. Others do what I will do here: We 
simply say that open sentences have no truth value. 

If you think about it, this is really very natural What, anyway, is the 
truth value of the English "sentence" 'He is blond.', when nothing has 
been said or done to give you even a clue as to who 'he' refers to? In such 
a situation you can't assign any truth value to 'He is blond.' 'He is blond.' 
functions syntactically as a sentence-it has the form of a sentence. But 

there is still something very problematic about it. In predicate logic we 
allow such open sentences to function syntactically as sentences. Doing 
this is very useful in making clear how longer sentences get built up from- 
shorter ones. But open sentences never get assigned a truth value, and in 
this way they fail to be full-fledged sentences of predicate logic. 

It may seem that I am dealing with the problem of no truth value for 
open sentences by simply ignoring the problem. In fact, as long as we 
acknowledge up-front that this is what we are doing, saying that open 
sentences have no truth value is a completely adequate way to proceed. 

We have only one small detail to take care of. As I stated the definitions 
of truth of quantified sentences in an interpretation, the definitions were 

,said to apply to any quantified sentences. But they apply only to closed 
sentences. So we must write in this restriction: 

A universally quantified closed sentence is true in an interpretation just in 
case all of the sentence's substitution instances, formed with names in the 
interpretation, are true in the interpretation. 

An existentially quantified closed sentence is true in an interpretation just 
in case some (i.e., one or more) of the sentence's substitution instances, 
formed with names in the interpretation, are true in the interpretation. 

These two definitions, together with the rules of valuation given in 
chapters 1 and 4 of volume I for the sentence logic connectives, specify a 
truth value for any closed sentence in any of our interpretations. 

You may remember that in chapter 1 in volume I we agreed that sen- 
tences of logic would always be true or false. Sticking by that agreement 
now means stipulating that only the closed sentences of predicate logic 
are real sentences. As I mentioned in chapter 1 in this volume, some lo- 
gicians use the phrase Fmulas, or Propositional Functions for predicate 
logic open sentences, to make the distinction clear. I prefer to stick with 
the word 'sentence' for both open and closed sentences, both to keep ter- 
minology to a minimum and to help us keep in mind how longer (open 
and closed) sentences get built up from shorter (open and closed) sen- 
tences. But you must keep in mind that only the closed sentences are full- 
fledged sentences with truth values. 

EXERCISES 

3-2. Write a substitution instance using 'a' for each of the following 
sentences: 
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f )  (Vy)(3x)[(Rxy 3 Dy) 3 Ryxl 
g) Wx)(Vy)Wz){[Sxy v (Hz 3 Lxz)l = (Sex & Hy)) 
h) (3x)(Vz){(F'xa > Kz) & (3y)[(F'xy v Kc) & F'xx]) 
i) (3z)(Vy){[(3x)Mzx v (3x)(Mxy > Myz)] & (3x)Mzx) 
j) (Vx){[(Vx)Rxa > Rxb] v [(3x)(Rcx v Rxa) > Rxx]) 

3-3. If u does not occur free in X, the quantifiers (Vu) and (3u) are 
said to occur Vuuously in (Vu)X and (3u)X. Vacuous quantifiers 
have no effect. Let's restrict our attention to the special case in which 
X is closed, so that it has a truth value in any of its interpretations. 
The problem I want to raise is how to apply the definitions for in- 
terpreting quantifiers to vacuously occurring quantifiers. Because 
truth of a quantified sentence is defined in terms of substitution 
instances of (Vu)X and (3u)X, when u does not occur free in X, 
we most naturally treat this vacuous case by saying that X counts 
as a substitution instance of (Vu)(X) and (3u)(X). (If you look back 
at my definitions of 'substitution instance', you will see that they 
really say this if by 'for all free occurrences of u' you understand 'for 
no occurrences of u' when u does not occur free in X at all. In any 
case, this is the way you should understand these definitions when u 
does not occur free in X.) With this understanding, show that 
(Vu)X, (3u)X, and X all have the same truth value in any interpre- 
tation of X. 
3-4. a) As I have defined interpretation, every object in an inter- 
pretation has a name. Explain why this chapter's definitions of truth 
of existentially and universally quantified sentences would not work 
as intended if interpretations were allowed to have unnamed objects. 

b) Explain why one might want to consider interpretations with un- 
named objects. 
In part I1 we will consider interpretations with unnamed objects and 
revise the definitions of truth of quantified sentences accordingly. 

3-4. SOME LOGICAL EQUIVALENCES 

The idea of logical equivalence transfers from sentence logic to predicate 
logic in the obvious way. In sentence logic two sentences are logically 
equivalent if and only if in all possible cases the sentences have the same 
truth value, where a possible case is just a line of the truth table for the 
sentence, that is, an assignment of truth values to sentence letters. All we 
have to do is to redescribe possible cases as interpretations: 

Two closed predicate logic sentences are Logically Equivalent if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 

Notice that I have stated the definition only for closed sentences. In- 
deed, the definition would not make any sense for open sentences because 
open sentences don't have truth values in interpretations. Nonetheless, ' 
one can extend the idea of logical equivalence to apply to open sentences. 
That's a good thing, because otherwise the law of substitution of logical 
equivalents would break down in predicate logic. We won't be making 
much use of these further ideas in this book, so I won't hold things up 
with the details. But you might amuse yourself by trying to extend the 
definition of logical equivalence to open sentences in a way which will 
make the law of substitution of logical equivalents work in just the way 
you would expect. 

Let us immediately take note of two equivalences which will prove very 
useful later on. By way of example, consider the sentence, 'No one loves 
Eve', which we transcribe as '-(3x)Lxe', that is, as 'It is not the case that 
someone loves Eve'. How could this unromantic situation arise? Only if 
everyone didn't love Eve. In fact, saying '-(3x)Lxe' comes to the same 
thing as saying '(Vx)-Lxe'. If there is not a single person who does love 
Eve, then it has to be that everyone does not love Eve. And conversely, if 
positively everyone does not love Eve, then not even one person does love 
Eve. 

There is nothing special about the example I have chosen. If our sen- 
tence is of the form -(3u)(. . . u . . .), this says that there is not a single 
u such that so on and so forth about u. But this comes to the same as 
saying about each and every u that so on and so forth is not true about 
u, that is, that (Vu)-(. . . u . . .). 

We can easily prove the equivalence of -(3u)(. . . u . . .) and 
(Vu)-(. . . u . . .) by appealing to De Morgan's laws. We have to prove 
that these two sentences have the same truth value in each and every 
interpretation. In any one interpretation, -(3u)(. . . u . . .) is true just 
in case the negation of the disjunction of the instances 

is true in the interpretation, where we have included in the disjunction all 
the instances formed using names which name things in the interpreta- 
tion. By De Morgan's laws, this is equivalent to the conjunction of the 
negation of the instances 

which is true in the interpretation just in case (Vu)-(. . . u . . .) is true 
in the interpretation. Because this is true in all interpretations, we see that 

Rule -3: -(3u)(. . . u . . .) is logically equivalent to (Vu)-(. . . u . . .). 

Now consider the sentence 'Not everyone loves Eve,' which we tran- 
scribe as '-(Vx)Lxe'. If not everyone loves Eve, then there must be some- 
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one who does not love Eve. And if there is someone who does not love 
Eve, then not everyone loves Eve. So '-(Vx)Lxe' is logically equivalent to 
'(3x)-Lxe'. 

Pretty clearly, again there is nothing special about the example. 
-(Vu)(. . . u . . .) is logically equivalent to (3u)-(. . . u . . .). If it is not 
the case that, for all u, so on and so forth about u, then there must be 
some u such that not so on and so forth about u. And, conversely, if there 
is some u such that not so on and so forth about u, then it is not the case 
that for all u, so on and so forth about u. In summary 

Rule -V: -(Vu)(. . . u . . .) is logically equivalent to (3u)-(. . . u . . .). 

You can easily give a proof of this rule by imitating the proof of the . - 
rule -3. But I will let you write out the new proof as an exercise. 

3-5. a) Give a proof of the rule of logical equivalence, -V. Your 
proof will be very similar to the proof given in the text for the 
rule -3. 
b) The proof for the rule -3 is flawed! It assumes that all interpre- 
tations have finitely many things in their domain. But not all inter- 
pretations are finite in this way. (Exercise 2-5 gives an example of 
an infinite interpretation.) The problem is that the proof tries to talk 
about the disjunction of all the substitution instances of a quantified 
sentence. But if an interpretation is infinite, there are infinitely 
many substitution instances, and no sentence can be infinitely long. 
Since I instructed you, in part (a) of this problem, to imitate the 
proof in the text, probably your proof has the same problem as 
mine. 

Your task is to correct this mistake in the proofs. Give informal 
arguments for the rules -3 and -V which take account of the fact 
that some interpretations have infinitely many things in their do- 
main. 
3-6. In the text I defined logical equivalence for closed sentences of 
predicate logic. However, this definition is not broad enough to en- 
able us to state a sensible law of substitution of logical equivalents 
for predicate logic. Let me explain the problem with an example. 
The following two sentences are logically equivalent: 

But we cannot prove that (1) and (2) are logically equivalent with the 
rule -V as I have stated it. Here is the difficulty. The rule -V tells 
us that (1) is logically equivalent to 

What we would like to say is that -(Vy)Lxy is logically equivalent to 
(3y)-Lxy, again by the rule -V. But the rule -V does not license 
this because I have defined logical equivalence only for closed sen- 
tences and '-(Vy)Lxyl and '(3y)-Lxy' are open sentences. (Strictly 
speaking, I should have restricted the -V and -3 rules to closed 
sentences. I didn't because I anticipated the results of this exercise.) 
Since open sentences are never true or false, the idea of logical 
equivalence for open sentences does not make any sense, at least not 
on the basis of the definitions I have so far introduced. 

Here is your task: 
a) Extend the definition of logical equivalence for predicate logic 

sentences so that it applies to open as well as closed sentences. Do 
this in such a way that the law of substitution of logical equivalents 
will be correct when one open sentence is substituted for another 
when the two open sentences are logically equivalent according to 
your extended definition. 

b) Show that the law of substitution of logical equivalents works 
when used with open sentences which are logically equivalent ac- 
cording to your extended definition. 

I CHAPTER SUMMARY EXERCISES 

Here are this chapter's important terms. Check your understanding 
by writing short explanations for each, saving your results in your 
notebook for reference and review. 

Bound Variables 
Free Variables 
Scope 
Closed Sentence 
Open Sentence 
Truth of a Sentence in an Interpretation 
Rule - 3  
Rule -V 


